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Abstract

The Bio-Image Informatics research program at UCSB is a collaborative effort funded by the
National Science Foundation. The statistical computing problem we address in this paper is to tailor
an application of the Generalized Mixture Models (GMM’s) for analyzing biological images, and
the development of versatile software that is useful for this purpose. This analysis has several goals.
First, we demonstrate that such methods can be used as objective diagnostic tools for classifying
new images in the medical and biological context, instead of relying on subjective human analysis.
Second, we are interested in using GMM’s to better understand the similarities and differences
between various classes of controlled experiments. We do this by inspecting and learning from
fitted model components. Further, we are able to test for the equality of local regions (represented
by model components) from different known classes. After a brief introduction of the GMM’s, we
discuss a case-study that has been of interest to biologists in this project.
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1 Introduction

During the past several years, a large number of researchers have accumulated libraries of raw
information in the form of digital images. In particular, researchers at the University of California
Santa Barbara’s (UCSB’s) Neurosciences Research Institute (NRI) are involved in research projects
that result in a large number of biological digital images and related experimental data. Due
to the controlled nature of these experiments, much is known about the biological images and
what experimental conditions they resulted from. What one would like to know, however, is the
relationship between the cellular/sub-cellular activities captured in these images and a clearer
understanding of the physiological mechanisms underlying such systems.

Also during the last few years, Generalized Mixture Models (GMMSs) and related Semi-
Supervised Statistical Learning methods have been shown to be very useful in data mining, analysis,
and classification problems in highly populated image reservoirs [9] [10]. In all cases, the image
collections consist of images where the ground-truths are either completely known (possibly via
experimental control or visual inspection by an expert analyst) or images where ground-truths are
unknown and wish to be inferred. GMMSs can be used to classify unlabeled images, understand the
differences between various classes, and formally test for statistical differences between the classes.

In this part of the ITR project, we focus on the retinal detachment problem. We use GMMs
and semi-supervised learning to find multivariate mixtures which best capture similarities and dis-
similarities between biological images such as retinal images collected under different experimental
conditions.

2 Generalized Mixture Models

Semi-supervised learning methods have become increasingly popular over the last 10 years [5].
Prior to semi-supervised methods, much of the work in the statistics community has focused on
either unsupervised or supervised learning methods until recently [11]. Much of the literature on
the subject exists in the computer science and engineering fields [15].

Unsupervised learning typically refers to clustering unlabeled data points (either in low or
high dimensions) into homogenous groups [5] [1] [12] [7], i.e. all the data points have class (or group)
labels which are unknown or hidden. Unsupervised learning methods seek to cluster or group these
data points as specified by user controlled model parameters (such as the number of components
in a standard mixture model). Methods for unsupervised learning include the standard mixture
model and aglormorate/divisive k-means hierarchical clustering methods [5] [1]. These methods are
essentially fancy exploratory data analysis tools. That is, the grouping structure found has to be
explicitly and carefully inspected by users/analysts to gleam valuable information about the groups
that are found. The problem is that it is unknown precisely how many distinct groups have be
found and how many there actually are. For example, consider an unsupervised mixture model with
2 known classes that selects a mixture model with 4 components to best represent the probability
density function of the unlabeled data ( say using BIC to choose the number of components).
What did the model find exactly? Did it find 2 components for each class or 3 components for one
class and 1 component for the other? In such cases, visual and analytic inspection of the mixture
components can lead to interesting analysis and grouping structures after such an ad hoc analysis.
On the opposite extreme, the method may have found a clustering decision which reveals little
about the true grouping structure of the data.

On the opposite end of the spectrum are fully supervised learning methods [5] [12]. These



methods use observations where the class or grouping structure is known to the user. In such
cases where the grouping/class structure is known, supervised learning methods seek to use this
information to find a model that best separates these known classes, subject to some criteria like
for instance minimizing the cross-validated prediction errors) [5]. Standard supervised statistical
learning methods include standard mixture models, LDA/QDA methods, and methods such as
generalized linear models and generalized additive models. Such methods are very useful for ex-
ploring the separation between distinct known classes, testing the significance of such separations,
and using these schemes for classifying future observations which are believed to have come from
one of the known classes. Although supplementary methods are available for detecting unknown
classes, fully supervised learning methods fail to detect unknown classes that are not present in
training the supervised model. Semi-supervised learning methods bridge this gap quite elegantly.

Semi-supervised statistical learning methods utilize both labeled and unlabeled data points.
For an excellent review and survey of literature see [15] and for a more recent reference, [9]. This
merges the unsupervised learning (purely unlabeled data) with supervised learning (purely labeled
data) together to form a model which uses both sets of data simultaneously. Specific motiva-
tion for this statistical framework comes from data situations such as the retinal image problems.
Without loss of generality, motivation for semi-supervised statistical learning methods, as applied
to Generalized Mixture Models, comes from data situations where large amounts of both labeled
and unlabeled data are available. From the labeled data, supervised learning is needed to find a
model which best separates the known classes whereas unsupervised methods are needed to learn
about the unlabeled data to learn about outliers regions in known classes and the possible unknown
classes itself. Taken together, semi-supervised learning methods are capable of simultaneously find-
ing models which separate known classes and are able to detect unknown/anomolous data points.
The benefit of this method, in contrast to most semi-supervised learning methods, is the concept
of unknown class discovery and the ability to make explicit unknown class inference. In fact, this
is the first inference made for unlabeled samples. Given a known class inference, the secondary
classification inference is to decide which known class each unlabeled samples belong to.

The remainder of this section focuses on the Generalized Mixture Model and related semi-
supervised learning method. In Section 3.1, we introduce some notation and model formulation.
Section 3.2 outlines the Expectation Maximization, semi-supervised learning method and Section
3.3 details inferential methods for classification and testing.

2.1 Notation and Model Formulation

Semi-supervised learning entails using both labeled and unlabeled data. As such, we define our
data X, to be a combination of both labeled and unlabeled data. The data is denoted by X =
{Xi, X} where there are N; labeled samples (I for labeled) X; = {(zy,l,c1),..., (n,, 1, cn;)} and
(N — N;) unlabeled data points Xy, = {(2x,1,m), -, (T, m)} with the label absence indicator m
representing the fact that the class labels are missing/hidden and, hence, unlabeled.

