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ABSTRACT

Large collaborative datasets offer the challenging opportunity
of creating systems capable of extracting knowledge in the
presence of noisy data. In this work we explore the ability
to automatically learn tag semantics by mining a global geo-
referenced image collection crawled from Flickr with the aim
of improving an automatic annotation system. We are able
to categorize sets of tags as places, landmarks, and visual de-
scriptors. By organizing our dataset of more than 1.69 million
images using a quadtree we can efficiently find geographic ar-
eas with sufficient density to provide useful results for place
and landmark extraction. Precision-recall curves for our tech-
niques compared with previous existing work used to identify
place tags and manual groundtruth landmark annotation show
the merit of our methods applied on a world scale.

Index Terms— Image Annotation, Data Mining, Knowl-
edge Discovery

1. INTRODUCTION

Prominent online collaborative communities, like Wikipedia
and Flickr, aggregate individual contributions into massive,
unorganized datastores with extraordinary research poten-
tial. In these communities unstructured annotation of objects,
known as tagging, is an important data source to be analyzed
along with conventional metadata. Tagging discards the in-
flexibility inherent in structured labeling but at a cost. The
freeform nature of tags brings new challenges as to how to
extract a useful signal, or harvest knowledge, in the presence
of noise in the labels and semantic uncertainty.

A better understanding of tag semantics would benefit
many information-based applications. In this work we ex-
plore tag usage in georeferenced photo collections containing
images with an associated world coordinate. Such knowledge
could benefit applications including automatic extraction of
visual examples of events/landmarks [1], [2] and tag-driven
image annotation [3]. Analysis by mining a large dataset
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Fig. 1: Knowledge of tag semantics allows for better annota-
tion. Appropriate features can be applied by learning how a
tag is employed. For instance, if a tag is deemed a landmark,
we can use visual features to determine if it is appropriate. If
it is a place, a geotag alone might be the most effective.

of photographs for time, location, co-occurrence, and vi-
sual information over multiple geographical scales provides
valuable knowledge about how tags are applied.

Figure 1 shows how learned tag semantics can be em-
ployed in an annotation system. Tag suggestions are calcu-
lated on a previously unlabeled input image from visual fea-
tures and world location. However, these tags are noisy as
many refer to the same object (the Eiffel Tower) and oth-
ers can be pruned by examining time or location metadata
alone. A semantic post-filtering step which categorizes tags
into place, timed event, landmark and visual description pro-
vides a cleaner suggestion list to a user or retrieval system.

This work will expand on existing methods for auto-
matically extracting tag semantics and report results on a
worldwide database of 1.7 million images downloaded via
the Flickr API. The paper is organized as follows. The
next section outlines related work. Section 3 provides detail
about our dataset and its efficient representation employing
a quadtree. Section 4 describes methods for extracting se-
mantics and presents effectiveness results. The last section
concludes.



Fig. 2: A quadtree efficiently indexes the geotagged image
distribution for efficient search over the 1.7 million images.
The tree’s node boundaries are the black lines mapped over
the light blue dots representing image locations for an area
in the eastern United States. Smallest rectangles represent
the lowest-level nodes, and are found at dense, primarily
metropolitan, areas.

2. RELATED WORK

Exploring the purpose and use of tagging has been an area of
active research [4], [5]. Golder and Huberman outline seven
functions tags can serve for bookmarking which are a super-
set of functions served by specifying location and informa-
tion content in an object. Attempts have been made to ex-
tract knowledge on tags through secondary web repositories.
Overell et. al. [6] develop a classifier that employs Wikipedia
to expand semantic categorization via the WordNet ontology,
but they do not consider tag usage statistics and image data.

More similar to our work, Rattenbury and co-authors [7]
attempt to automatically extract tag semantics using Flickr
data. They establish an entropy-based technique for automat-
ically identifying place and timed event tags and analyze re-
sults for a set of roughly 50,000 images with 803 unique tags
in the San Francisco Bay Area. As the number of available
geotagged photos has increased considerably to 100 million
(as of February 2009), a global analysis is now possible. We
will extend automatic tag semantic extraction by a) analyzing
results over a large worldwide database, b) considering the
addition of co-occurrence information, c) identifying visually
descriptive tags via mutual information and d) identifying sets
of tags which correspond to landmarks.

