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Abstract

In matrix embedding (ME) based steganography, the host coefficients are minimally perturbed such

that the transmitted bits fall in a coset of a linear code, with the syndrome conveying the hidden bits. The

corresponding embedding distortion and vulnerability to steganalysis are significantly less than that of

conventional quantization index modulation (QIM) based hiding. However, ME is less robust to attacks,

with a single host bit error leading to multiple decoding errors for the hidden bits. In this paper, we

employ the ME-RA scheme, a combination of ME-based hiding with powerful repeat accumulate (RA)

codes for error correction, to address this problem. A key contribution of this paper is to compute log

likelihood ratios (LLRs) for RA decoding, taking into account the many-to-one mapping between the host

coefficients and an encoded bit, for ME. To reduce detectability, we hide in randomized blocks, as in the

recently proposed Yet Another Steganographic Scheme (YASS), replacing the QIM-based embedding in

YASS by the proposed ME-RA scheme. We also show that the embedding performance can be improved

by employing punctured RA codes. Through experiments based on a couple of thousand images, we

show that for the same embedded data-rate and a moderate attack level, the proposed ME-based method

results in a lower detection rate than that obtained for QIM-based YASS.
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I. INTRODUCTION

Steganography is the art of secure communication where the existence of the communication itself

cannot be detected while steganalysis is the art of detecting the secret communication. The requirements

for a “good” steganographic scheme are a high embedding capacity, while remaining statistically secure.

When there is an active adversary in the transmission channel, the hiding scheme is considered to be an

example of “active steganography”. Various examples of the active warden scenario (active steganography)

are in [4], [8], [10], [16], [21]. In our problem formulation, we assume that the “active warden” may

modify the transmitted signal which may (or may not) contain the embedded message - the signal being

the stego (or cover) image. Thus, a secure stego scheme is effective in an active warden setting only if

the embedded message can be recovered after the stego image is modified by the “active warden”.

Matrix embedding (ME) [7], an embedding technique with a high embedding efficiency (defined as the

number of bits embedded per unit embedding distortion), is generally used for passive steganography as

the lower embedding distortions (as compared to embedding methods like quantization index modulation

(QIM) [5], while both methods have the same embedded data-rate) make the hiding less detectable.

Here, we use ME for active steganography by combining it with powerful error correction codes. We

first review ME using an example.

Matrix Embedding Example: Consider (7,3) matrix embedding, in which 3 data bits are embedded

in 7 host bits. The idea is to perturb the host bits minimally so that they fall in the coset of a linear

code, whose syndrome equals the data bits to be hidden. In particular, we consider the (7,4) Hamming

code with parity check matrix H which is expressed as:

H =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 . (1)

For a host sequence a = (1, 0, 0, 1, 0, 0, 1), the syndrome b′ is obtained as: (b′)T = H(a)T = (0, 1, 0)T ,

where the operations are performed over the binary field. If the data bits to be embedded are (0, 1, 0), we

can send the host bits without perturbation. However, suppose that we wish to embed (0, 0, 0). The aim is

to find ∆a, the perturbation vector for a, with the lowest Hamming weight. Then, H(a)T +H(∆a)T =

(0, 0, 0)T . Therefore, H(∆a)T = (0, 1, 0)T . If only the ith element in ∆a is 1, then H(∆a)T equals

the ith column in H. The 2nd column in H = (0, 1, 0)T . Therefore, ∆a = (0, 1, 0, 0, 0, 0, 0). Similarly,

to embed the data bits (1, 1, 1), the perturbation ∆a is such that H(a)T + H(∆a)T = (1, 1, 1)T ⇒

H(∆a)T = (1, 0, 1)T . Since the 5th column of H = (1, 0, 1)T , ∆a = (0, 0, 0, 0, 1, 0, 0). Similarly, for
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any three-tuple we might wish to embed, we need to change at most one host bit (Hamming weight of

∆a ≤ 1), which illustrates why matrix embedding is so powerful for passive warden steganography.

Comparison with Quantization Index Modulation: Given the popularity of QIM embedding [5],

[27], it is the natural benchmark against which to compare new steganographic methods. Scalar QIM

in the context of JPEG steganographic schemes corresponds to rounding a discrete cosine transform

(DCT) coefficient to the nearest even or odd quantization level, depending on the embedded bit. Thus,

the DCT coefficient is changed with probability half, relative to rounding to the nearest quantizer level

as done during JPEG compression. Therefore, on average, the embedding efficiency is 2 bits per changed

coefficient. On the other hand, for (7,3) ME, we embed 3 bits by modifying one of 7 coefficients resulting

in a higher embedding efficiency of 3. Given a set of 7 embedding coefficients, QIM and ME schemes

can embed 7 and 3 bits, respectively, so that QIM achieves a higher hiding rate for the same number of

hiding locations. Also, a single error affects the decoding of only a single bit for QIM. For (7,3) ME,

changing a single coefficient (e.g. flipping the 7th bit of a in the above example) can lead to three bit

errors, so that ME is more fragile than QIM for active steganography. Thus the regime in which ME can

outperform QIM is when the required hiding rate is low enough so that (a) the lower hiding rate of ME

is not an issue; (b) also, the channel attacks should be of moderate strength so that (c) the errors can be

rectified through powerful error correction codes. This is the regime explored in this paper.

Contributions: Our main contributions are outlined below.

(a) We impart noise robustness to the ME-based active steganographic framework by performing error

correction coding (ECC) on the data bits to generate the code bits embedded using ME. For maintaining

perceptual transparency after hiding, hiding in coefficients of small magnitudes is avoided. This is

interpreted as erasures at the encoder, as in our prior work on QIM based hiding [27]. For ECC, we have

used repeat accumulate (RA) codes [9], which are well suited for such high erasure channels [27]. We

also show that punctured [2], [3] RA codes can yield superior performance over the original RA codes.

(b) For iterative decoding, the decoder needs to be initialized with proper confidence values (log likelihood

ratios or LLRs) at the embedding locations. Even if one out of 7 host coefficients is erased for (7,3) ME,

it can affect the decoding at 3 bit locations - the RA decoder needs to consider the various erasure-related

cases before computing the soft weights to initialize the iterative decoder. Thus, a key contribution of the

paper is to work through the combinatorics required to determine the soft decisions.

(c) To reduce detectability, we use Yet Another Steganographic Scheme (YASS), the hiding frame-

work proposed in [28]. Here, the hiding blocks are pseudo-randomly chosen to desynchronize the self-

calibration scheme, which assumes that the hiding is done in regular 8×8 blocks of DCT coefficients,
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used in standard steganalysis methods [22], [23]. ME-based YASS is shown to be less detectable than

QIM-based YASS for the same steganalysis schemes for the same (low) data rate.

To summarize the roles of the various modules, YASS suggests “where” to embed (randomized block

locations), ME shows “how” to embed (embedding method) and the RA-based ECC framework determines

“what” gets embedded (it generates the code bits, given the information bits) - this is illustrated in Fig. 1.

Repeat accumulate 
coding with 
redundancy factor of q

Matrix 
embedding

Set of randomized block based hiding 
locations – decided by YASS framework

data 
bits

code bits

original 
image

hiding coefficients

changed coefficients 
after embedding

stego image
combine coefficients 
to reconstruct image

coefficients not

affected by hiding

Fig. 1. The entire hiding framework using RA coding, matrix embedding and YASS-based coefficient selection

Related work: Since the concept of matrix embedding was first introduced by Crandall [7], there

have been a number of papers describing properties and improvements of ME, for passive steganography

[11], [15], [17], [29]. The F5 algorithm [29] is a secure JPEG steganographic scheme based on ME. F5

uses (1, n, k) coding based on binary Hamming codes, where n = 2k − 1, and k message bits are to be

embedded in n image DCT coefficients, by changing the least significant bit (LSB) of (at most) one of

the n quantized DCT coefficients after rounding. This method was further generalized by Kim et al [17]

- (t, n, k) coding methodology is suggested where while embedding k-bits into n host bits (n = 2k − 1),

at most t (t ≥ 1) embedding changes can be made. It is useful when the single coefficient to be perturbed

in (1, n, k) scheme cannot be modified due to various constraints (e.g. due to erasures). Approaches to

increase the embedding rate for ME based on random linear codes of small dimension, and simplex

codes, have been presented by Fridrich et al [15]. In the context of minimal distortion steganography, an

interesting approach is Perturbed Quantization (PQ) [12], which is highly secure from modern detectors

[14]. Another contribution of the PQ scheme is the use of wet paper codes (WPC) which allows sending

the same number of bits, on an average, as would have been possible if the receiver knew the actual set

of hiding locations. In [11], the embedding impact profile of all the pixels is estimated and an optimal

trade-off is studied between the number of embedding changes and their amplitudes, while using ME.

While the ME-based methods generally focus on passive steganography, our QIM-based hiding scheme

YASS [28] achieved secure (using randomized block locations) and robust (using RA-codes) steganogra-

phy. Due to the lower embedding efficiency, QIM schemes are more detectable than ME-based schemes
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like F5 [29], non-shrinkage F5 (nsF5) [14] and Modified Matrix Embedding (MMx) [17]; but all these

ME-based methods are passive stego schemes. Here, we combine the low detectability of ME with the

robustness resulting from powerful ECC to obtain an active stego scheme that works for real-world

channels such as JPEG compression attacks. We focus on data sets for which QIM-based YASS is

detectable even at low embedding rates, and attempt to determine when ME outperforms QIM (we can

only hope to do better than QIM at low enough embedding rates and moderate enough attacks).

Prior work that combines error correction coding with ME-based hiding includes [31]. However, the

combination codes in [31] are employed over individual blocks of image coefficients, and are therefore

much less powerful than the RA code framework employed here, where the codeword spans the entire

set of embeddable image coefficients. Moreover, erasures resulting from coefficient-adaptive hiding, as

well as the effect of real-world channels such as JPEG compression, are not considered in [31].

Outline of the Paper: The YASS framework and the overall ME-based hiding system are described

in Sec. II. We consider the (7,3) matrix embedding case. The embedding method for the ME-RA scheme

(using ME to embed the RA-encoded bits) is explained in Sec. III. The various approaches used for

the initial LLR computation at the decoder are explained in Sec. IV. The ME-RA-puncture scheme,

which is a refinement of the ME-RA method and produces a higher effective embedded data-rate than

ME-RA through “puncturing” [2], [3] (deletion of a suitable number of encoded bits at appropriate

bit locations), is explained in Sec. V. Sec. VI compares the data-rate obtained using various methods

for the initial LLR computation. It also compares the performance of ME-RA-puncture to that of the

non-shrinkage (which avoids the erasure induced shrinkage problem [14]) method. Comparison of the

detectability against similar steganalysis methods and effective hiding rate under different noise channels,

for QIM-RA (using QIM to embed the RA-encoded bits) and ME-RA-puncture methods, are presented

in Sec. VII.