Notice that the data incorporates the additional information which indicates the pres-
ence/absence of a class label L € {l,m}. Under this data formulation, GMMs explain all of
the observed data including the label presence/absence information. Generalized mixture models
differ from standard mixture models in that GMMs explicitly use labeled and unlabeled data and
that GMMs explicitly seek to model and explain the additional label presence/absence information
by way of model formulation. The method by which GMMs explain and model this information
is by allowing for different types of mixture components which differ in how they generate labeled
and/or unlabeled data points.



1. Predefined Components: These generate data samples which are both labeled and unlabeled
where we assume that the data labels are missing at random [?] [9]. These components will
exclusively represent known classes. Note that more than 1 component can represent a single
known class.

2. Non-predefined Components: These generate data samples which are exclusively unlabeled.
As such, these mixture components will represent outlier regions of known classes or unknown
classes.

As mentioned earlier, the benefit of GMMs is the ability to discover an unknown class(es)
(should the learning algorithm deem the existence of one necessary to better explain the observed
data structure) and having an explicit inferential method to determine if unlabeled samples belong
to such an unknown class. The ability to make unknown class inference, in addition to the label
presence/absence information explained by the model via defining the 2 different types of mixture
components, separates GMMs from standard mixture models. Standard mixture models do not
use both labeled an unlabeled data, they do not seek to explain the label presence/absence, nor
are they capable of explicitly making unknown class inference by way of model formulation.

Let M be the number of mixture components in a GMM and let M}, denote k" mixture
component for k = 1,..., M. Let (). denote the subset of components are which are predefined
components with remaining subset of non-predefined components denoted by @re. The mechanism
by which GMMs explain the label presence/absence information is by probabilistically quantifying
the rate at which a generic, predefined component will generate labeled data i.e. P(L = I|M, €
Cpre) where M, represents a generic, predefined mixture component. Note that this probability is
the same for all predefined components such that this probability is ”tied across all components”
which are predefined (extended models exist which allow for the label/absence probability to be
specific to each class or component). Further, since non-predefined components exclusively generate
unlabeled data, P(L = I|My € Cpye) = 0.

For class representation, let P. denote the set of all known classes with ¢(z) € P. denoting
a class label from a sample x which originates from a know class. Another appealing aspect of
GMNMs is the probabilistic (or soft) ownership of classes by components. Recall that predefined
components explicitly represent the known classes, i.e. those that exist in P.. This representation
is probabilistic in the sense that each predefined component has a mass function over the predefined
or known classes denoted by P(C = ¢|Mj, € Cpre), VM, € Cppe, ¢ € P, and, much more specific to
the probabilistic association between components a specific sample z from a specific class ¢(z) we

have P(C = c¢(z)|My, € Cpre, L = 1). Each component will have a component-weight:denoted by oy,
with general density function f(x|6;) .

Let

1 if My, € Cpre

0 if Mg € Cpre

such that the dummy variable vy is the explicit, mathematical mechanism which distinguishes pre-
defined and non-predefined components. The {v}s are the so called ”component natures” which
detail the nature of each component as either predefined or non-predefined. With this notation, we
are able to state the joint data log-likelihood of the observed data for a model with M components

Vi =



as

M
log Ly = log(Y vparf(z/0))P(L = 1|My € Cpre) P(C = c(z)|My, € Cpre, L =1))
z€X) k=1
M
+ Z IOg(Z oo f(2]0,) P(L = m|Mg € Cpre) + (1 — v ) f(2]6})).- (1)
xEXy k=1

Given suitable amounts of data as well as the number of components M (later work treats M a
model parameter with efforts to try to estimate it explicitly), the parameters which must be learned
in (3) are:

A= {{orhily {8 3ily, P(L ="1"|My € Cpre) {P(C = c| My, L = "1"), Y € Pe}areCyre {r it}
{Aen, {ve}}

We note briefly that the current implementation of this semi-supervised learning method uses a
multi-stage Expectation Maximization (EM) algorithm for parameter estimation . Model selec-
tion is done via Bayesian Information Criteria (BIC) and component testing uses the well known
multivariate T2 test procedure [12].

2.2 Semi-supervised Learning and Model Selection

In this section, we describe the current method (also as a matter of numerical implementation) of
estimating the model parameters in addition to estimating the number of components in the model,
M. For fixed M, we use a generalized Expectation Maximization (EM) algorithm [7] [1] [13] [5].
The generalized EM algorithm consists of 2 steps: (i) choose the component natures, the {v}’s,
to maximize (3) given all other parameters are held fixed and then (ii) use EM to estimate the
remaining parameters given the component natures are held fixed. As with EM, we are guaranteed
to have nondecreasing log Lj;. However, EM does not always guarantee convergence to global op-
tima [9] [7] [5].

Estimating the Component Natures

Depending on the size of the model as indicated by M, there are 2 ways to choose the component
natures. If M is not too large, then one can enumerate all possible 2™ combinations of the compo-
nent natures (each component either 0 or 1) and select the combination which maximizes log Las
in (3). For large M, this strategy grows exponentially with M and is simply not feasible. The
sub-optimal alternative (yet still having the property of have a non-decreasing log L,,) is detailed
in [9] [10] which is an iterative "one at a time” selection of the natures. That is, we cycle through
the components and choosing a single v one at a time, while holding all others fixed, by considering
the log Ly ”score” associated with the values vy can take on, either {0,1}. The value of the single
vr which maximizes log Ly, is selected. This is done for all the {v;}’s and this cyclic choosing
is repeated until no more changes are made. Although no convergence global is guaranteed, the
log Ly is guaranteed to be none-decreasing.

EM for the Remaining Model Parameters

Expectation Maximization (EM) is the standard frequentist, maximum likelihood estimation (MLE)
method for estimating the parameters of a mixture model [1] [7] [5]. Due to computational advances
in the last 20 years, its value beyond theoretical existence has been proven for difficult estimation



problems such as those when one wishes to estimate the parameters of a mixture model [?] [10].
Applying EM estimation methods for Generalized Mixture Models is not different with exception
estimating and updating a number of additional parameters namely P(L = l|M, € Cp.) and
P(C =c¢|My, L =1)VceP..