3. DATA COLLECTION AND REPRESENTATION

3.1. Data Crawl and Feature Extraction

In order to explore the aspects of tag semantic extraction over
a world-encompassing dataset we crawled metadata for 1.7
million georeferenced images via the Flickr API on the tag list
Hays and Efros selected for their IM2GPS work [8]. For each
image we retrieve the owner id, unique Flickr id, time taken,

time of upload, title, tags, latitude, longitude, and geotag ac-
curacy as given by zoom level. Our dataset has 65,679 unique
users and 436,506 unique tags. The high number of photos
per user compared to the Flickr average likely results from
the rejection of photos during the crawl with tags indicating
personal use. There are 29,652 tags which are employed at
least 25 times and by more than one user.

For visual analysis we employ two common descriptors,
GIST [9] and SIFT signature [10]:

Gist: The GIST descriptor describes the spatial layout of
an image using global features derived from the spatial enve-
lope of an image. It is particularly powerful in scene catego-
rization. The final descriptor is 512-dimensional.

Sift Signature: The SIFT feature represents descriptors
[11] extracted at 5000 random keypoints and pushed through
a vocabulary tree with 4 levels and a branching factor of 10.

3.2. Quadtree

A quadtree is a data structure which provides an efficient hier-
archical manner to store images adaptively according to their
distribution over location. A quadtree is formed by recur-
sively dividing data into four regions until a stopping con-
dition is met. We specified a minimum-support level as the
stopping condition: if a node contains fewer than 100 im-
ages with unique (owner id, latitude, longitude) triples, sub-
division stops. Each of the leaf nodes, then, represents a space
that is inversely proportional to the density of photos taken
in that area. Figure 2 shows image density and the quadtree
overlaid on a map of the eastern United States. Denser re-
gions, like New York City, have deeper nodes than sparse ar-
eas. The quadtree allows us to quickly identify dense regions
where we can generate tag semantic scores with higher confi-
dence.

4. TAG SEMANTIC IDENTIFICATION

We consider three categories which may be detectable us-
ing the signal present in the photo collection data. These are
places, visual descriptors, and landmarks.

4.1. Place Extraction

The authors in [7] introduce Scale-structure Identification
(SSI) for identifying tags associated with places and events.
For each tag they consider the entropy over connected sub-
components on a graph with vertices as photos labeled with
that tag. A connection criteria, a maximum distance for which
an edge appears, controls the scale. Tags with a tight distribu-
tion on a location (or time in the case of events) will generate
large clusters over multiple scales. A decision variable, λ, for
tag t is computed as a sum of entropy over multiple scales:



λt =
K∑

k=1

∑
Y ∈Ψrk,t

− |Y |
|Nt|

log
|Y |
|Nt|

(1)

where there are K scales, Y is a set of photos connected by
distance rk containing tag t, Ψrk,t is the collection of con-
nected component sets Y for t and rk, and Nt is the set of
photos with tag t. For event detection, it would be easy to
additionally consider periodic time events (e.g. “august”) by
examining the structure of clusters and appropriately recom-
puting the graph on modulo time as is done in [7].

We employ a similar idea to SSI, using the quadtree for
scale space definition. Each level of the quadtree represents
a scale space. We calculate the entropy for each level of
the quadtree, as in Equation 1. However, a cluster space is
considered empty unless the node contains 100 images. Fur-
thermore, we explore the influence of using co-occurrence
information. Many place names co-occur with other place
names, such as the same place in a different language or a
less-specific location (e.g. “Santa Barbara” with “Califor-
nia”). We hope to use this information to influence our de-
cision on a tag. Using the Jaccard coefficient on the image
sets containing compared tags (size of the intersection divided
by the size of the union), we can measure a normalized co-
occurrence of tags and make a prediction using a weighted
sum of the scores of tags above a certain threshold of Jaccard
similarity: λ

′

j = w0λj + 1
w0+

∑
i J(i,j)

∑
i J(i, j)λti

. Figure
3 shows the results of using a quadtree and incorporating co-
occurrence for place identification over 5 scales ranging from
1.1 to 11,100 kilometers. Better initial precision is observed,
but when co-occurrence fails (that is, tag t lacks indicative
co-occurrent terms), we see lower precision as seen at areas
of higher recall.