Table I introduces some notations which will be frequently used in the paper. A sequence of 7 terms

(y1, y2, . . . , y7) is referred to as y. The complement of a bit ai is referred to as ai.

II. INTRODUCTION TO YASS AND OVERALL SYSTEM SETUP

Brief Introduction To YASS: The security of YASS [28] can be attributed to the randomized choice

of hiding locations. The input image is decompressed if it is in JPEG format and then divided into blocks

of size B×B (B > 8), where B is called the big-block size. For each big-block, a 8×8 sub-block is

pseudo-randomly chosen to hide data. The encoder and decoder share the same key by which they can

access the same set of 8×8 blocks. For every sub-block, its 2D DCT is computed and then divided by
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TABLE I

GLOSSARY OF NOTATIONS

Notation Definition

y = (y1, y2, . . . , y7) set of 7 AC DCT coefficients that are considered together to embed 3 code bits for (7,3) ME

a = (a1, a2, . . . , a7) set of binary symbols obtained from y where ai = mod(round(yi), 2), 1 ≤ i ≤ 7

b = (b1, b2, b3) set of 3 bits that are embedded in y = (y1, y2, . . . , y7)

b′ = (b′1, b
′
2, b

′
3) syndrome obtained from LSBs of y, i.e. from a, thus, (b′)

T
=H(a)T where H is introduced in (1).

ye = (ye
1, y

e
2, . . . , y

e
7) set of 7 AC DCT coefficients to which y is changed after embedding

ae = (ae
1, a

e
2, . . . , a

e
7) set of binary symbols to which a is changed after embedding, ae

i = mod(round(ye
i ), 2), 1 ≤ i ≤ 7

yr = (yr
1 , yr

2 , . . . , yr
7) set of received DCT elements at the decoder side corresponding to ye

LLRfinal(b|yr) the set of log-likelihood ratio (LLR) values for the bit locations b = (b1, b2, b3) based on yr

QFh the design quality factor selected for hiding, which is used to generate the quantized AC DCT coefficients

QFa the output quality factor at which the stego image, after randomized block based hiding, is JPEG compressed

B, NB B is the big-block size used for YASS (B > 8) while NB is the number of B ×B blocks in the image

λ the number of top AC DCT coefficients, encountered during zigzag scan, used for hiding per 8×8 block

T ∈ R3×3 the transition probability matrix between ye and yr , where each term is mapped to one of {0, 1, e}, and

e denotes an erasure

bpnc ratio of the number of data bits successfully embedded in an image to the number of non-zero (after

rounding) block-based AC DCT image coefficients

QIM-RA: n terms the QIM-RA (QIM-based YASS where RA-coding is used as ECC) scheme where the first n AC DCT

elements encountered during zigzag scan per 8×8 block are used for embedding, i.e. λ = n

qopt the minimum RA code redundancy factor which allows proper decoding and recovery of all the data bits

a JPEG quantization matrix at a design quality factor, QFh. A band of λ AC DCT coefficients lying in

the low and mid-frequency range is used for hiding. After data embedding, the resultant image is JPEG

compressed at a quality factor of QF a. The embedding rate decreases, as compared to using regular 8×8

blocks, because a lower fraction ( 8×8
B×B < 1) of the DCT coefficients is now considered for embedding.

To increase the embedding rate, we also consider choosing multiple non-overlapping 8×8 blocks within

a B×B block, for B > 15. E.g. choosing nine 8×8 blocks within a 25×25 big-block yields a higher

embedding rate than choosing one 8×8 block within a 9×9 big-block. The effective big-block size Beff ,

which accommodates one 8×8 block, is now reduced from 9 to 25
3 .

Overall System Flow: The overall system flow can be followed using Fig. 2. Let NB denote the

number of B×B blocks obtained from the image, with λ elements used for hiding from the DCT matrix

for the 8×8 pixel block pseudo-randomly chosen from every B×B block. For 9 ≤ B ≤ 15, the total

number of DCT coefficients available for hiding equals N = λNB . When Beff < 9 (e.g. when B =

17, 25 or 49), N = NB(no. of 8×8 blocks in a B ×B big-block)λ = NB(bB
8 c)

2
λ. Using (7,3) ME, the
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y = (y1 ,y2 ,…,y7 ): 7 DCT values

a = (a1 ,a2 ,…,a7 ): 7 binary symbols,      
where ai = mod(round(yi ),2)

Bits to be embedded: b = 
(b1 ,b2 ,b3 )

Make minimum changes to a to 
embed b :  a gets changed to ae

Changing a to ae

changing y to ye

(Noisy) channel

The sequence of received DCT values is yr = 
(yr

1 ,yr
2 ,…,yr

7 )

From yr, try to guess what the transmitted values of ye 

could have been, e.g. guessed sequence  yg = 
(yg

1 ,yg
2 ,…,yg

7 )

From the guessed sequence yg, find the 3 LLR values,  
LLR( b | yg ) 

Use LLRfinal ( b | yr ) for iterative decoding

Obtain final LLR values, LLRfinal ( b | yr ) as a weighted

combination of the individual LLR( b | yg ) 

terms for different guessed yg values

DECODER  SIDE
ENCODER

SIDE

Fig. 2. There is a 7-element sequence of DCT coefficients y where a 3-tuple bit sequence b is embedded. The encoder embeds

b in y by changing the minimum number of coefficients in y, thus modifying it to ye which is transmitted through the channel

and yr is the corresponding received sequence. The decoder uses yr to estimate the LLR values for the 3 bit locations. The

sequence ar , which is derived from yr (ar
i = mod(round(yr

i ), 2), ∀i), is not explicitly shown at the decoder side.

coefficients are partitioned into bN
7 c sets, each having 7 terms - e.g. y = (y1, y2, . . . , y7) is such a set

where 3 bits (b1, b2, b3) are embedded. The total number of code bits equals 3bN
7 c, and for a RA code

of redundancy factor q, b(3bN
7 c)/qc data bits can be accommodated. At the encoder side, the problem

is to embed the code bits using ME while minimally changing the DCT coefficients (e.g. from y to ye).

The redundancy factor q is set to qopt (defined in Table I) such that the hiding rate is maximized for

a given set of hiding parameters and attack channel. The decoder can recover q from the RA-encoded

sequence without any side information, as explained in [1], [25]. We do not consider attacks that can

potentially desynchronize the encoder and decoder (e.g. warping or cropping), so that the decoder has

access to the same set of N hiding locations as the encoder. A proper initialization of the soft weights

(log likelihood ratios or LLRs, explained in Sec. IV) for codeword locations allows faster convergence

(at a lower redundancy factor) and increases the hiding rate. Various methods to compute the soft weights

(LLRfinal(b|yr)) for 3 bit locations (b = (b1, b2, b3)) given 7 DCT terms (yr = (yr
1, y

r
2, . . . , y

r
7), which

is the noisy version of ye) are studied in Sec. IV.

III. ME-RA EMBEDDING

The encoder embedding logic for (7,3) ME, introduced in Sec. I, is explained in detail here. The

operations at the encoder side are outlined in Fig. 2. The sequence b = (b1, b2, b3) is to be embedded
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in y, a set of 7 locations. After rounding to the nearest integer and modulo 2 operation, the coefficients

return the bit sequence a = (a1, a2, . . . , a7), where ai = mod(round(yi), 2). Using the (3x7) mapping

matrix H, introduced in (1), on a, the following syndrome b′ is obtained: (b′1, b
′
2, b

′
3)

T = H(a)T . The

aim is to make minimum changes to a to obtain ae = (ae
1, . . . , a

e
7), such that bT = H(ae)T .

TABLE II

FOR (7,3) ME, THERE ARE 8 POSSIBLE RELATIONS BETWEEN b, THE 3-TUPLE OF BITS TO BE EMBEDDED, AND b′ , THE

SYNDROME OBTAINED FROM y. THERE IS ALWAYS A SINGLE COEFFICIENT yi , WHOSE MODIFICATION TO ye
i (ENSURING

ae
i = ai WHERE ai = MOD(ROUND(yi), 2) AND ae

i = MOD(ROUND(ye
i ), 2)) ENSURES PROPER EMBEDDING. IF yi IS IN THE

ERASURE ZONE, THE CANDIDATE 2-TUPLES/3-TUPLES FOR EMBEDDING ARE MENTIONED.

Relation between b′ and b Condition 1-tuple Possible 2-tuples Possible 3-tuples

b′1 = b1, b′2 = b2, b′3 = b3 0 none none none

b′1 = b1, b′2 = b2, b′3 = b3 1 y1 (y2, y3)(y4, y5)(y6, y7) (y2, y4, y7)(y2, y5, y6)(y3, y5, y7)(y3, y6, y4)

b′1 = b1, b′2 = b2, b′3 = b3 2 y2 (y1, y3)(y4, y6)(y5, y7) (y1, y4, y7)(y1, y5, y6)(y3, y4, y5)(y3, y6, y7)

b′1 = b1, b′2 = b2, b′3 = b3 3 y3 (y1, y2)(y4, y7)(y5, y6) (y1, y5, y7)(y1, y4, y6)(y2, y4, y5)(y2, y6, y7)

b′1 = b1, b′2 = b2, b′3 = b3 4 y4 (y1, y5)(y2, y6)(y3, y7) (y1, y2, y7)(y1, y3, y6)(y2, y3, y5)(y5, y6, y7)

b′1 = b1, b′2 = b2, b′3 = b3 5 y5 (y1, y4)(y2, y7)(y3, y6) (y1, y3, y7)(y1, y2, y6)(y2, y3, y4)(y4, y6, y7)

b′1 = b1, b′2 = b2, b′3 = b3 6 y6 (y1, y7)(y2, y4)(y3, y5) (y1, y2, y5)(y1, y3, y4)(y2, y3, y7)(y4, y5, y7)

b′1 = b1, b′2 = b2, b′3 = b3 7 y7 (y1, y6)(y2, y5)(y3, y4) (y1, y2, y4)(y1, y3, y5)(y2, y3, y6)(y4, y5, y6)

Given 7-element DCT sequence: y

a : 7 binary values obtained from y

b′
 
: syndrome obtained from a

Input 3-tuple bit sequence: b

Does changing this 3-tuple satisfy 
embedding relation?

Easiest change: 
ae

1 = a1. But is y1

 outside erasure 
zone?

