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Abstract

We present an efficient and accurate method for duplicate video detection in a large database using video

fingerprints. We have empirically chosen the Color Layout Descriptor, a compact and robust frame-based descriptor,

to create fingerprints which are further encoded by vector quantization. We propose a new non-metric distance

measure to find the similarity between the query and a database video fingerprint and experimentally show its superior

performance over other distance measures for accurate duplicate detection. Efficient search can not be performed

for high dimensional data using a non-metric distance measure with existing indexing techniques. Therefore, we

develop novel search algorithms based on pre-computed distances and new dataset pruning techniques yielding

practical retrieval times. We perform experiments with a database of 38000 videos, worth 1600 hours of content.

For individual queries with an average duration of 60 sec (about 50% of the average database video length), the

duplicate video is retrieved in 0.032 sec, on Intel Xeon with CPU 2.33GHz, with a very high accuracy of 97.5%.

Index Terms

Video fingerprinting, duplicate detection, color layout descriptor, non-metric distance, vector quantization.

I. INTRODUCTION

COPYRIGHT infringements and data piracy have recently become serious concerns for the ever growing

online video repositories. Videos on commercial sites e.g., www.youtube.com, www.metacafe.com, are mainly

textually tagged. These tags are of little help in monitoring the content and preventing copyright infringements.

Approaches based on content-based copy detection (CBCD) and watermarking have been used to detect such

infringements [20], [27]. The watermarking approach tests for the presence of a certain watermark in a video to

decide if it is copyrighted. The other approach (CBCD) finds the duplicate by comparing the fingerprint of the
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query video with the fingerprints of the copyrighted videos. A fingerprint is a compact signature of a video which

is robust to the modifications of the individual frames and discriminative enough to distinguish between videos.

The noise robustness of the watermarking schemes is not ensured in general [27], whereas the features used for

fingerprinting generally ensure that the best match in the signature space remains mostly unchanged even after

various noise attacks. Hence, the fingerprinting approach has been more successful.

We define a “duplicate” video as the one consisting entirely of a subset of the frames in the original video - the

individual frames may be further modified and their temporal order varied. The assumption that a duplicate video

contains frames only from a single video has been used in various copy detection works, e.g., [32], [39], [42]. In

[42], it is shown that for a set of 24 queries searched in YouTube, Google Video and Yahoo Video, 27% of the

returned relevant videos are duplicates. In [7], each web video in the database is reported to have an average of

five similar copies - the database consisted of 45000 clips worth 1800 hours of content. Also, for some popular

queries to the Yahoo video search engine, there were two or three duplicates among the top ten retrievals [32].

In Fig. 1, we present the block diagram of our duplicate video detection system. The relevant symbols are

explained in Table I. The database videos are referred to as “model” videos in the paper. Given a model video Vi,

the decoded frames are sub-sampled at a factor of 5 to obtain Ti frames and a p dimensional feature is extracted

per frame. Thus, a model video Vi is transformed into a Ti × p matrix Zi. We empirically observed in Sec. III

that the Color Layout Descriptor (CLD) [24] achieved higher detection accuracy than other candidate features. To

summarize Zi, we perform k-means based clustering and store the cluster centroids {Xi
j}

Fi

j=1
as its fingerprint. The

number of clusters Fi is fixed at a certain fraction of Ti, e.g., a fingerprint size of 5x means that Fi = (5/100)Ti.

Therefore, the fingerprint size varies with the video length. K-means based clustering generally produces compact

video signatures which are comparable to those generated by sophisticated summarization techniques as discussed in

[36]. In [2], we have compared different methods for keyframe selection for creating the compact video signatures.

The duplicate detection task is to retrieve the best matching model video fingerprint for a given query fingerprint.

The model-to-query distance is computed using a new non-metric distance measure between the fingerprints as

discussed in Sec. IV. We also empirically show that our distance measure results in significantly higher detection

accuracy than traditional distance measures (L1, partial Hausdorff distance [18], [19], Jaccard [9] and cosine

distances). We design access methods for fast and accurate retrieval of duplicate videos. The challenge in developing

such an access method is two-fold. Firstly, indexing using such distances has not been well-studied till date - the

recently proposed distance based hashing [3] performs dataset pruning for arbitrary distances. Secondly, video

fingerprints are generally of high dimension and varying length. Current indexing structures (M-tree [10], R-tree

[17], kd tree [4]) are not efficient for high-dimensional data.