Without loss of generality, the EM algorithm treats the observed data as incomplete in the
sense that the component which generates the observation is unknown. Assuming the existence
of such a grouping indicator variable, it is possible to define a log likelihood associated with the
complete set of data denoted log Lo. EM uses the log Lo in 2 distinct steps :

1. Ezpectation (E-step)
Take the expected value of the complete log likelihood E[log LC\A(t)] given the current set of
parameter estimates is held fixed. Such an expectation yields an equation with the expectation
of a grouping indicator variable for each sample. This step is the ”ownership” step where we
seek to find the probability of component owning a data point (for all the data points).

2. Mazimization (M-step)
Given the probabilistic ownership of components owning samples, the M-step finds parameter
estimates for the remaining parameters in the the model by finding estimates which maximize
E[log Lo |A®)].

Let
ka =

{ 1 if z e My

0 otherwise

so that V, is the indicator variable detailing which component the data point x originates from,
namely component M, in this case. It is easy to show that the associated complete log likelihood
is

M

logLe = Y > opVarlog(awf(@l0p) P(L = [|My € Cpre) P(C = c(@)| My, € Cre, L = 1))
xeX] k=1

M
+ Z Z%ng log(ay f(z]0y) P(L = m|Mg S Cpre))
ze€X,y k=1

M
+ Y Y (1= vp)Vag log(ax f(z]6))- (2)
ze€X,y k=1
E-step
More precisely in the E-step, we have the expectation of our grouping variable V,, given the current
set of parameter estimates A() = {Ag)M, {vg}} is held fixed. Since Vg is binary, in E[log Le|A®)]
we have

ElVilz € X;,AY] = 1. P(Vy =1lz € X;,AD) +0- P(Vpy, = 0]z € X;, AD)
= P(Vg =1z € X;,AY)
EVgilz € Xy, AY] = PV = 1|z € Xy, AY) follows similarly.

It is easy to show with Bayes rule that these probabilities are

8
5 yakf(§|gk)§(cpz é(z)le fWCPTE’CL = Z)L ; if My, € Cp're
P(Mg|z € X;,A®) = = iec ay f(zl8y )P(C = c(z)IM € Cpre, L =1) (3)
pre
= 0 if My, € Cpre



and

8 ”
>C apf(z|0,)P(L =m"|Mg € Cpre)r if My, € Cpre
% oy (210, ) P(L = m|Mg € Cpre) + oy f(zl0,r)
P(Mglz € Xu,A®) K €Cpre K €Cpre 4
(Mg |z ) E e akf(ﬁ‘gk;,( it M, e épm (4)
ak,’ f(@'Qk’) + ak'f@@k')
- k' €Cpre k' €Cpre
so that the expected complete log likelihood is
t > t
Ellog Lo|A®] = P(Myl|z € X;, AD) log(ap f(z|0,)P(L = I|My € Cpre)P(C = c(z)|My € Cpre, L = 1))
z€X,k€ECpre
>
+ P(My|z € Xu, A log(ay f(2]0),) P(L = m|Mg € Cpre))
2E€EXy,k€ECHre
>
+ P(Mylz € Xu, A1) log(a f(2]0),))- (5)

gEXu,kéapre

M-step
To best demonstrate the M-step, we assume that f(z|6,) is a Multivariate Normal Distribution
with mean vector and covariance matrix (Hk’zk) = 0, respectively. For all of the components

in a model with M components, we are left to solve E[log Lo|A®] for the values of the remain-
ing parameters ALY = {{ag},{6,}, P(L = I|M, € Cpre),{P(C|My, L = 1)}} which maximize
E[log Lc|A®) which yields for each component k = 1, ..., M :

> P(Myz € Xp, AY) + Y P(My|z € X;, AW)
1 zeX zeXy,
R < (6)

Z zP(Mylz € X3, AD) + Z zP(My|z € X;, AD)
(t+1) _  z€X z€Xu

- > P(Milz € X, AD)+ > P(Mylz € X;, AD)
zeX z€Xy

— D)y (HINT ) > — D)y (HINT )
(@—py ") —p, ) P(Milz € X3, AY) + (@—py ") —p ) P(Mglz € X, A7)

s+ zeX ~c zCXu ®)
k (t) (t)
zEX] zEXy

> P(Mylz € X;,AD)

_ _ _ mEXpc(z)=c
PTG k=l = > P(My|z € X;, AD) et ©)
zeX)
> P(Milz e X, AW)
xeX] keCpre
P(L:Z‘M Eore) (10)
e SN PMiz e X, AD) + 3TN P(Milz € X, AD)
2EX| k€Chre z€Xy k€Cpre

The general outline of the Semi-supervised Learning method is:



1. Learn the {v;} via cycling through them one at a time picking the individual value of vy which
maximizes log Lj; and repeating this process until no further changes are made. Denote this set of
updated or learned parameters as {v;} (1.

2. Use A1) = {Ag\/j, {vx}* D} and do EM learning until sufficient convergence has been achieved.
Denote this updated or learned set of parameters as A+ = {Agx/}), {o, YD,

Model Selection

Up until this point, we have developed GMMs based on the assumption that the number of compo-
nents, M, is known. In this section we briefly describe how we estimate the number of components
in the mixture model, M. When fitting a standard mixture model with a learning method such the

generalized EM algorithm, the standard method by which M is selected is Bayesian Information
Criteria (BIC) [9] [?] [7] 5]

M
1
BIC = ;log(N) > P, —log Ly (11)
k=1
where N is the number of data points, P; is the number of parameters completely specifying
component k, and log Ly is the log likelihood of a model specified by M components.

Computationally, choosing M this way is extremely inefficient and time consuming. It
requires that, for each value of M, models are extensively learned with the pre-described semi-
supervised learning method. To relieve computative burdens, M should be upper restricted by the
number of components which are supported by the size of the data. Lower restricting the number
of components is to assume that each known class should be represented by at least one component
and consider at least one potential component for a possible unknown class.