YES
NO

change y1

 

to ye
1    

(case A)

Look at other possible 2-tuples to 
change: (y2

 

,y3

 

), (y4

 

,y5

 

), (y6

 

,y7

 

). Is there 
a pair where both elements are not in 

erasure zone?

Is more than 1 pair outside 
erasure zone?

Does there exist a 3-tuple 
where all elements are outside 

the erasure zone?

Compare: b′
 
and b

Assume relation is: b′1
 

= b1

 

, b′2
 

=b2

 

, b′3
 

=b3

Change both terms in

2-tuple (case B)
Change all terms in 3-

 tuple (case D)

YES
NOYES

NO

YES
NO

YES
NO

Cannot 
embed b in 
y (case E)

Change the 2-tuple whose 
elements are closest to the 

erasure zone  (case C)

ENCODER

SIDE

Fig. 3. Embedding logic used at the encoder for a (7,3) matrix embedding example : cases (A)-(D) correspond to cases where

embedding is possible, while case (E) is where embedding fails.
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From Table II, for every condition (except condition 0), if yi is the only element being changed (for the

other elements, ye
j is the rounded version of yj , j 6= i), ae

i = ai and ae
j = aj , j 6= i. To ensure ae

i = ai,

yi is changed to the nearest odd/even integer ye
i , if yi gets converted to an even/odd integer, respectively,

after rounding off. It may happen that the absolute value of the coefficient to be modified (|yi|) is less

than 0.5 - an erasure occurs at that location. Since we have a series of candidate locations for embedding,

this erasure-induced problem can be solved by changing two or more of the remaining coefficients in y

(using solution proposed in [17]). Based on the embeddable bits and the candidate coefficients, 5 cases

(A-E) are possible, as shown in Fig. 3.

Algorithm to decide on the minimum perturbations for embedding:

• We use Table II to find the single coefficient yi to change to the nearest odd or even integer ye
i , if

yi rounds off to an even or odd integer, respectively. If that element (e.g. y1 in Fig. 3) can indeed be

modified, it corresponds to Case A.

• If that single coefficient (yi) lies in the erasure zone (−0.5, 0.5), we look for the pairs of 2-tuples

that can be perturbed for proper embedding. If there is just one suitable 2-tuple, it corresponds to Case

B. If there are more than one suitable 2-tuple, we select that tuple whose perturbation introduces the least

embedding distortion (Case C). For example, among 2 pairs (0.6, 0.7) and (0.90, 0.95), (the elements in

both pairs are changed to (0, 0) after embedding), the total perturbation equals 0.6 + 0.7 = 1.3 and 0.90

+ 0.95 = 1.85, respectively. Hence, the first pair is used for embedding - in general, among two pairs

with elements in (0.5, 1), the one with elements closer to 0.5 should be selected for embedding.

• The process is repeated for 3-tuples, if we do not get a suitable 2-tuple for embedding. Case

D corresponds to the use of a 3-tuple for embedding. If a suitable 1/2/3-tuple cannot be found for

embedding, then a higher-order tuple cannot also be found for embedding using (7,3) ME (Case E).

Thus, data embedding is possible for Cases A-D when there are suitable 1/2/3 tuples; for Case E, the

relevant 3 bits cannot be embedded due to too many erasures.

IV. ME-RA DECODING

We now discuss the decoder operations depicted in Fig. 2. One of the main challenges involved in

using ME along with RA coding is the computation of the initial LLR values provided to the decoder.

It is instructive to review the LLR computations used in prior work on QIM-based embedding [27], [28]

before discussing the more complicated computations for ME-based embedding.

Definition of LLR: Let a certain image coefficient be equal to y and the corresponding embedded

bit be b. The LLR value LLR(b|y) denotes the logarithm of the ratio of the likelihood that a 0 was
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transmitted through that coefficient (P (b = 0|y)) to the likelihood that a 1 was transmitted (P (b = 1|y)).

LLR(b|y) = log
(

P (b = 0|y)
P (b = 1|y)

)
(2)

Hence, LLR(b|y) is positive when 0 is the more likely bit and vice versa. LLR(b|y) equals zero for

an erasure. In our QIM-based methods [27], [28], an image coefficient was changed to the nearest even

or odd integer to embed 0 or 1, respectively. If the absolute value of y were less than 0.5, LLR(b|y) = 0

(erasure); else, depending on whether the received coefficient is close to an even or odd integer, LLR(b|y)

is set to α or −α, where α reflects the decoder’s confidence in the accuracy of the decoded bit values.

LLR Computation for ME: For (7,3) ME, the 7-element sequence of received DCT coefficients, yr,

decides the log likelihood for b, a 3-tuple bit sequence. We denote it as LLR(b|yr) in (3) - it is a

sequence of 3 terms, each denoting the LLR for an individual bit location. From (2) and (3), it is evident

that while an LLR value (LLR(b|y)) for QIM-RA depends on only one coefficient value (y), there is a

7:1 mapping between the elements in yr and an LLR value (LLR(bj |yr), 1 ≤ j ≤ 3) for ME-RA.

LLR(b|yr) =
(

log
(

P (b1 = 0|yr)
P (b1 = 1|yr)

)
, log

(
P (b2 = 0|yr)
P (b2 = 1|yr)

)
, log

(
P (b3 = 0|yr)
P (b3 = 1|yr)

))
(3)

If we assume an ideal channel between the transmitted sequence ye and the received sequence yr (i.e.

ye =yr), the 3-tuple of decoded bits, br, obtained as the syndrome of ar, can be directly used for LLR

estimation - here, (br)T = H(ar)T , where ar
i = mod(round(yr

i ), 2), ∀i. In practice, the LLR values

should be modified to account for those conditions where embedding of b in y was not possible because

of erasures, or to account for errors, when ae
i 6= ar

i .

Motivation Behind Proposed LLR Computation Methods: Since we do not have an exact mathemat-

ical model for the statistics of the data hiding channel (which varies across images), we investigate three

methods (Methods M1, M2 and M3) for LLR computation and empirically evaluate their performance

in terms of the hiding rate (Table IX in Sec. VI). Our performance metric in comparing the LLR

computation methods is the overall hiding rate; thus a better LLR computation method would require

a smaller redundancy factor. Both M1 and M2 compute the LLR (LLR(bj |yr)) as a summation of the

individual LLRs, for each of the 8 possible mappings between br (syndrome obtained at the decoder)

and b′ (syndrome at the encoder side, unknown to the decoder). For each individual LLR computation,

M1 assigns an LLR value of {α,−α, 0}, depending on whether the bit more likely to be embedded is

{0, 1, e} (e = erasure), respectively - this is similar to the LLR allocation for QIM-RA [28]. M2 uses a

more detailed analysis of the various erasure scenarios for LLR allocation. M3 computes the LLR as a

ratio of probabilities, as per the definition (3), while considering all the 8 combinations, along with the
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different erasure scenarios (like M2). Computing the LLR as a ratio instead of a summation of individual

LLRs eliminates the need for choosing α explicitly. However, M3 also requires some ad hoc choices,

specifically regarding weighting factors that depend on the distribution of the quantized DCT coefficients.

We initially ignore the channel effects (errors and erasures associated with the transition probability

matrix between ye and yr) in our LLR computation methods (we assume that ae
i = ar

i ,∀i) described in

Sec. IV-A and IV-B, and modify them to incorporate the channel effects in Sec. IV-C.

A. LLR Computation- Method 1 (M1) and Method 2 (M2)

The final LLR values LLR(b|yr) are computed by summing over the individual LLRs for all the 8

possible conditions (possible mappings between br and b′ as shown in Table II).

Final LLR value: LLR(b|yr) =
7∑

j=0

P (condition j)LLR(b|yr, condition j) (4)

Here, condition j is the condition where proper embedding can occur by changing only yj (or suitable

2-3 coefficients if yj lies in the erasure zone), and for condition 0, no term in y needs to be modified.

The prior probability of condition j is denoted by P (condition j) (4) and equals 1/8 since all the 23 = 8

conditions are equally likely. The problem now becomes one of computing the individual LLR terms

(LLR(b|yr, condition j)). If there is a coefficient (or a set of 2-3 coefficients) which lies outside the

erasure zone and allows proper embedding, the condition is classified as “Not in Erasure Band” (NEB).

If all the relevant coefficients lie in the erasure band, the condition is denoted as “Erasure Band” (EB).

For NEB, the LLR is computed similarly by M1 and M2 while for EB, the LLR is computed differently.

1) NEB and EB Conditions: Assuming a certain condition (say, condition i) to be true, if yi is the

coefficient that needs to be modified for proper embedding and |yr
i | > 1/2, then the decoder is sure

that proper embedding has occurred by modifying yi (cases (A)-(D) in Fig. 3). When yr
i rounds off to

zero, it was either modified from ±1 (rounded value of yi) to zero or it was not modified at all, if yi

were in the erasure zone. E.g. if yi ∈ (0.5, 1] or yi ∈ [−1,−0.5) and the embedding logic demands that

ae
i = ai, then it is converted to ye

i = 0, after embedding. So, a received yr
i coefficient that rounds to

zero leaves open the possibility that embedding could not be carried out in that location as happens for

case E, assuming that condition i is true - this is the “shrinkage” problem (this has been countered by

non-shrinkage F5 (nsF5) [14], an improvement on the F5 scheme). If |yr
i | ≤ 0.5, relevant 2-3 tuples are

considered to check if a tuple with all the elements outside the erasure zone can be found - if yes, the

condition is NEB; else it is termed as EB.
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Example of NEB and EB: For a certain combination of b and b′, let b′1 = b1, b′2 = b2 and b′3 = b3.

Thus, proper embedding needs that only y1 be changed suitably (condition 1 in Table II). If yr
1 equals zero

after rounding, we test for suitable 2-tuples out of {(yr
2, y

r
3), (y

r
4, y

r
5), (y

r
6, y

r
7)}, where the corresponding

yi terms could have been modified at the encoder so as to achieve the same effect as modifying y1.

Again, we are sure we have a suitable 2-tuple if both the coefficients have an absolute magnitude ≥ 1

(after rounding). If we do not find a suitable 2-tuple, we look for a suitable 3-tuple (Table II). Finally,

depending on whether (or not) we find a suitable 1/2/3-tuple, the combination is considered to be an

example of NEB (or EB).

LLR Computation for NEB: For the NEB condition, if the coefficient which we assumed to have

been changed for embedding were indeed the one that was modified, the 3-tuple br computed from yr

would equal the sequence b that was supposed to be embedded. The LLR values are then computed

identically, for both M1 and M2, based on br, using (5).