To perform efficient search, we propose a two phase procedure. The first phase is a coarse search to return
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Fig. 1. Block diagram of the proposed duplicate detection framework - the symbols used are explained in Table I.

the top-K nearest neighbors (NN) which is the focus of the paper. We perform vector quantization (VQ) on the

individual vectors in the model (or query) fingerprint Xi (or Q) using a codebook of size U (= 8192) to generate a

sparse histogram-based signature −→xi (or −→q ). This is discussed in Sec. V-B. Coarse search is performed in the VQ-

based signature space. Various techniques proposed to improve the search are the use of pre-computed information

between VQ symbols, partial distance based pruning, and the dataset pruning as discussed in Sec. V. The second

phase uses the unquantized features (Xi) for the top-K NN videos to find the best matching video Vi∗ . The final

module (Sec. VII) decides whether the query is indeed a duplicate derived from Vi∗ .

The computational cost for the retrieval of the best matching model video has two parts (Fig. 1).

1) Offline cost (model related) - consists of the un-quantized model fingerprint generation, VQ design and encoding

of the model signatures, and computation and storing of appropriate distance matrices.

2) Online cost (query related) - the query video is decoded, sub-sampled, keyframes are identified, and features

are computed per keyframe - these constitute the query pre-processing cost. In this paper, we report the query

time - this comprises of the time needed to obtain k-means based compact signatures, perform VQ-based encoding

on the signatures to obtain sparse histogram-based representations, compute the relevant lookup tables, and then

perform two-stage search to return the best matched model video.

The paper is organized as follows. Sec. II contains some relevant previous work. Feature selection for fingerprint
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TABLE I
Glossary of Notations

Notation Definition
N number of database videos
Vi ith model video in the dataset
Vi∗ the best matched model video for a given query
p dimension of the feature vector computed per video frame
Zi ∈ RTi×p, Ti Zi is the feature vector matrix of Vi, where Vi has Ti frames after temporal sub-sampling
Xi ∈ RFi×p, Fi Xi is the k-means based signature of Vi, which has Fi keyframes
Xi

j jth vector of video fingerprint Xi

U size of the vector quantizer (VQ) codebook used to encode the model video and query
video signatures

Qorig ∈ RTQ×p query signature created after sub-sampling, where TQ refers to the number of sub-sampled
query frames

Q ∈ RM×p keyframe based query fingerprint, where M is the number of query keyframes
Ci the ith VQ codevector
−→xi ,

−→q −→xi is VQ based signature of Vi, while −→q is VQ based query signature
SXi

j
VQ symbol index to which Xi

j is mapped
A the set of N “model signature to query signature” distances
D ∈ RU×U Inter VQ-codevector distance matrix, for L1 distance between VQ codevectors
D∗ ∈ RN×U Lookup table of shortest distance values from each VQ-based model signature to each

VQ codevector
C(i) the cluster containing the video indices whose VQ-based signatures have the ith

dimension as non-zero
||−→x1 −−→x2||p the Lp norm of the vector (−→x1 −−→x2).
|E| the cardinality of the set E

` fractional query length = (number of query frames/number of frames in the original
model video)

creation is discussed in Sec. III. Sec. IV introduces our proposed distance measure. The various search algorithms,

along with the different pruning methods, are presented in Sec. V. The dataset creation for this task is explained in

Sec. VI-A. Sec. VI-B contains the experimental results while Sec. VII describes the final decision module which

makes the “duplicate/non-duplicate decision”.

Main Contributions of the Paper

• We propose a new non-metric distance function for duplicate video detection when the query is a noisy subset

of a single model video. It performs better than other conventional distance measures.

• For the VQ-based model signatures retained after dataset pruning, we reduce the search time for the top-K

candidates by using suitable pre-computed distance tables and by discarding many non-candidates using just the

partially computed distance from these model video signatures to the query.

• We present a dataset pruning approach, based on our distance measure in the space of VQ-encoded signatures,

which returns the top-K nearest neighbors (NN) even after pruning. We obtain significantly higher pruning than

that provided by distance based hashing [3] methods, trained on our distance function.
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In this paper, the terms “signature” and “fingerprint” have been used interchangeably. “Fractional query length”

(` in Table I) refers to the fraction of the model video frames that constitute the query. Also, for a VQ of codebook

size U , the 1-NN of a certain codevector is the codevector itself.

II. LITERATURE SURVEY

A good survey for video copy detection methods can be found in [27]. Many schemes use global features (e.g.,

color histogram computed over the entire video) for a fast initial search for prospective duplicates [42]. Then,

keyframe-based features are employed for a more refined search.