Even with such restrictions, the number of possible models to explore can still be numer-
ically overwhelming. Miller makes further suggestions such as ”overestimating” the number of
components and then reducing the model size by a single component and considering the effect on
the log likelihood of the model [9] [5]. Methods such as these, which are better than nothing, still
have problematic issues such as how to best/optimally choose the component to eliminate (and
thus, redistribute the ownership of data points and associated updating of model parameters).
There are several methods to achieve this goal, yet none of them result in reduced models which
are "subsets” of the original larger model. Alas, these methods are not conducive to generalized
likelihood comparison methods and may be unreliable. Such methods rely on BIC evaluations to
determine if the reduced model is better.

We are currently considering fully Bayesian methods of estimating the number of mixture
components using Markov Chain Monte Carlo methods[2] [4] [14]. They use methods which change
the number of components by adding or subtracting a single component via birth /death respectively.
The benefit of these methods is they do not require exhaustively searching the entire parameter
space of the model dimension.

2.3 Inference and Testing

We now pay attention to the merit of GMMs for the purposes of inference and describe how we can
use multivariate statistical hypothesis tests to evaluate and understand the mixture classes that
are found. We will statistically test for component and class similarities and differences. This will
lead to checking each component of the model in order to identify significant and homogeneous
biological and cellular events, in the case of the ITR project.



Classification

GMDMs can make 2 levels of classification. First, they can help predict if an unlabeled sample
belongs to a known or unknown class, and (ii) given a known class, they can be used to predict
which known class the unlabeled sample comes from.

The MAP probability that an unlabeled sample belongs to an unknown class is given by

P(My € Cprelz € Xu) =1— Y P(My|z € X,,,AD) (12)
kecp'r'e

where P(M|z € Xy, A(i)) is given in equation (6) as the component ownership of unlabeled sample

z. Values of P(My € Cpre|lz € X,) greater than .5 suggest that the sample originates from an
unknown class.

Given we have made a known class inference for an unlabeled sample z, the a posteriori
known class probability is given by

> apf(@l,)P(C = c|My € Cppe, L = 1)
kecpre

P(C = dz € Xy, AW) = Ve € P.. (13)

Z arf(z]6})

keCpT‘E

Samples, then, are then assigned to the class for which this MAP is the largest.

Testing

In GMM model selection, we assume that all of the components selected in the model learning
process are significantly different from one another. As we will see, however, there will exist in-
stances where mixture components are not as significantly different from one another. Furthermore
and oddly enough, we will see that components which are not significantly different from one an-
other may actually come from radically different classes. This may suggest that there are local
regions within 2 different classes that are quite similar to one another and, further, they are more
like each other than the original classes to which they belong.

To test similarities between classes, we will employ a multivariate T-test for testing the
equality of mean vectors i.e. test

Ho + o =py
H1 : Ek‘ #Hk‘/ (14)

Since we use multivariate Normal distributions, we need the component mean and covariance as
the ”sample” mean and covariance , S respectively. One question to address is, how to estimate
the sample size of each of the smaller classes?

Ideally, we would look at the component weight, oy, and take the proportion of samples
(both labeled and unlabeled) which that component owns namely ng = aj * N where N is the total
sample size. The weights outlined in (8) would achieve this. However, the numerical implementation
of the semi-supervised mixture model algorithm does not reflect this ”true” meaning/value of the
{ag}’s. The algorithm is implemented to preserve class mass which, as it sounds, gives equal weight
to each class by preserving mass/weight of each component (within each class) relative to the total
number of classes (this may include a presumed unknown class) [10]. In this sense, the component’s
mass/weight reflects the amount of data from a particular class which is owned by that component.



For example, if a single component represents a single class in a 3 class problem (perhaps
2 known classes and 1 unknown class) then its weight would always be % reflecting that it owns
all of the data from that class. Note that, this is problematic and clearly not consistent with the
outlined theory. Alternative versions of the implementation are being developed to correct for this

inconsistency.

For now, we will estimate the number of samples each component owns empirically. That is,
we look at the total number of samples which each component owns as indicated by the P(Mj|x €
X;, A®Y and P(My|z € X,,, A®)) mass functions by

1

e = 5l > I(P(Mylz € X, AY) = maz(P(My|z € X;, AY)))
r€eEX]
+ > I(P(Mylz € Xy, AY) = maz(P(Mylz € X, AD)))].
r€X,y,

Once we have the necessary sample mean vectors, covariance matrices, and component sizes we
conduct Hotelling’s 72 test [12]. Let p be the number of elements of the mean vector, Ky for testing
components k1 and ks.

Let

1
Sp = m((”kl = 1)k, + (g, — 1) Sky)

which gives way to the intuitive test statistic 72 defined by

T2 — 7,Lk'l nkQ (/1/
k

Tg—-1
S —
My + Ty 1 S5, )

2

—

2

which can be easily transformed into a statistic with a convenient distribution

Ng, +npy, —P—1, 5

T: =
F p(nlﬂ + Ny — 2)

which has an F distribution with p numerator degrees of freedom and ny, +nx, —p —1 denominator
degrees of freedom [12].

Note that this is for testing a single hypothesis. All pairwise hypothesis can be tested
similarly by simply adjusting the rejection region or associated P-Values to account for the multiple
hypothesis tests being tested [12].

3 Retinal Image Informatics Application

One goal of the ITR project is to study the effects of retinal detachment, reattachment, and any
treatments that can be used. Retinal images are images of a cross section or slice of a retina from
a subject, obtained with confocal microscopy or some other device. Generally, the subjects used in
these experiments are cats, mice, rats, dogs, and monkeys. Non-human subjects are used because
some of the experimental procedures so traumatize the subjects that they must be euthanized after
the data is collected. Generally, retinal images are gathered in experiments in the following way:

10
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Figure 1: A retinal image taken 3 days after detachment

1. Trauma
Subjects selected for the non-control regime of the experiment are subjected to a traumatic
event causing damage to areas and tissues of interest in the retina. Since retinal detachment
is the primary event of interest, separation of the retina is done manually or with a chemical
solution which causes sufficient damage effectively causing retinal detachment. The detach-
ment can serve as a reasonable paradigm for degenerative diseases for which the effect is the
same.

2. Experimental Conditions
Non-control subjects are then subjected to one of the several experimental conditions after
detachment. This may include the use of a drug or treatment (such as placing the damaged
retina in an oxygen solution) or allowing the retina to be separated for a pre-determined
length of time. Included as an experimental condition is retinal reattachment where detached
retinas are re-attached for various lengths of time and under treatment conditions.