LLR(b|yr, condition j) = α((−1)br
1 , (−1)br

2 , (−1)br
3), if condition j is NEB (for M1, M2) (5)

2) LLR Computation for EB: For the EB condition, the two methods, M1 and M2, compute the

individual LLR values LLR(b|yr, condition j) differently.

• Method M1: We assign zeros, corresponding to erasures, to all the 3 bit locations for that condition.

• Method M2: If a certain condition is classified as EB, we can still guess what the actual embeddable

bits were. E.g. consider the EB condition (condition 1 in Table II) where y1 or corresponding 2-3 terms

could not be modified. Then, b′1 = b1, b′2 = b2 and b′3 = b3 (Table II) is the relation between b (bits

to embed) and b′ (default syndrome) at the embedder side. Therefore, bit b1 will be wrongly decoded.

Thus, if the EB condition indeed occurred due to y1, or corresponding 2-3 terms, lying in the erasure

zone, then (br
1, br

2 and br
3) would be the actual embeddable bits. The LLR for the 3 bit locations for

condition 1 can then be expressed in terms of br
1, br

2 and br
3, as shown later in (9).

For an EB condition, embedding may still have been possible. Thus, we have less confidence in the

embeddable bit values suggested by an EB condition than by a NEB condition. M2 uses a weighting factor

wEB (0 < wEB ≤ 1) for the EB condition LLRs, used below in (9). We demonstrate proper embedding

under an EB condition using an example. Say, for condition 1, we observe that (yr
1, y

r
2, y

r
4, y

r
7) are all in

the erasure zone, while the remaining terms are outside the erasure zone. Then, if (y1, y2, y4, y7) were

all originally in the erasure zone, embedding under condition 1 using 1/2/3-tuples would not be possible.

However, it may have been that one/more of these yi coefficients were in [−1,−0.5) or (0.5, 1] and

they got modified to values in the erasure zone after embedding. Thus, proper embedding can occur if
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y1 ∈ [−1,−0.5) or (0.5, 1], or if y1 ∈ [−0.5, 0.5] and at least one element from (y2, y4, y7) is outside the

erasure zone. The probability of proper embedding is expressed as pembed (6) and the weighting factor

wEB (7) corresponds to the probability that embedding could not be performed, given an EB condition:

pembed = (P (y1 ∈ {[−1,−0.5) ∪ (0.5, 1]})) + (P (y1 ∈ [−0.5, 0.5]))(1− (P (yi ∈ [−0.5, 0.5]))3)(6)

wEB = 1− pembed (7)

Though wEB varies per image as it depends on the distribution of the quantized DCT coefficients, we

empirically observe that wEB =0.5 is a good choice across a variety of design QFs.

LLR(b|yr, condition j) = (0, 0, 0), if condition j is EB (M1) (8)

= αwEB((−1)fj(br
1), (−1)fj(br

2), (−1)fj(br
3)), if condition j is EB (M2) (9)

In (9), the functions fj(·) are given by the jth condition. For an EB condition, the function fj maps

the computed (br
1, b

r
2, b

r
3) values to the actual bit sequence which we assumed was embedded. E.g. when

proper embedding is not possible for condition 1, the mapping between b (bits to embed) and br (output

syndrome) is br
1 =b1, br

2 =b2 and br
3 =b3. Hence, f1(br

1)=br
1, f1(br

2)=br
2 and f1(br

3)=br
3. The computation

of LLR values for M1 and M2 is explained through an example (Table III).

Example 1: In this example, yr = (0.4, 0.2, 0.9, 1.5, 0.3, 0.1, 1.2), ar = (0, 0, 1, 0, 0, 0, 1) and br =

H(ar)T = (0, 0, 1). Conditions {0, 3, 4, 7} are the NEB conditions. The LLR values for the NEB

conditions are computed using (5) (for M1 and M2) and the EB condition LLRs are computed using (8)

and (9), for M1 and M2, respectively. To show why condition 1 is classified as EB, consider yr
1 which

lies in the erasure zone. Looking for higher order tuples that satisfy condition 1 (from Table II), we find

that (yr
2, y

r
3, y

r
5, y

r
6) all lie in the erasure zone and hence, 2-3 tuples which are suitable for embedding

cannot be found. However, embedding fails under condition 1 only if the corresponding yi terms were

also in the erasure zone. For M2, if condition 1 is true and we assume that proper embedding has not

occurred, the actual bit sequence that should have been embedded is (br
1, b

r
2, b

r
3)=(1, 0, 1); the resultant

LLR equals α
2 ((−1)1, (−1)0, (−1)1) using (9).

B. LLR Computation For ME-RA - Method 3 (M3)

For M1 and M2, when bit b is embedded, the LLR value is given by α(−1)b, where α denotes the

decoder’s confidence level. The proper choice of α varies with the hiding parameters (QFh, λ). Here,

we propose an LLR computation method which is independent of α. By definition (3), an LLR term

is expressed as a ratio of two probability terms - each term (e.g. P (b1 = 0|yr)) can be replaced by
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TABLE III

EXPLANATION OF LLR ALLOCATION FOR EXAMPLE-1: CONDITIONS {0, 3, 4, 7} ARE THE NEB CONDITIONS. HERE, THE

SYNDROME BASED ON yr , (br
1, b

r
2, b

r
3) = (0, 0, 1). IF CONDITION j IS NEB, THE ACTUAL BIT SEQUENCE THAT WAS

EMBEDDED IS ASSUMED TO BE (br
1, b

r
2, b

r
3), WHILE FOR AN EB CONDITION, THE BIT SEQUENCE THAT SHOULD HAVE

BEEN EMBEDDED IS ASSUMED TO BE (fj(b
r
1), fj(b

r
2), fj(b

r
3)) FOR M2 (FUNCTIONS fj ARE OBTAINED FROM TABLE II).

FOR A CERTAIN CONDITION, “BITS” REFERS TO THE ORIGINAL SEQUENCE THAT IS EMBEDDED (FOR A NEB CONDITION)

OR THE SEQUENCE THAT WAS SUPPOSED TO BE EMBEDDED (FOR AN EB CONDITION). WE ASSUME wNEB = 1/2.

NEB or Computing Total LLR values Individual Individual

EB Condition Condition Bits Sequence LLR (M1) LLR (M2)

NEB 0 (br
1, b

r
2, b

r
3) (0, 0, 1) α(1, 1,−1) α(1, 1,−1)

EB 1 (br
1, b

r
2, b

r
3) (1, 0, 1) (0, 0, 0) α/2(−1, 1,−1)

EB 2 (br
1, b

r
2, b

r
3) (0, 1, 1) (0, 0, 0) α/2(1,−1,−1)

NEB 3 (br
1, b

r
2, b

r
3) (0, 0, 1) α(1, 1,−1) α(1, 1,−1)

NEB 4 (br
1, b

r
2, b

r
3) (0, 0, 1) α(1, 1,−1) α(1, 1,−1)

EB 5 (br
1, b

r
2, b

r
3) (1, 0, 0) (0, 0, 0) α/2(−1, 1, 1)

EB 6 (br
1, b

r
2, b

r
3) (0, 1, 0) (0, 0, 0) α/2(1,−1, 1)

NEB 7 (br
1, b

r
2, b

r
3) (0, 0, 1) α(1, 1,−1) α(1, 1,−1)

Final LLR value LLR(b|yr) α(4/8, 4/8,−4/8) α(4/8, 4/8,−4/8)

the relative frequency of occurrence of that event, considering all 8 conditions. We express LLR(b1|yr)

as a ratio, as shown below in (10). Of the 8 possible bit-values for b, we determine which conditions

correspond to b1 = 0 and b1 = 1, respectively, and also weight each condition differently depending on

whether it corresponds to NEB or EB. The jth condition can result in b1 = 0 in the following ways:

either, it is an instance of NEB and br
1 equals 0, or it is an EB condition and fj(br

1), as used in (9),

equals 0. As explained before, the EB conditions are weighted less (by wEB = 0.5 in (9)) than the NEB

conditions (weighted by wNEB =1). We denote the number of NEB and EB conditions where b1 =b by

NNEB,b1=b and NEB,b1=b, respectively.

LLR(b1|yr) = log
(

P (b1 = 0|yr)
P (b1 = 1|yr)

)
= log

(
weighted frequency of occurrence of b1 = 0
weighted frequency of occurrence of b1 = 1

)
= log

(
NNEB,b1=0wNEB + NEB,b1=0wEB

NNEB,b1=1wNEB + NEB,b1=1wEB

)
, where

NNEB,b1=b = |{j : condition j is NEB and corresponding br
1 = b, 0 ≤ j ≤ 7}|, b ∈ {0, 1},

NEB,b1=b = |{j : condition j is EB and corresponding fj(br
1) = b, 0 ≤ j ≤ 7}|, b ∈ {0, 1},

where |{·}| denotes the cardinality of the set {·},

and wNEB(or wEB) = weight assigned to a NEB (or EB) condition = 1(or 0.5)
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To avoid the numerator or denominator in LLR(b1|yr) becoming zero, we add 1 to both of them.

LLR computed using M3: LLR(b1|yr) = log
(

1 + NNEB,b1=0wNEB + NEB,b1=0wEB

1 + NNEB,b1=1wNEB + NEB,b1=1wEB

)
(10)

For QIM-RA and the M1 and M2 schemes in ME-RA, the LLR is expressed in terms of the scaling

factor α. For a given set of hiding conditions (QFh, λ), the best possible α (αopt) is that value which

results in the highest data rate. We experimentally observe that the αopt values used for M1 and M2 (for

M2, αopt = 3, 3, 2, 2 for QFh = 40, 50, 60, 70) result in similar LLR values for M3. Therefore, in (10),

we add 1 to both the numerator and denominator to avoid the LLR becoming ±∞.

We provide two examples (Table IV) to explain the steps involved in LLR computation using M3.

Example 2: The first of these examples is the same as used in Table III. Focussing on b1, br
1 = 0

at the NEB conditions {0, 3, 4, 7}, therefore NNEB,b1=0 =4. Of the EB conditions, fj(br
1) equals 0 for

conditions {2, 6} and 1 for conditions {1, 5}, respectively - hence, NEB,b1=0 =2 and NEB,b1=1 =2. The

resultant LLR(b1|yr) equals log
(

1 + 4wNEB + 2wEB

1 + 2wEB

)
=1.0986.

Example 3: Let yr be (1.2, 0.2, 0.9, 1.5, 1.9, 0.1, 0.2). Then, ar =(1, 0, 1, 0, 0, 0, 0) and br =H(ar)T =

(0, 1, 0). Embedding is seen to be possible for all the 8 cases (all NEB conditions). For b1 and b3,

LLR(bi|yr) equals log
(

1 + 8wNEB

1 + 0

)
=2.1972. LLR(b2|yr) equals log

(
1 + 0

1 + 8wNEB

)
=−2.1972.