4.2. Visual Term Extraction

Certain tags refer to qualities which are visually identifiable
from the photo’s content like “sunset,” “sky,” and “beach.” It
is estimated, from a random sampling of the tags contained
in our crawled database that were then manually analyzed,
that on average however less than 30% of tags belong to this
category, identifiable from photo content. These are the tags
that could be suggested from analysis of visual features. To
find tags which represent visual terms we consider the mutual
information between a visual feature random variable x and a
tag variable t. To generate x, we discretize the d-dimensional
computed image feature via K-means clustering. The mutual
information, MI, is estimated pointwise as:

MI(t, x) =
∑
t,t̄

∑
∀k

p(t, xk) log
(
p(t, xk)
p(t)p(xk)

)
(2)

p(x) is the cluster prior, p(t) is the tag prior, p(t̄) = 1 - p(t),
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Fig. 3: Graph showing precision/recall for place identification
of Flickr tags. SSI approach does not exploit co-occurrence
information and does not use a quadtree for scale-space defi-
nition. Co-occurrence information provides better initial pre-
cision, when co-occurrent terms are indicative. However,
when co-occurrence fails, it reduces precision, as evidenced
by lower precision at high recall.

and p(t, xk) is counted as the number of photos with tag t in
cluster k divided by the total number of photos.

We select the GIST feature with K=950 clusters to esti-
mate p(x). GIST’s success with scene categorization tasks is
pertinent for finding tags that are generally descriptive. Table
1 shows a list of tags with high mutual information discovered
in the dataset. Of the top 100 scores for MI(t, x), 57% were
judged visually relevant, indicating the success of mutual in-
formation as a measure of visual tags.

Tag MI Tag MI
sunset 0.0088 (C) 2.7402e-06
clouds 0.0073 mashup 3.9652e-06
flowers 0.0071 work trip 5.2887e-06

sky 0.0070 sounds 5.935e-06
beach 0.0063 psychiatry 6.0322e-06
nature 0.0053 SFW 5.9390e-06

Table 1: Tags with high (expected to be visually relevant) and
low (not expected to be visually relevant) mutual information
with visual features.

4.3. Landmark Detection

The strongest evidence for visually descriptive tags is when
they occur exclusively on photos taken of the same geograph-
ically fixed object. Along these lines Kennedy and Naaman
[1] were able to identify representative results for landmarks
via clustering, and Quack, Leibe, and Van Gool [2] use match-
ing on Wikipedia images for improved accuracy.

To detect tags used to describe landmarks, we first em-
ploy agglomerative clustering on image sets consisting of the
members of dense nodes in the worldwide quadtree. Dis-



Fig. 4: Examples of detected landmarks. Tags from images in
a cluster generate a name estimate from a list of georeferenced
Wikipedia articles. Stricter clustering yields better naming
results, as evidenced by the incorrect guess in the last row.

tances between images are computed using L1 distance on
the SIFT signature, and images join a cluster when the mem-
bers are within a distance threshold σ using complete linkage.
For each set, clusters exceeding a minimum membership of 5
images are considered possible landmarks. Since the dataset
consists of many similar images taken by the same user, we
limit membership to one image per user.

To extract the proper name of the landmark, we query a
database [12] which lists georeferenced Wikipedia entries. A
matching score is calculated for each landmark name in the
database within 0.01◦ latitude and longitude of the median
coordinates of cluster members. The score is generated by
considering the string similarity between the landmark name
and the set of tags and titles for images in the cluster. In an
annotation system, if an image is matched to a representative
cluster, the landmark title can substitute for similar tags.

By searching breadthwise on the six deepest levels on the
quadtree we were able to automatically extract views for 62
identified landmarks. Figure 4 shows an example of the some
of the images we were able to correctly match to a proper
name. Table 2 shows how the minimum distance threshold
and node coarseness effect the results of landmark identifica-
tion for our data.

5. CONCLUSION

In this paper we have used the signal present in collabora-
tive communities in order to extract knowledge about tag us-
age. By performing this task automatically we maintain the
freeform flexibility inherent to the tagging process. Addi-
tionally, the efficient representation on a quadtree provides us
with a data-driven confidence metric as to our certainty about
the assessment. We have expanded previous work to also con-
sider visually descriptive tags using mutual information, and
to identify sets of tags referring to landmarks. In future work,

d Coherence Precision NAcc Num/Uniques
14 0.86 0.80 0.63 146/51
15 0.90 0.90 0.61 96/36
16 0.90 0.93 0.81 32/11
17 0.86 1.0 1.0 11/5
18 1.0 1.0 1.0 1/1

Table 2: Landmark extraction as a function of quadtree depth
d for a fixed clustering threshold σ. Coherence is the fraction
of images in a cluster belonging to the correct landmark. Pre-
cision is the fraction of clusters which are landmarks. Naming
accuracy (NAcc) is the fraction of clusters correctly named.
Num/Uniques is the number of landmark clusters found and
number of unique landmarks found.

we will consider the interesting problem of learning object
tags via detection and study the benefit of tag categorization
in a global annotation system.
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