3. Collection

After the retinas undergo experimental conditions, they are imaged using a biological imaging
equipment such as a confocal microscope. Since the retina is a 3-dimensional object, often
cross section slices are imaged one at a time. The standard retinal image, shown eg. in Figure
1, is an image of a cross section of a retina. The metadata collected includes information about
the type of subject (cat, mouse, etc), the length of retinal detachment and, if available, the
length of retinal reattachment , the antibodies/dyes used to stain the tissue for imaging
purposes, the aspect of the image (whole mount as opposed to a specific section), and the
experimental conditions.

Thus, the data available are the cross-section slices of imaged retinas and the associated
metadata (experiment info, subject info, ect). Since these images are gathered under a highly
controlled environment, using GMMs to predict class labels (as defined by length of detach-
ment /reattachment and experimental conditions) is not of primary concern here since this informa-
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tion is already known. Moreover, there does not exist any unlabeled data for which classification
is needed (however unlabeled data does exist in the context of unlabeled testing data which is to
be used in the learning process).

What is of scientific interest is the differences between various classes and whether or not
these differences are statistically and biologically significant. Additionally, in terms of a classi-
fication problem, we wish to understand the reasons (biological or statistical) that images are
misclassified during cross validation. Our approach helps analyze and understand the effects of
retinal detachment with the following procedure:

1. Generalized Mixture Models
We use GMMs to fit a mixture of multivariate normal distributions to each of the retinal image
classes, as defined by experimental conditions and length of detachment/re-attachment. In
this sample analysis the data comes from 2 known classes namely: 3 days of reattachment
(3D), versus 3 days of detachment + 28 days of reattachment (3D+28R).

2. Classification
We test the separation of the various classes via cross validated classification. We then
inspect and analyze the misclassified samples to determine the nature of the misclassified and
its biological significance.

3. Testing
We use multivariate statistical methods to test the equality of mixture model components in
local regions of the same class and across components from different classes. The outcome of
these tests will be particularly useful for biological interpretation and conclusion.

Since we use the Generalized Mixture Model as the engine for these analyses, we now present a
general, theoretical description of Generalized Mixture Models and the associated Semi-Supervised
Statistical Learning method.

We will use GMM’s to model, analyze, classify, and explore various classes of retinal images
using 2 sets of features developed by the ITR research program. We will begin by briefly describing
the data that we use in the analysis, the classes we use, and how many samples are available for
each class. Then, we will describe how we use GMMs computationally and give a generic model
fitting overview. The first set of features we use are statistical summaries which we will develop
and interpret. The second, and most recent set of features developed, are Gabor Filter, Texture
Histogram features.

3.1 The Data

The data for this analysis are cross-sectional biological images taken of the feline retina with con-
focal microscopy imaging methods. For this analysis, we use 4 distinct classes which appear even
from a casual visual inspection, different from one another. The 4 classes are defined by the length
of detachment and any reattachment. The classes are

Normal: images gathered under normal conditions for which there are 29 samples

3D: images gathered after 3 Days of retinal detachment for which there are 15 samples

3D+28R: images gathered after 3 Days of retinal detachment followed by 28 Days of re-attachment
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for which there are 46 samples
7D: images gathered after 3 Days of retinal detachment for which there are 27 samples.

Note that these sample sizes are quite small relative to what would be desirable.

3.2 The GMM Setup

Cross validation techniques are required to fairly and accurately evaluate the GMMs inference
abilities [7] [5]. To do so completely, we use K-fold cross validation [13] [5]. This cross validation
method "removes” K observations (for each class) and considers them to be unlabeled where the
remaining observations are considered to be labeled. For each class, mixture model components are
initialized and "learned” (using EM learning) as predefined and associated with their respective
class with probability of nearly one. The initialization and learning is done using all the labeled
data (for each class) and known classes are learned independently of one another. The unlabeled
data points are used to initialize and learn components which are non-predefined and are not
associated with any known class as they are initially associated with the unknown class. Then, all
components are "merged” into a final model encompassing all of the data for joint EM learning.
During this semi-supervised learning process, all components will learn their component natures,
i.e. the {vg}’s, having the chance for them to switch states and become probabilistically associated
with a known class or an unknown class [10]

Complete experimental results, then, would compile the experimental metrics over all pos-
sible K-fold cross validation experiments to give an accurate, unbiased, and independent evaluation
of the performance of the GMM for these data. However, analysis of such mixtures is difficult even
for data sets as small as what we are dealing with here. Therefore we will only present results from
a single K-fold cross validation experiment so that reasonable exploration, analysis, and conclusions
can be drawn.

3.3 Some Statistical Features of Retinal Images

A goal of this analysis is to determine the relationship between cellular/sub-cellular activity and
retinal detachment/reattachment under various treatment and control conditions. Optimally, we
would like to obtain features which best capture and characterize the status of the retina and
cellular activity (for example, the number of nuclei in a given layer of the retina or the shape and
intensity of the muller cells in the internal regions of the retina). For this, edge detectors, blob/shape
detectors/counters, as well as a number of advanced image processing methods are being developed
which will result in high-dimensional feature vectors for potential use with GMMs. Although our
methods are applicable to any general set of features, for now, we will focus attention on a simple
and novel statistical characterization of retinal images and resulting statistical summaries.

Consider a retinal image such as the one in Figure 1. Since the image is obtained as a
collection of 3 different channels (using 3 different stains) labeled red, green, and blue, we are
able to represent each image as an array of 3 images (although for this report we only focus on
the red and blue channels). For each channel in each image, we define the following random variables

X : arandom column pixel of the image channel
Y : a random row pixel of the image channel
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Figure 2: Empirical Histogram of Image for Red/Blue channels

After normalizing each channel so that the sum of the normalized intensities becomes unity, we
treat each image channel as a sample bivariate joint density, P(X,Y’), observed for the bivariate
random variables X,Y as in Figure 2. This representation is essentially an empirical bivariate
histogram. Once we have a reasonable probabilistic representation of each image channel, we are
able to extract such statistical summaries as: the mean or center of mass of the column random
variable, X, and the sample covariance of X,Y.