TABLE IV

LLR COMPUTATION FOR METHOD 3 BASED ON (10) - EXPLAINED USING EXAMPLES 2-3, AND USING

wEB =0.5, wNEB =1

Example yr = (0.4, 0.2, 0.9, 1.5, 0.3, 0.1, 1.2) Example yr = (1.2, 0.2, 0.9, 1.5, 1.9, 0.1, 0.2)

2 NEB conditions are {0, 3, 4, 7} 3 NEB conditions are {0, 1, 2, 3, 4, 5, 6, 7}

LLR(b1|yr) = log

�
1 + 4wNEB + 2wEB

1 + 2wEB

�
= 1.0986 LLR(b1|yr) = log

�
1 + 8wNEB

1 + 0

�
= 2.1972

LLR(b2|yr) = log

�
1 + 4wNEB + 2wEB

1 + 2wEB

�
= 1.0986 LLR(b2|yr) = log

�
1 + 0

1 + 8wNEB

�
= -2.1972

LLR(b3|yr) = log

�
1 + 2wEB

1 + 4wNEB + 2wEB

�
= -1.0986 LLR(b3|yr) = log

�
1 + 8wNEB

1 + 0

�
= 2.1972

C. Accounting for Channel Effects

Let us consider the flow y → a → ae → ye → yr → ar, as shown in Fig. 2. For the LLR computation

algorithms described in Sec. IV-A and IV-B, we assume that there are no errors or erasures in the channel

between ye and yr. We now refine the LLR computation method, accounting also for channel effects.

LLR Computation Considering Channel Effects: For a received sequence yr, we can compute

the LLR value for the 3 bit locations corresponding to these 7 coefficients using M1/M2/M3. However,

considering channel effects, the received sequence yr need not be the same as the transmitted sequence
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ye. Here, we guess the value of the transmitted sequence and refer to it as yg. For each guessed sequence

yg, we compute the probability that the transmitted sequence is yg, given that the received sequence is

yr. The final LLR value for b, given the sequence yr and considering the channel effects for all possible

yg sequences, LLRfinal(b|yr) is computed as shown in (11).

LLR expression considering channel effects: LLRfinal(b|yr) =
∑
yg

LLR(b|yg)P (yg|yr), where (11)

P (yg|yr) = Prob(yg is the transmitted sequence, i.e. ye =yg, given that yr is the received sequence) (12)

We express P (yg|yr) (12) in terms of the parameters in the 3×3 transition probability matrix T , for

the channel between yg and yr, where each coefficient can be mapped to one of {0, 1, e} (e = erasure).

T =


t00 t01 t0e

t10 t11 t1e

te0 te1 tee

 , where tij = P (m(yr
k) = sj |m(yg

k) = si), and symbol set s = {0, 1, e}, (13)

and the mapping function m(·) is such that m(yr
k) =

 0/1 if |yr
k| > 0.5 and mod(round(yr

k), 2) = 0/1

e if |yr
k| ≤ 0.5

(14)

Representing the sequences in terms of the ternary symbols, we consider only those yg where 0 or 1

symbols are changed to obtain yr from yg to compute LLRfinal (15) - we assume that the channel error

and erasure probabilities are small enough so that P (yg|yr) ≈ 0 when more symbols are changed.

LLR expression using 0/1 changes: LLRfinal(b|yr) =
1∑

i=0

 ∑
yg∈Bi(yr)

LLR(b|yg)P (yg|yr)

 (15)

where Bi(yr) = {yg : yg is obtained from yr by changing any i elements in yr}

The elements in T depend on the JPEG compression channel and not on the distribution of the DCT

coefficients in the original image. For a given set of hiding parameters (QFh, QFa and λ), we compute

T for each image, from a set of 500 images, and the average is taken to obtain a mean estimate of T .

We compute the probability terms P (yg|yr) assuming that the symbols are independent of each other.

Using m(yg) and m(yr) to denote the ternary symbols, the probability P (yg|yr) equals
∏7

i=1 P (m(yg
i )|m(yr

i )).

For the T matrix, we assume t00 = t11, t01 = t10, te0 = te1, t0e = t1e (this is also experimentally verified).

Let pn denote the value of P (yg|yr), when n LSBs from yg are changed (through errors/erasures) to

generate yr. The probability terms p0 and p1 are computed as shown below in (16) and (17), respectively.



17

pn|n=0 = p0 = (t00)
7−n1(tee)

n1 , where n1 elements in yr are in the erasure zone (16)

pn|n=1 = p1 =


(t00)

6−n1(tee)
n1te0 if an erasure term in yg is converted to 0/1 in yr

(t00)
6−n1(tee)

n1t0e if a 0/1 in yg is converted to an erasure in yr

(t00)
6−n1(tee)

n1t01 if a 0/1 in yg is converted to a 1/0 in yr

(17)

Experimental Setup: An output quality factor QFa of 75 is used for all the experiments here. While

accounting for channel effects, we systematically increase the values of the design quality factor QFh,

as shown below in Table V. As QFh increases, the DCT coefficients are divided by a finer quantization

matrix (the elements in the JPEG quantization matrix get smaller) - the perturbation introduced by a

fixed JPEG channel (QFa = 75) can cause more errors/erasures if the original elements undergo finer

quantization. We show results for QFh = 60, 70 and 75 - the error and erasure probabilities are much

smaller for lower QFh. For QFh of 60, 70 and 75, QFa being fixed at 75, and using an embedding band

of λ = 19 elements, T (averaged over 500 images) equals
0.9589 0.0333 0.0078

0.0332 0.9592 0.0076

0.0043 0.0043 0.9914

,


0.9108 0.0733 0.0160

0.0737 0.9102 0.0161

0.0126 0.0125 0.9749

 and


0.8776 0.1022 0.0201

0.1031 0.8761 0.0208

0.0192 0.0191 0.9617

,

respectively. The average hiding rate is computed in terms of bpnc (explained in Table I). “Hiding rate”

refers to the bpnc computed per image while using the minimum RA-code redundancy (qopt) that ensures

perfect data recovery. From Table V onwards, the bpnc computation is averaged over 250 images - the

image dataset is explained in Sec. VII-A. Since considering the channel transition probability matrix

improves the bpnc for more noisy channels, we use (15) for LLR computation for QFh of 60 and 70 in

further experiments. For lower QFh values, the LLR is computed using the erasure-only model (10).

Experimental Results: We show the usefulness of the assumed model (individual LLR terms LLR(b|yg)

are computed using M3) in Table V. The bpnc using both p0 and p1, as in (15), for LLR computation is

slightly higher than that computed using only p0, while both are significantly higher than the erasure-only

model as in (10), especially for channels with a higher error rate (QFh = 70 and 75).

V. PERFORMANCE IMPROVEMENT WITH PUNCTURED RA CODES

RA codes are near-optimal for our application because of the high proportion of erasures, but the

available rates are limited to 1
q , where q is an integer. We address this shortcoming by the use of punctured

RA codes. Puncturing [2], [3] is a technique where the data-rate is increased by deletion of some bits in

the encoder output. The bits are deleted according to some puncturing matrix. We explain how puncturing
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TABLE V

VARIATION OF THE HIDING RATE (BPNC) WITH DIFFERENT LLR COMPUTATION METHODS FOR (7,3) ME-RA, WITH B=9,

QFa=75, AND USING THE FIRST 19 AC DCT TERMS FOR HIDING (λ=19), AND M3 TO COMPUTE INDIVIDUAL LLRS.

PPPPPPPPPPQFh

LLR Model
without using T using p0 computed using T using p0 and p1 computed using T

60 0.0731 0.0741 0.0745

70 0.0436 0.0493 0.0498

75 0.0265 0.0323 0.0329

operates using an example. Assume that there are 200 hiding locations - for a RA codeword of 200 bits,

let the value of qopt be 4 and hence, we can embed
200
4

=50 data-bits. Now, we increase the effective

codeword length using “puncturing”. Let the new codeword length be 300 - we assume that the extra

300-200=100 bits are deleted (these deletions are regarded as erasures at the decoder output). As the

effective channel is the same, the error and erasure rate for the 200 code-bits is unchanged while there are

100 additional erasures. We obtain a higher data-rate if the new value of qopt ≤ 5, as
⌊

300
5

⌋
> 50. The

design choices for puncturing here are (i) the number of additional erasures and (ii) their locations in

a RA codeword. By suitably puncturing the RA codeword which is embedded using ME-RA, we obtain

a higher bpnc - this new approach is called “ME-RA-puncture”. We first explain the algorithm and then

describe why/how it results in an improved performance.

Algorithm Description: The steps in the algorithm are outlined below.

• The embedding band remains the same for ME-RA and ME-RA-puncture schemes. We use the top 19

AC DCT coefficients per 8×8 block (λ=19) for hiding. Let the number of B×B blocks pseudo-randomly

chosen by YASS be NB . The total number of hiding coefficients N = 19NB (assuming B ≤ 15).

• To create a longer codeword than ME-RA (which has 3bN
7 c code bits), we assume that η (η ≥ 3d19

7 e,

i.e. η ≥ 9) bits are embedded per 8×8 block. Hence, the codeword has ηNB bits. The problem becomes

one of distributing the (ηNB − 3bN
7 c) erasures among the ηNB code bits.

• One can spread the erasures pseudo-randomly or the erasures can occur at consecutive locations

(bursty erasures). Let L denote the set of locations which correspond to the 3bN
7 c code bits which are

embedded out of ηNB code bits. The four methods that we explore to obtain L are as follows :

(i) Locally Random Erasures (LRE): we assume that out of a set of η consecutive code bits, (η − 9)

bits are erased. Let the 9 pseudo-randomly selected bit locations, decided based on a key shared with the

decoder, used for embedding out of η locations be {`i}9
i=1, where `i ∈ {1, 2, . . . , η}. Thus, the set of the

bit locations (out of ηNB locations) which correspond to the RA-code bits which are actually embedded

is L = ∪i=9,k=NB−1
i=1,k=0 {`i + ηk}. As 3b19NB

7 c < 9NB , we consider the first 3b19NB

7 c of the 9NB locations
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in L to obtain the embeddable code bits.

(ii) Locally Bursty Erasures (LBE): We assume that out of η consecutive code bits, locations {1, 2, . . . , 9}

are used for embedding and {10, . . . , η} are erasure locations.

(iii) Globally Random Erasures (GRE): Out of ηNB locations, 3bN
7 c locations are pseudo-randomly

selected as the embedding locations. For LRE and GRE, the pseudo-random locations are decided based

on a shared key, so that the decoder knows the additional erasure locations.

(iv) Globally Bursty Erasures (GBE): We assume that out of ηNB locations, locations {1, 2, . . . , 3bN
7 c}

are used for embedding while the remaining are erased.

• The LLR values for the locations where code bits are actually embedded (locations specified by L)

are computed using M1, M2 or M3. The LLR values at the additional erasure locations are set to zero.

Understanding how “ME-RA-puncture” works: When can increasing the codeword length, while

“actually embedding” the same number of bits, increase the effective hiding rate? Suppose that the size

of the RA codeword for two different choices of “number of additional erasures” be η1NB and η2NB

(we assume that both η1, η2 ≥ 9 and η2 > η1). Let the value of qopt for the two cases be qopt,1 and

qopt,2, respectively. The number of data bits embedded is bη1NB/qopt,1c and bη2NB/qopt,2c, respectively.

As η2 > η1, the number of erasures introduced in the second case is higher (the channel becomes more

noisy) and hence, the minimum redundancy needed qopt,2 may be equal to or higher than qopt,1. Thus,

to have a higher data rate, the rate of increase in the redundancy factor qopt should be less than the

fractional increase in the code length, i.e. (qopt,2/qopt,1) < (η2/η1).
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Fig. 4. The mapping between the binary RA code bits to the ternary sequence obtained from the continuous valued LLRs at

decoder output is shown here for the ME framework - “channel” refers to the JPEG compression channel that introduces errors

and erasures in the mapping from z to ĉ. The additional erasure locations for the ME-RA-puncture scheme are selected in the

final RA encoded sequence (c) and not in the intermediate sequences (r or x). For RA decoding, continuous valued LLRs

are used - the ternary sequence (ĉ) is used only to represent the channel as a 2×3 transition probability matrix.
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To understand how the redundancy varies after inserting additional erasures, we study the effective

data hiding channel (the channel shown in Fig. 4 applies to both ME-RA and ME-RA-puncture), observe

how the channel transition probability matrix changes with η and how it affects qopt. For the QIM-RA

scheme, the LLR values at the decoder side equal α,−α, and 0 for an input symbol of 0,1 and e,

respectively. For the ME-RA scheme, the LLR values are continuous valued and we empirically obtain a

suitable threshold (δ) to map the LLR values to ternary symbols. The continuous LLR values belonging

to [−∞,−δ), [−δ, δ] and (δ,∞] are mapped to the 3 discrete values −α, 0 and α, respectively. The

2×3 mapping from the binary RA code bits c to the ternary symbols z and then the 3×3 mapping

between the ternary symbols (z and ĉ) owing to the JPEG-based compression channel are shown in

Fig. 4. The effective 2×3 mapping from c to ĉ is used to compute the effective channel capacity C,

which is obtained by maximizing the mutual information I(c, ĉ) between the sequences c and ĉ (18) -

a discrete memoryless channel is assumed here.

C = max
p(c)

I(c, ĉ) = max
p(c)

∑
c∈{0,1}

∑
ĉ∈{0,1,e}

p(c, ĉ) log
(

p(c|ĉ)
p(c)

)
(18)

The inverse of the capacity (d 1
C e) provides the minimum redundancy factor needed for proper decoding

for an ideal channel code - the RA code is expected to be close to the ideal channel code for channels

with high erasure rates [9], [27]. The minimum q needed for RA decoding should be equal to or slightly

higher than this redundancy factor. We empirically observe that using δ=0.30 provides a 2×3 transition

probability matrix between c and ĉ that results in qopt values close to d 1
C e.

Say, the overall transition probability matrix between c and ĉ, for η = 9, is expressed as P = ρ0,0 ρ0,1 ρ0,e

ρ1,0 ρ1,1 ρ1,e

. For η = η′, where η′ > 9, out of every η′ bit locations, 9 bits obey the mapping

specified by P , while the remaining (η′−9) bits always get erased. The modified transition probability

matrix P ′ (for η=η′) is related with P as follows:

P ′ =

 ρ′0,0 ρ′0,1 ρ′0,e

ρ′1,0 ρ′1,1 ρ′1,e

 =
(

9
η′

)
P+

(
η′ − 9

η′

)  0 0 1

0 0 1

 =

 9
η′ ρ0,0

9
η′ ρ0,1

9
η′ ρ0,e + (η′−9

η′ )
9
η′ ρ1,0

9
η′ ρ1,1

9
η′ ρ1,e + (η′−9

η′ )


Let the channel capacity based on P and P ′ be denoted by C and C′, respectively; we empirically observe

that in general, C
C′ ≈ η′

9 . Let C(η′) denote the channel capacity using η=η′. The average values of C(9)
C(12) ,

C(9)
C(15) , C(9)

C(17) , C(9)
C(19) , C(9)

C(21) and C(9)
C(23) are 1.33, 1.66, 1.87, 2.11, 2.31 and 2.55 for QFh =60; for comparison,

η′

η equals 1.33, 1.67, 1.89, 2.11, 2.33 and 2.56 for η′ of 12, 15, 17, 19, 21 and 23, respectively, where

η =9. For the RA code framework, the redundancy q is constrained to be an integer. Hence, it is seen

for certain cases (numerical examples from Table VI) that even on inserting extra erasures, the RA code

redundancy remains the same or increases at a rate lower than η′

9 leading to increased bpnc.
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Numerical examples: For 4 sample images, η is varied from 9-23 and we observe how bpnc, C and

qopt vary, for QFh of 60, as shown in Table VI. The LRE method is used to determine the embeddable

bit locations. We set B=9 and use M3 for individual LLR computation.

TABLE VI

FOR EACH IMAGE, THE BPNC IS COMPUTED USING ME-RA-PUNCTURE, USING QFh=60 AND B=9. THE BPNC INCREASES

FOR A SUITABLE RANGE OF η (RATE OF ADDITIONAL ERASURES). HERE, LRE IS USED FOR ERASURE DISTRIBUTION.

Image 1 η = 9 η = 12 η = 15 η = 17 η = 19 η = 21 η = 23 Image 2 η = 9 η = 12 η = 15 η = 17 η = 19 η = 21 η = 23

C 0.0976 0.0746 0.0572 0.0510 0.0450 0.0407 0.0386 C 0.2610 0.1933 0.1589 0.1421 0.1266 0.1162 0.1029

d 1
C e 11 14 18 20 23 25 26 d 1

C e 4 6 7 8 8 9 10

qopt 17 18 21 22 25 29 31 qopt 6 7 8 9 10 12 14

bpnc 0.0588 0.0740 0.0793 0.0858 0.0844 0.0804 0.0824 bpnc 0.0801 0.0915 0.1001 0.1008 0.1014 0.0934 0.0877

Image 3 η = 9 η = 12 η = 15 η = 17 η = 19 η = 21 η = 23 Image 4 η = 9 η = 12 η = 15 η = 17 η = 19 η = 21 η = 23

C 0.1128 0.0850 0.0694 0.0592 0.0532 0.0499 0.0448 C 0.1301 0.0965 0.0774 0.0717 0.0630 0.0558 0.0501

d 1
C e 9 12 15 17 19 21 23 d 1

C e 8 11 13 14 16 18 20

qopt 11 15 17 19 20 24 27 qopt 10 14 16 18 20 21 23

bpnc 0.0816 0.0798 0.0880 0.0892 0.0948 0.0873 0.0850 bpnc 0.0736 0.0701 0.0767 0.0772 0.0777 0.0818 0.0818

Comparing Erasure Distribution Methods: In general, bursty erasures result in a lower bpnc as

compared to when erasures are pseudo-randomly distributed (Table VII). For less noisy channels (QFh =

50, 60), LRE and GRE perform much better than LBE and GBE. For more noisy channels (QFh =70),

erasures located in globally consecutive positions (GBE) perform similar to/better than LRE and GRE

schemes. We set B=9, QFa =75 and use M3 for individual LLR computation.

TABLE VII

THE BPNC VALUES ARE COMPUTED USING ME-RA-PUNCTURE FOR DIFFERENT ERASURE DISTRIBUTION METHODS, FOR

VARYING QFh AND η, AND B=9. THE CHANNEL EFFECTS ARE CONSIDERED FOR LLR COMPUTATION FOR MORE NOISY

CHANNELS (QFh OF 60 AND 70) USING (15), WHILE AN IDEAL CHANNEL IS ASSUMED FOR QFh OF 50.

Method QFh = 50 QFh = 60 QFh = 70

used η=12 η=15 η=19 η=12 η=15 η=19 η=12 η=15 η=19

LRE 0.0864 0.0935 0.0960 0.0801 0.0867 0.0872 0.0519 0.0529 0.0488

LBE 0.0830 0.0836 0.0794 0.0758 0.0738 0.0698 0.0475 0.0440 0.0413

GRE 0.0876 0.0930 0.0975 0.0811 0.0874 0.0916 0.0527 0.0536 0.0485

GBE 0.0739 0.0731 0.0727 0.0728 0.0723 0.0716 0.0518 0.0520 0.0537

Experimental Results: Our experiments, performed on 250 images, show that as η is increased from

9, the bpnc increases significantly initially while it flattens out for η in the range 17-19, for “ME-RA-

puncture” (Table VIII). We use (15) for LLR computation for QFh of 60 and 70 and use an erasure-only
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model for QFh of 30, 40 and 50 (the same setup is again used in Table IX and also in Sec. VII-B). We

use LRE for choosing the embeddable code bits. We use M3 to compute the individual LLR values.

TABLE VIII

THE BPNC VALUES ARE COMPUTED USING ME-RA-PUNCTURE FOR DIFFERENT η AND QFh AND LRE FOR ERASURE

DISTRIBUTION; WE SET B = 9 AND USE M3 FOR INDIVIDUAL LLR COMPUTATION.

QFh η = 9 η = 12 η = 15 η = 17 η = 19 η = 21 η = 25

30 0.0594 0.0666 0.0756 0.0777 0.0776 0.0755 0.0750

40 0.0708 0.0785 0.0886 0.0930 0.0929 0.0895 0.0883

50 0.0766 0.0864 0.0935 0.0954 0.0960 0.0944 0.0923

60 0.0746 0.0801 0.0867 0.0870 0.0872 0.0863 0.0854

70 0.0499 0.0519 0.0529 0.0516 0.0488 0.0479 0.0456

Utility of ME-RA-puncture scheme: The same number of RA-encoded bits gets embedded for the

ME-RA and ME-RA-puncture schemes; hence, the effective embedding distortion and the detectability

against steganalysis are identical for these methods. Thus, for a proper choice of η, we obtain a higher

data rate for ME-RA-puncture as compared to ME-RA even though both have the same detectability.