X = zn:XiP(Xi) (15)
=1
COV(X,Y) aid (gjiy 3%?)
s Y
n m ~ B'd T
< S ((3)-(1)((3)-(F) oo

where n is the number of columns, m is the number of rows and, P(X;) = 377" P(X;,Yj).

Once we have an empirical representation of each image channel, we are able to extract
2 main statistical summaries of each image channel: the mean or center of mass of the column
random variable, X, as well as the sample covariance of X,Y.

We now provide a practical interpretation of the statistical features we have developed.
Recall that these features are extracted for each of the channels available for each image. Ideally,
each channel is staining (and thus illuminating) the cellular components of various layers of the
retina. For example, the red channel highlights the Outer Nuclear Layer (ONL) where as the blue
channel highlights the Muller cells located in the inner parts of the retina. For reasons still under
investigation, there is evidence to suggest that the ONL layer of the retina becomes unstable, falls
apart, and diffuses into the inner parts of the retina. Likewise, the Muller cells tend to elongate
and spread into the outer parts of the retina. To statistically capture these events, the statistical
features we extract measure 2 important occurrences for each channel.
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First, the mean column value conveys where the mean value or center of mass of each
channel is. Presumably, the effects of detachment over extended periods of time are to shift the
mean location of the ONL layer (as represented in the red channel) towards the center of the retina.
Conversely, the effect of detachment is the opposite for the Muller cells as they elongate and grow
towards the outer part of the retina.

Before describing what we hope the covariance features capture, we must note that we
don’t use the covariance matrix as features explicitly. First, we begin with an eigenvalue/eigenvector
decomposition of the 2*2 covariance matrix. Then, we use the ratio of the 2 eigenvalues (specifically
the ratio of Y to X) as the so called Figen Feature Ratio (EF). The EF represents the spread of the
X or column random variable relative to the Y or row random variable. As the effects of retinal
detachment on set, we expect that the EF for the red channel will tend to some value less than
or equal to 1 as the ONL layer becomes more spread into the inner parts of the cell. Regenerated
retinas will have EF values significantly larger than 1 (usually around 2-5).

3.4 Analysis With Statistical Features

Here, we use the statistical features to analyze classes of retina images. In analyzing the fitted
mixture model, we will explore the mixture components to look for similarities, differences, and
any biological conclusions that can be drawn from distribution of the labelled data samples over
components and classes. Additionally, we will explore misclassified unlabeled samples and how the
ownership of the unlabeled samples is distributed between the components and classes as well.

Each of the samples is processed automatically to orient and extract the statistical features.
After feature selection which we will not detail here, the feature vector we use is z = (EFR, TR, Tp)
where EF' R is the eigenvalue ratio feature for the Red Channel and Tr and T are normalized row
averages for the Red and Blue channels respectively.

3.4.1 Inferential Results

After we fit a GMM and do the statistical inference for class prediction, we assess the accuracy of
the statistical inference that is produced, in terms of the confusion matrix which is presented in
the table below. A confusion matrix details how each unlabeled sample is classified, by class. This
evaluation of the model is an indication of how separable the classes are when characterized by a
particular feature vector. For this GMM fit, we can see that the probability of correct classification,
denoted P, is the proportion of unlabeled samples which are correctly classified given that they
are classified to a known class and truly belong to a known class. Another useful metric is to
consider the proportion of unlabeled samples which are classified as unknown given that they are
truly known which we denote P(Unk|Known).

Predicted Class
Observed Class | 3D | 3D+28R | Unknown
3D .75 .25 0
3D+28R 0 .92 .08

For this GMM fit, we find that P.. = 0.9333 and P(Unk|Known) = 0.0625. The relatively good
classification rates provide a measure of confidence in our modeling effort. In actuality, only 2
classification errors were made: (i) a 3D sample was classified as 3D+28R and (ii) a 3D+28R was
classified as unknown. Note that these samples are presented in Figure 3 and Figure 4 respectively.
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Figure 3: 3D unlabeled sample mis-classified as 3D+28R

Red Channel

200 400 600 800 1000 1200 1400

Blue Channel

200 400 600 800 1000 1200 1400

Figure 4: 3D+28R unlabeled sample mis-classified as Unknown
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It should be clear that the latter classification error is, perhaps, the most serious since there is not
a true unknown class in the data. In order for this to occur, a mixture component which is based
on unlabeled data and associated with the unknown class would have have to have remained non-
predefined throughout the entire EM learning process. To better understand this, we next explore
the GMM fit and its components more closely. We will see that this unknown class error is not as
serious as we may expect, and in fact, it is a very good aspect of the GMM and EM methods for
finding outliers, anomalous data points, and unknown data classes, which this misclassified sample
represents (this error is the result of poor image processing, which we discuss in the next section).

3.4.2 GMM Component Analysis

In addition to understanding the inferential errors made in the previous section, closer analysis of
the mixture model components can reveal similarities, differences, and practical observations about
and between each known class and its local regions. To understand each component, we consider
several pieces of information viz. we consider the mean EFR, the component nature, the class
each component was initialized on, the final class each component probabilistically owns, and the
number of samples the component owns. The GMM fit numerical information is summarized in
the below table.

Mixture Component

Parameter 1 2 3 4 5 6 7 8
Weight .0303 | .2109 | .0840 | .2276 | .1057 | .1687 | .0154 | .1492
EF Red 4646 | 1.520 | 1.1012 | 3.4723 | .5652 | 2.2406 | .1464 | 4.7634
Initial Class 1 1 1 2 2 Unk Unk Unk
Final Nature 1 1 1 1 1 1 0 1
Final Class 1 1 1 2 2 2 Unk 2
Samples Owned 1 10 3 12 12 12 1 10

3.4.3 Component Visualization

Simply looking at each component’s numerical values can be very enlightening and revealing. How-
ever, it is also beneficial to wvisually inspect each component by actually looking at the samples
owned by each component. The goal in doing so is to determine if there are any patterns, sim-
ilarities, or differences that we can visually notice. The information may be insightful and not
contained in the feature vector information contained in the GMM model components.

This can be achieved in several ways. Obviously, one could look at the entire set of samples
owned by the mixture component or a subset of such samples. This has the drawback of looking at,
what may amount to, an enormous amount of samples. To combat this, we offer a simple method
by which we can visualize each component in a single image. We will consider a smoothed image by
taking all of the samples owned by a particular component and creating an ”average” or smoothed
component by (1) interpolating each image so that they are the same size and then (2) giving each
image equal weight and taking the average of the images. Note that features are not extracted
from interpolated images and that this is only used for visualization purposes.

Mizture Component 1

Mixture component 1 was initialized using data from class 3D. In the end, it ends up only owning
1 sample, it is predefined, and it is associated with class 3D. It seems to represent a local region of
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Figure 5: Mixture Component 1 smoothed image-a single sample, class 3D

class 3D which has a completely deteriorated ONL layer. Since the component only owns a single
sample, the smoothed image is just a single image itself (Figure 5).

Mizture Components 2,3

Mixture component 2 was initialized using data from class 3D and owns a majority of the samples
from class 3D (10 samples: 7 labeled, 3 unlabeled). After all EM learning, this component is prede-
fined and associated with class 3D. It seems to represent a large, local region of class 3D which has
a ONL layer which is deteriorating but not completely destroyed as indicated by the EFR (1.52,
which is clearly larger than 1). Mixture component 3 is very similar to component 2 which the
EFR (1.1012) value confirms This component owns the remaining labeled samples from class 3D
(3 samples).

Based on the smoothed images for these components (Figures 6 and 7), it should be clear
that neither component represents a unique local region of the 3D class. That is, we would have
hoped that each component would have captured images which have similar curvature of the ONL
layer (say one component for convex ONL’s and another for concave ONL’s). Because our current
set of feature vectors does not explicitly-or even implicitly-capture the nature of the curvature of
the ONL layer but simply the amount of spread, it is not surprising that we do not capture unique
local regions with these 2 components. They do, however, capture a local region of class 3D which
show significant deterioration of the ONL layer. Since the grouping is based on the amount of
spread, we can conclude that there are 2 local regions of class 3D which have differing amounts of
spread for deteriorating ONL layers.

Mizture Component 4,6,8

Mixture components 4,6, and 8 (Figures 8, 9, and 14) all own data from class 3D+28R after all
EM learning is complete. These components own a significant majority of the 3D+28R data points
(34/46 samples) which are both labeled and unlabeled. Although components 6 and 8 were ini-
tialized based on unlabeled data and probabilistically associated with the unknown class, during
the EM learning process they probabilistically own enough labeled samples from class 3D+28R. to
reverse their component nature to predefined and become probabilistically associated with class
3D+28R.

What is interesting about these model components is that they seem to represent a local
regions of the 3D+428R class which have had either significant regeneration of the ONL layer
after retinal re-attachment (component 8 say) or have halted the degeneration of the ONL layer
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Figure 6: Mixture Component 2 smoothed image, class 3D
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Figure 7: Mixture Component 3 smoothed image, class 3D
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Figure 8: Mixture Component 4 smoothed image, class 3D+28R

(component 4 and 6). Based on the smoothed images, components 4 and 6 seem to differ in only a
single respect. Component 4 has a much more clearly defined ONL layer as opposed to component
6 which has a much more spread ONL layer. Since the smoothed images don’t clearly convey what
precisely these components represent, we can always look at all of the samples owned by each of
these components for more precise conclusions.

When we inspect all of the images from components 4 and 6 we find some very interesting
results that which we would not expect when looking at the smoothed images. That is, component
4 seems to be a more homogenous component representing samples which have had slowed /stopped
ONL deterioration as opposed to component 6 which seems to represent a mixture of samples from
class 3D+28R. When we consider all of the images, we actually find that component 4 owns samples
which are entirely different (Figures 10, 11). Component 4 owns a mixture of samples which have
both ONL regeneration and also slowed/stopped ONL deterioration which are entirely different
local regions of class 3D+28R. On the other hand, component 6 is far more homogenous which
seem almost exclusively represent samples which have stopped/halted ONL deterioration. That is,
it only owns a single sample for which there is tacit ONL regeneration (Figure 12). The remaining
samples owned by component 6 are all about the same as a sample in Figure 13. Component
4 seems to represent a mixture of 2 local regions of class 3D+28R whereas component 6 almost
exclusively represents a local region with only slowed /stopped ONL deterioration. Inspecting only
the smoothed images does not reveal this.

Component 8 (Figure 14) looks very similar to component 6 even though EFR values are
rather different. The mechanism by which these components are separated is the EM learning
process. That is, component 8 is initialized only on unlabeled data samples. Through the EM
learning process, it becomes associated with known class 3D+28R, by way of owning labeled data
points from this class (as indicated by the final ownership of 10 samples: 7 labeled, 3 unlabeled).
This component, unlike components 4 and 6, represents samples which have good regeneration of
the ONL layer. Visually inspecting all of the samples owned by component 8 confirms this. Com-
ponent 8 represents a unique local region of class 3D+28R which has had good ONL regeneration.

Mizture Component 5

Mixture component 5 is an interesting and particularly appealing component which is, from be-
ginning to the end, associated with class 3D+28R. Based on the smoothed image (Figure 15), this
component seems to own samples (12 samples: 9 labeled, 3 unlabeled) which have not had any ONL
regeneration and, quite possibly, continued ONL degeneration. This would be a local region of class
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Figure 9: Mixture Component 6 smoothed image, class 3D+28R
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Figure 10: A single sample from Mixture Component 4 , class 3D+28R

Figure 11: A single sample from Mixture Component 4, class 3D+28R
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Figure 13: A single sample from Mixture Component 6, class 3D+28R
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Figure 14: Mixture Component 8 smoothed image, class 3D+28R
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Figure 16: Mixture Component 7 smoothed image-a single sample, class Unknown

3D+28R which seems to resemble class 3D most closely (for which we latter explore analytically).
When we visually inspect all of the images owned by component 5, we find that it does represent
a mixture of samples which have had continued ONL degeneration and/or slowed/stopped ONL
degeneration.