VI. COMPARISON OF LLR COMPUTATION METHODS AND EFFECTS OF AVOIDING SHRINKAGE

In Sec. IV, we introduced 3 methods for LLR computation (M1, M2 and M3). Here, we compare the

hiding rate (in terms of bpnc) obtained using these methods in Table IX. M2 and M3 are more complicated

than M1 in the way the different erasure scenarios are analyzed. Performance-wise, in general, M1 <

M2 < M3 (in terms of bpnc achieved using these methods). It is also seen that the performance

benefits of ME-RA-puncture over ME-RA (in terms of increased bpnc) are higher for lower QFh values,

where the effect of erasures is more dominant. In Sec. VII-B, while reporting the steganalysis results

using ME-RA-puncture, we also report its bpnc - for that, we use those parameters (erasure distribution

method and η) which maximize the bpnc. We use GRE for erasure distribution for QFh of 50 and 60

and GBE for QFh of 70, and use η=19 (based on Tables VII and VIII).

Avoiding Shrinkage: The MMx algorithm [17] avoids shrinkage as follows - when the value of yi is

such that it lies in a non-erasure zone ([0.5,1] or [-1,-0.5]) but gets converted to zero after embedding, yi

is converted to 2 (or -2) depending on whether it is ≥ 0 (or < 0). Thus, shrinkage is avoided as a zero-

valued coefficient can arise only due to erasure and not due to embedding; however, embedding distortion

is also higher for the non-shrinkage case which leads to higher detectability. For LLR computation, we

now use wEB =1 for M3 (10) as there is no ambiguity between an erasure and an embedding.
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TABLE IX

TABLE COMPARING THE HIDING RATE (BPNC) OBTAINED AFTER USING M1, M2 AND M3, FOR LLR COMPUTATION, USING

B = 9 AND QF a =75. FOR M1 AND M2, THE OPTIMUM α (THAT RESULTS IN HIGHEST BPNC FOR A SET OF HIDING

PARAMETERS) VALUE FOR LLR SCALING IS EMPIRICALLY DETERMINED AND THE REPORTED BPNC CORRESPONDS

TO THE OPTIMUM α. FOR ME-RA AND ME-RA-NON-SHRINKAGE, WE USE λ=19, WHILE FOR ME-RA-PUNCTURE, WE

USE η=19. THE EFFECTIVE BPNC OBTAINED USING M3 IS HIGHER, IN GENERAL, THAN THAT USING M1 AND M2.

Hiding Method Decoding Method QFh=30 QFh=40 QFh=50 QFh=60 QFh=70

ME-RA M1 0.0566 0.0652 0.0695 0.0690 0.0463

M2 0.0578 0.0672 0.0728 0.0715 0.0490

M3 0.0592 0.0706 0.0766 0.0745 0.0498

ME-RA-puncture M1 0.0744 0.0875 0.0917 0.0841 0.0492

(using LRE for QFh of 30-60 M2 0.0760 0.0889 0.0948 0.0847 0.0519

and GBE for QFh of 70) M3 0.0776 0.0929 0.0960 0.0872 0.0537

ME-RA-non-shrinkage M3 0.0662 0.0760 0.0789 0.0755 0.0433

While comparing the performance of non-shrinkage ME-RA with ME-RA, we observe that the non-

shrinkage version results in a higher bpnc only when the shrinkage problem is dominant, which happens

when the erasure rate is high enough, i.e. at lower QFh (of 30-60 in Table IX). The gain in bpnc (for ME-

RA-non-shrinkage as compared to ME-RA) decreases as QFh increases (erasure rate decreases) from

30-60. The embedding distortion of the non-shrinkage version is always higher than ME-RA, which

in turn has the same embedding distortion as ME-RA-puncture. Hence, the non-shrinkage scheme is

expected to be more detectable than ME-RA-puncture for the same steganalysis features. In Table IX, it

is seen that the bpnc for ME-RA-puncture is higher than the non-shrinkage version across different QFh.

VII. EXPERIMENTS AND RESULTS

We first compare the detectability of both the QIM-RA and the ME-RA-puncture schemes against

steganalysis, at similar hiding rates (shown later in Tables X and XI). The hiding rates are adjusted by

varying B and the number of coefficients used for hiding (λ). We also investigate the level of noise

attacks upto which ME performs better than QIM, as shown later in Table XII. We also present the

steganalysis results using some recently proposed features, most of which were designed specifically to

detect YASS (Table XIII).

A. Setup for Steganalysis Experiments

The experiments are done on a set of 1630 high-quality JPEG images taken with a Canon S2-IS

Powershot camera; the images were originally at a QF of 95 and they were JPEG compressed at a QF
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of 75 for the experiments.1 The advertised QF (QFa) is therefore kept at 75, so that both the cover and

stego images, considered for steganalysis, are at the same JPEG QF.

Steganalysis Performance Measures: The steganalysis results are expressed in terms of the detection

probability Pdetect (19) while the embedding rates are expressed in terms of the bpnc. We train a support

vector machine (SVM) on a set of known stego and cover images. The SVM classifier has to distinguish

between cover (class ‘0’) and stego (class ‘1’) image classes. Let X0 and X1 denote the events that the

image being observed belongs to classes ‘0’ and ‘1’, respectively. On the detection side, let Y0 and Y1

denote the events that the observed image is classified as belonging to classes ‘0’ and ‘1’, respectively.

The probability of detection, Pdetect, is defined as follows:

Perror = P (X0)P (Y1|X0) + P (X1)P (Y0|X1) =
1
2
PFA +

1
2
Pmiss, for P (X0) = P (X1) =

1
2

Pdetect = 1− Perror (19)

where PFA = P (Y1|X0) and Pmiss = P (Y0|X1) denote the probability of false alarm and missed

detection, respectively. Note that the above equation assumes an equal number of cover and stego images

in the dataset (P (X0) = P (X1) = 1
2 ). An uninformed detector can classify all the test images as stego

(or cover) and get an accuracy of 0.5. Thus, Pdetect being close to 0.5 implies nearly undetectable hiding,

and as the detectability improves, Pdetect should increase towards 1. For the steganalysis results, we

report Pdetect as a percentage, at a precision of 2 significant digits after the decimal point.

Features Used for Steganalysis: The following features are used for steganalysis as these have

generally been reported as having the best detection performance among modern JPEG steganalyzers.

1) PF-219/324/274: Pevný and Fridrich’s 274-dim feature vector (PF-274) is based on the self-

calibration method [23] and it merges Markov and DCT features. The extended DCT feature set

and Markov features are 193-dim (PF-193) and 81-dim, respectively. The logic behind the fusion is

that while Markov features capture the intra-block dependency among DCT coefficients of similar

spatial frequencies, the DCT features capture the inter-block dependencies. For the extended DCT

features [18], [23], the authors have a 219-dim implementation (PF-219).2 The Markov features

1We have experimentally observed that the detectability is higher using high quality JPEG images than images taken with the

same camera, but at poorer quality, i.e. JPEG compressed with lower QF. Hence, we use high-quality images for our experimental

setup to show that ME-based YASS is more undetectable as compared to QIM-based YASS.
2PF-219 differs from PF-193 in the following ways: (i) in PF-219, there are 25 co-occurrence features for both the horizontal

and vertical directions - these are averaged to give 25 features in PF-193. (ii) Instead of 1 variation feature in PF-193, there

are 2 variation features (for horizontal and vertical directions, separately) in PF-219.
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(PF-324) are obtained based on the 324-dim intra-block correlation based feature set (Shi-324)

proposed by Shi et al [26] - the only difference being that the features are “calibrated” in [23].

2) Chen-486: Another steganalysis scheme that accounts for both intra and inter-block correlation

among JPEG DCT coefficients is the 486-dim feature vector, proposed by Chen et al [6]. It improves

upon the 324-dim intra-block correlation based feature [26].

B. Discussion of Experimental Results

Comparison after Varying Big-block Size B: The detection performance, in terms of Pdetect (19),

and the embedding rate, in terms of bpnc, are compared for QIM-RA and “ME-RA-puncture”, using B

= 9 and 10 (Table X), and 25 and 49 (Table XI). The ME based method has been experimented with for

both the (7,3) and (3,2) encoding schemes. The “QIM-RA: n terms” scheme has been defined in Table I.

From these tables, it is seen that Pdetect is comparable for “QIM-RA: 2 terms” and “ME-RA-puncture

(7,3)” while the latter has a higher embedding rate. The bpnc for “ME-RA-puncture (7,3)” (or ME-

RA-puncture (3,2)) is higher than that of “QIM-RA: 4 terms” (or QIM-RA: 6 terms) while the latter is

more detectable, for the self-calibration based features. It is seen that YASS is more detectable using the

self-calibration based features, than using Chen-486. Hence, the performance improvement of ME over

QIM (lower Pdetect at similar bpnc values) is more significant for PF-219/324/274 features.

Depending on the bpnc requirements for a certain stego scheme, one can decide whether to use (3,2)

or (7,3) matrix embedding - the former allows for higher bpnc while the latter is more undetectable.

Using (15,4) code for ME results in very low hiding rates and hence has not been considered.

TABLE X

COMPARING DETECTION PERFORMANCE (Pdetect) AND EMBEDDING RATE (BPNC) USING QIM-RA AND

“ME-RA-PUNCTURE” SCHEMES - FOR B=9 AND 10, QF h=50, QF a=75. THE BPNC FOR “ME-RA-PUNCTURE (7,3)”

(OR ME-RA-PUNCTURE (3,2)) IS HIGHER THAN THAT OF “QIM-RA: 4 TERMS” (OR QIM-RA: 6 TERMS) WHILE THE

LATTER IS MORE DETECTABLE, FOR THE SELF-CALIBRATION BASED FEATURES.