Mizture Component 7

Mixture component 7 (Figure 16) is, again, an encouraging component in the sense that the EM
learning method is behaving in a very reasonable manner. It is initialized based on unlabeled data
and, as such, it is initially non-predefined. After all EM learning, it is still non-predefined and, as
such, associated with some unknown class. Note that this is the sample which is mis-classified as
unknown. It should be clear by the orientation of this image that there was a major flaw/error in
the automated image processing and feature extraction algorithm. That is, the automated image
processing failed to orient the image consistently with all of the other image orientations. The
GMM model we fit deems this local region of class 3D+28R as unknown as one should hope. The
GMM and EM method have determined that the specific sample could not have originated from any
known class (as an artifact of poor image processing), is it’s own component, and it is degenerately
(with probability 1) associated with the unknown class.
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3.4.4 Component Testing

We would, a priori, assume that the components found using the GMM and EM learning methods
would not be statistically similar to one another. However, we can formally test for component
similarity /difference using a multivariate T-test which tests for similarities in the population mean
vectors based on sample sizes, mean vectors, and covariance matrices [?].

As we suspect from our analysis of the mixture components, we wish to test that Component
5 is equal to the components which represent class 3D by testing equality of Component 5 to
Components 1, 2, and 3 simultaneously. We conduct our tests and find that the P-Values for the
three tests are .36, 1.5e-007, and .04 for testing the equality of Component 5 to Components 1, 2,
and 3 respectively. At any reasonable level of significance (and hypothetically even with proper
adjustments to account for the multiple tests being conducted) we would certainly fail to reject the
hypothesis of equality for at least Components 5 vs. 1 and possibly even Components 5 vs. 3.

If were to visually inspect the samples from Components 1,2,3, and 5, we would see that the
conclusion that Component 1 and Component 5 are not significantly different is quite reasonable
since both components represent images that have a highly (if not entirely degenerated ONL) ONL
layers found expressed in the red channel of each image. The fact there is strong evidence to reject
equality of Component 5 verses Components 2 and 3 is equally encouraging as Components 2 and 3
still have high levels of expression in the red channel indicating ONL layers which are certainly more
organized and stable than we see in Component 5 images. These evidence confirms our suspicion
that Component 5 is more closely related to class 3D (as represented by Component 1 namely)
than class 3D+28R (note that formal statistical tests reveal that there is no evidence to suggest
equality of Component 5 to other class 3D+28R Components 4,6, and 8).

3.5 Analysis with Texture Features

Texture features via Gabor Filter analysis is a newly emerging method to develop feature vectors
which capture the texture of objects within images should meaningful textures exist [8]. For retinal
images, we are looking for textures which capture the curvature, shapes, and contours of various
cells in various layers of the retina.

The Gabor Filter Histogram features we use arise through several steps of image processing.
First, all image processing is done for each image channel (ie for each R, G, and B channel for the
retinal images we consider). For each of the pixels, textures are computed which transforms each
pixel into a feature vector where each element is the texture of the pixel relative to the surrounding
pixels. Then, all of the pixels for every image that we wish to consider are pooled together and
clustered with some high number of components [7]. Then, each of the pixels are classified according
the mixture component which owns the pixel. The histogram feature, then, is simply the number
of pixels which fall into each cluster category.

For this example, we use the Normal retina and 7 Days of detachment classes. The GMM
fits 5 mixtures to the first class and 3 mixtures to the second. The data set contains to truly
unknown data even though we do initialize components based on the unlabeled data. We rest
comfortably since the model does not find an unknown class as we would hope. The results of the
classification are presented in the table below.
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Figure 17: GMM Components for Normal Retinas
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Figure 18: GMM Components for 7 Days of Detachment

Predicted Class
Observed Class | Normal | 7 Days | Unknown
Normal .83 13 0
7 Days .07 93 0

Interestingly, we find that there are more Normal images are mis-classified as 7 Days. This would
suggest that there are samples from class 7 Days for which there has been so little deterioration and
re-organization that they more closely resemble a normal retina. Inspecting the mixture components
reveals something opposite to this conclusion. To inspect the mixture components, we take a
different approach than in out previous example. For this, we simply plot the 20 dimensional mean
feature vector for each class (on the same scale) to visually look for differences and similarities.
When we inspect the GMM mean feature vectors for each of the classes, what we find is interesting
and counter to what we would expect based on the confusion matrix (misclassified) results. Based
on the confusion matrix, we would expect to see subsets of class 7 Days of retinal detachment (at
least summarized my mean feature vectors) which resemble Normal retinas. What we find, at least
based on the labeled training data that is, that there is a sub-region of the Normal retinas that
more closely resembles the 7 Days of detachment class. This is indicated by GMM component #3
which has a mean feature vector which is more like the mean feature vectors of the components
associated with 7 Days of retinal detachment. The inference that we extend to the misclassification
errors is that there must be unlabeled samples which are Normal which more closely resemble the
7 Days of detachment.
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4 Conclusions and Future Research

What is lacking in this report is the biological significance and discussion of these results. That
is, what is special about the classes and local regions within any single class that the GMM has
found? What is special about the equality relationship between a local region (as represented by
Component 5) within the class 3D+28R and a local region (represented by Component 1) within
the class 3D? These are questions which the GMM cannot answer with the given feature vectors
comprised only of EFR or the Gabor filter histograms. What is required to better answer these
questions are features that are biologically significant to better characterize the cellular and sub-
cellular behavior within the retina. With such information, biologically significant conclusions
beyond what we present here, are possible. This aspect of the image processing segment of the ITR
project is crucial to being able to better answer biologically relevant questions.

Along these lines of research, better automated image processing software is desired. Recall
that a one of the few classification errors that was made is due to an image sample for which the
automated image processing software failed to correctly orient the image, thus extracting erroneous
features which make the image not comparable to other samples. As such, the unlabeled data point
created it’s own mixture component (Component 7) and deemed the sample as unknown. Although
this is a promising and delightful result of the GMM and related semi-supervised EM learning
method, it is a disaster for the image processing software we use at present. Better features and
better image processing (specifically for orientation and image size alignment) are key to answering
biologically significant questions.

Another area of potential biological research is to consider the retina status (in addition to
length of detachment, re-attachment, and experimental conditions) as either abnormal, normal re-
lated to the wvision status of the retina. That is, given the length of detachment, re-attachment, and
experimental treatments, what is the vision status of the retina. Simply put, is it still functioning
sufficiently such that the host subject still has some or all vision capabilities.
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