Hiding big-block size B=9 big-block size B=10

Scheme PF-219 PF-324 PF-274 Chen-486 bpnc PF-219 PF-324 PF-274 Chen-486 bpnc

QIM-RA: 2 terms 69.45 65.52 67.73 52.39 0.0493 68.83 65.28 67.85 52.52 0.0382

QIM-RA: 4 terms 80.00 77.18 79.39 56.20 0.0864 78.53 74.97 77.91 55.09 0.0700

QIM-RA: 6 terms 81.84 77.67 84.05 57.55 0.1138 78.90 79.26 79.39 55.95 0.0923

ME-RA-puncture (7,3) 64.79 65.40 69.45 55.95 0.0975 63.31 68.83 67.61 54.36 0.0805

ME-RA-puncture (3,2) 74.97 72.27 78.65 61.60 0.1200 73.87 78.77 78.77 59.02 0.0998

Robustness Comparison for Various Noise Attacks: We now study how the bpnc is affected by

additional noise attacks for these schemes. The YASS framework can be made robust against various
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TABLE XI

COMPARING Pdetect AND BPNC FOR QIM-RA AND “ME-RA-puncture” - FOR B=25 AND 49, QF h=50, QF a=75

Hiding big-block size B = 25 big-block size B = 49

Scheme PF-219 PF-324 PF-274 Chen-486 bpnc PF-219 PF-324 PF-274 Chen-486 bpnc

QIM-RA: 2 terms 71.53 66.38 71.17 53.74 0.0588 71.17 68.96 71.78 54.23 0.0606

QIM-RA: 4 terms 82.70 79.26 82.45 57.55 0.1018 82.33 80.00 83.56 59.14 0.1048

QIM-RA: 6 terms 84.29 80.61 86.26 59.51 0.1336 87.98 84.54 88.34 61.47 0.1379

ME-RA-puncture (7,3) 72.15 73.99 75.95 59.14 0.1106 69.08 67.61 71.04 56.69 0.1136

ME-RA-puncture (3,2) 77.30 82.82 81.35 62.54 0.1382 82.94 84.91 84.91 63.80 0.1421
TABLE XII

COMPARING BPNC UNDER VARIOUS ATTACKS - “QIM-n” REFERS TO THE “QIM-RA: n terms” METHOD, WHILE (p,q)

REFERS TO THE “ME-RA-puncture (p,q)” METHOD. FOR HIDING, WE USE QFh = 50, B = 9, AND AFTER THE ATTACK,

THE IMAGES ARE JPEG COMPRESSED USING QFa = 75. HERE, THE BPNC FOR “ME-RA-PUNCTURE(7,3)” AND

“ME-RA-PUNCTURE(3,2)” ARE COMPARED WITH THAT OF QIM-4 AND QIM-6, RESPECTIVELY.

Gamma correction: γ < 1 Gamma correction: γ > 1 AWGN attack: SNR (dB)

γ QIM-4 QIM-6 (7,3) (3,2) γ QIM-4 QIM-6 (7,3) (3,2) SNR QIM-4 QIM-6 (7,3) (3,2)

0.99 0.0851 0.1125 0.0953 0.1191 1.01 0.0854 0.1125 0.0959 0.1194 50 0.0860 0.1133 0.0952 0.1190

0.98 0.0839 0.1105 0.0929 0.1171 1.02 0.0843 0.1114 0.0935 0.1171 45 0.0859 0.1125 0.0940 0.1179

0.95 0.0783 0.1013 0.0849 0.1069 1.05 0.0799 0.1026 0.0863 0.1095 40 0.0840 0.1096 0.0885 0.1126

0.90 0.0608 0.0799 0.0655 0.0845 1.10 0.0631 0.0827 0.0685 0.0893 35 0.0728 0.0912 0.0659 0.0889

0.80 0.0307 0.0401 0.0200 0.0250 1.20 0.0366 0.0465 0.0260 0.0400 30 0.0393 0.0485 0.0200 0.0260

global (and not local) attacks by adjusting the RA-code redundancy factor. We consider a wider range

of attacks - gamma variation and additive white Gaussian noise (AWGN) attacks, which are followed

by JPEG compression at QFa=75. It is seen that for higher noise levels, (|γ − 1| > 0.10, for gamma

variation, or SNR ≤ 35 dB, for AWGN) the bpnc is significantly lower for the ME based method, as

compared to QIM-RA, for similar detection rates (Table XII).

Using Recent Steganalysis Features more tuned to detect YASS: We explain the following features

and then show their steganalysis performance in Table XIII:

(i) KF-548: To improve upon the PF-274 feature, Kodovský and Fridrich [19] proposed the use of a 548-

dimensional feature set which accounts for both calibrated and uncalibrated features. Here, the reference

feature is used as an additional feature instead of being subtracted from the original feature.

(ii) Li-14 and Li-2: In [20], Li et al propose the use of the frequency of re-quantized DCT coefficients

in the candidate embedding band which round off to zero. The (2i−1)th and (2i)th features correspond

to B of (8+i), for 1≤ i≤7. Thus, if we are sure that B = 9, we use the first two dimensions of Li-14,

i.e. Li-2; else when the exact value of B is not known, the 14-dim feature is used.



27

TABLE XIII

COMPARING Pdetect FOR A VARIETY OF RECENTLY PROPOSED FEATURES TO DETECT YASS, USING QFh = 50. WE USE

B=9 FOR THE QIM SCHEMES. THE ACRONYMS USED FOR THE VARIOUS METHODS ARE THE SAME AS USED IN TABLE XII.

Feature QIM-2 QIM-4 QIM-6 QIM-12 QIM-15 QIM-19 (7,3), B=9 (3,2), B=9 (3,2), B=10

KF-548 68.45 79.48 83.82 89.20 90.44 92.03 69.61 80.15 78.97

Li-14 54.01 55.27 56.75 53.74 58.70 67.65 52.88 59.93 55.76

Li-2 64.43 69.49 77.51 81.19 95.71 96.08 68.83 76.05 71.08

YB-243 54.64 55.70 56.75 58.12 64.01 69.89 54.23 59.68 56.12

TABLE XIV

THE BPNC VALUES ARE COMPARED FOR ME-RA AND QIM-RA METHODS, BEFORE AND AFTER PUNCTURING, AT QFh=50.

Hiding B = 9 B = 10 B = 25 B = 49

Scheme before after before after before after before after

QIM-RA: 2 terms 0.0493 0.0572 0.0382 0.0438 0.0588 0.0670 0.0606 0.0683

QIM-RA: 4 terms 0.0864 0.0965 0.0700 0.0784 0.1018 0.1110 0.1048 0.1134

QIM-RA: 6 terms 0.1138 0.1206 0.0923 0.0999 0.1336 0.1392 0.1379 0.1427

ME-RA (7,3) 0.0766 0.0975 0.0634 0.0805 0.1000 0.1106 0.1050 0.1136

ME-RA (3,2) 0.1100 0.1200 0.0900 0.0998 0.1300 0.1382 0.1350 0.1421

(iii) YB-243: In [30], Yu et al propose the use of a 243-dim feature based on transition probability

matrices computed using the difference matrix computed in the pixel and DCT domains.

It is seen that in the lower embedding rate regime which is discussed in this paper, these newer features

(KF-548 and Li-2) provide similar levels of detectability as that provided by features already discussed,

like PF-274. We have also experimented using a larger sized training set and Pdetect increases marginally

after increasing the size of the training set by a factor of more than 2 (for detailed results, see [1]).

Performance Comparison after Puncturing: We now use puncturing for QIM-RA and compare the

bpnc results for ME-RA and QIM-RA, both with and without puncturing, in Table XIV. From Table X and

XI, ME-RA-puncture is less detectable than QIM-RA and also has higher bpnc. After using puncturing, we

observe that the bpnc gain margin (of ME-RA-puncture over QIM-RA-puncture) decreases - however,

in general, ME-RA-puncture is still less detectable (puncturing does not affect the detectability) than

QIM-RA-puncture at similar bpnc values.

Fig. 5(a) illustrates how ME outperforms QIM in the “bpnc vs Pdetect” trade-off. Considering points

along the same vertical line (equal Pdetect), the ME-points have higher y-values than the QIM-points,

indicating higher bpnc. Fig. 5(b) corresponds to Table X - ME (7,3) (which actually corresponds to

ME-RA-puncture (7,3)) is shown to be less detectable than QIM-2 (QIM-RA: 2 terms) and QIM-4 from

ROC curves while Table X shows that ME (7,3) achieves higher bpnc than these QIM-based schemes.
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Fig. 5. PF-274 is used for steganalysis in these plots - (a) trade-off of hiding rate vs detection accuracy is shown considering

different parameter settings for ME and QIM based hiding, as used in Tables X-XI, (b-d) comparison of ROCs is done for

(b) ME vs QIM at comparable bpnc, (c) variants of ME, and (d) variants of QIM (varying λ). Here, B=9 unless otherwise

mentioned. The diagonal line corresponding to a fully random detector is kept as reference - the closer a ROC curve is to this

line, more secure is the hiding method.

The variation in detectability with the hiding parameters (B, λ, (7,3) ME or (3,2) ME) for ME and

QIM-based schemes is shown in Figs. 5(c) and 5(d), respectively.

To conclude, for hiding conditions where the embedding rate has to be low enough to ensure a certain

level of undetectability, ME with suitable puncturing generally results in higher bpnc than QIM, for

similar robustness against steganalysis. However, this holds true only when the channel noise is low

enough - for more severe noise, the LLR estimation for ME is erroneous enough to result in a lower

hiding rate than QIM.

VIII. CONCLUSIONS

Randomized block-based hiding as in YASS [28] provides a powerful framework for secure hiding,

especially against self-calibrating steganalysis. In this paper, we have shown that using ME instead of QIM

within the YASS framework provides improved steganalysis performance in certain regimes, specifically

when avoiding detection is a high priority (so that the hiding rate is small) and attacks are moderate.

Technically, the key to our approach is to combine ME-based data hiding, which has a high embedding

efficiency but is fragile against attacks, with a powerful channel code employing soft decisions. While we
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use RA codes as in our prior work, the LLR computation framework developed here, which depends only

on the ME embedding logic, is applicable to any channel code whose decoder employs soft decisions

(e.g. turbo codes or low density parity check codes). The performance is further improved by the use of

punctured RA codes. While such codes have been used previously for obtaining good high-rate codes

for classical communication channels [24], our results demonstrate their potential benefits for low-rate

data hiding channels. It would be interesting to examine their utility in other stego schemes.

One approach to gain further performance improvements is to address the shrinkage problem in YASS:

when given a zero coefficient, the decoder is confused as to whether the zero resulted from an embedding

or due to an erasure. Fridrich et al have used wet paper codes (WPC) [12], [13] to overcome this problem,

as in the “non-shrinkage F5” method [14]. Combining WPC with the ME-RA framework might lead to

further improvement in the embedding rate while maintaining the undetectability of the stego scheme.

Another approach is to use more sophisticated “inner codes”, possibly combining error correction with

hiding as in [31], with RA or other turbo-like codes used as outer codes. However, the combinatorial

complexity of computing soft decisions (at least in the direct fashion considered here) for such an inner

code would be excessive for larger blocklengths and a larger number of data bits. An interesting topic

for future research might be to explore techniques for overcoming this complexity bottleneck.
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