Keypoint based features: In an early duplicate detection work by Joly et al. [22], the keyframes correspond to

extrema in the global intensity of motion. Local interest points are identified per keyframe using the Harris corner

detector and local differential descriptors are then computed around each interest point. These descriptors have

been subsequently used in other duplicate detection works [20], [21], [26], [27]. In [42], PCA-SIFT features [25]

are computed per keyframe on a host of local keypoints obtained using the Hessian-Affine detector [34]. Similar

local descriptors are also used in [45], where near-duplicate keyframe (NDK) identification is performed based on

matching, filtering and learning of local interest points. A recent system for fast and accurate large-scale video

copy detection, the Eff2 Videntifier [11], uses Eff2 descriptors [29] from the SIFT family [33]. In [44], a novel

measure called Scale-Rotation Invariant Pattern Entropy (SR-PE) is used to identify similar patterns formed by

keypoint matching of near-duplicate image pairs. A combination of visual similarity (using global histogram for

coarser search and local point based matching for finer search) and temporal alignment is used to evaluate video

matching for duplicate detection in [40]. VQ based techniques are used in [8] to build a SIFT-histogram based

signature for duplicate detection.

Global Image Features: In some approaches, the duplicate detection problem involves finding the similarity

between sets of time-sequential video keyframes. A combination of MPEG-7 features such as the Scalable Color

Descriptor, Color Layout Descriptor (CLD) [24] and the Edge Histogram Descriptor (EHD) has been used for

video-clip matching [5], using a string-edit distance measure. For image duplicate detection, the Compact Fourier

Mellin transform (CFMT) [13] has also been shown to be very effective in [15] and the compactness of the signature

makes it suitable for fingerprinting.

Entire Video based Features: The development of “ordinal” features [6] gave rise to very compact signatures

which have been used for video sequence matching [35]. Li et al. [30] used a binary signature to represent each

video, by merging color histogram with ordinal signatures, for video clip matching. Yuan et al. [43] also used

a similar combination of features for robust similarity search and copy detection. UQLIPS, a recently proposed

real-time video clip detection system [39], uses RGB and HSV color histograms as the video features. A localized

color histogram based global signature is proposed in [32].
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Indexing Methods: Each keyframe is represented by a host of feature points, each having a descriptor. The

matching process involves comparison of a large number of interest point pairs which is computationally intensive.

Several indexing techniques have been proposed for efficient and faster search. Joly et al. [22] use an indexing

method based on the Hilbert’s space filling curve principle. In [20], the authors propose an improved index structure

for video fingerprints, based on Statistical Similarity Search (S3) where the “statistical query” concept was based

on the distribution of the relevant similar fingerprints. A new approximate similarity search technique was proposed

in [23] and later used in [21], [26] where the probabilistic selection of regions in the feature space is based on the

distribution of the feature distortion. In [45], an index structure LIP-IS is proposed for fast filtering of keypoints

under one-to-one symmetric matching. For the Videntifier [11] system, the approximate NN search in the high-

dimensional database (of Eff2 descriptors) is done using the NV-tree [28], an efficient disk-based data structure.

Hash-based Index: The above mentioned indexing methods are generally compared with locality sensitive

hashing (LSH) [12], [16], a popular approximate search method for L2 distances. Since our proposed distance

function is non-metric, LSH cannot be used in our setup as the locality sensitive property holds only for metric

distances. Instead, we have experimented with the recently proposed distance based hashing (DBH) [3] scheme,

which can be used for arbitrary distance measures.

Final Duplicate Confirmation: From the top retrieved candidate, the duplicate detection system has to validate

whether the query has indeed been derived from it. The keyframes for a duplicate video can generally be matched

with the corresponding frames in the original video using suitable spatio-temporal registration methods. In [21],

[27], the approximate NN results are post-processed to compute the most globally similar candidate based on a

registration and vote strategy. In [26], Law-To et al. use the interest points proposed in [22] for trajectory building

along the video sequence. A robust voting algorithm utilizes the trajectory information, spatio-temporal registration,

as well as the labels computed during the off-line indexing to make the final retrieval decision. In our duplicate

detection system, we have a “distance threshold based” (Sec. VII-A) and a registration-based framework (Sec. VII-B)

to determine if the query is actually a duplicate derived from the best-matched model video.

The advantages of our method over other state-of-the-art methods are summarized below.

• In current duplicate detection methods, the query is assumed to contain a large fraction of the original model

video frames. Hence, the query signature, computed over the entire video, is assumed to be similar to the model

video signature. This assumption, often used as an initial search strategy to discard outliers, does not hold true

when the query is only a small fraction (e.g., 5%) of the original video. For such cases, the query frames have

to be individually compared with the best matching model frames, as is done by our distance measure. As shown

later in Figs. 3 and 7, we observe that our proposed distance measure performs much better than other distances

for duplicate detection for shorter queries.
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• We develop a set of efficient querying techniques with the proposed distance measure which achieves much

better dataset pruning than distance based hash (DBH) - DBH is the state-of-the-art method for querying in non-

metric space.

• In [21], [27], the registration step is performed between query frames and other model frames to confirm whether

the query is a duplicate derived from the model video. In our distance computation procedure, we also end up

computing which model vector serves as the best match for a query vector - this inter-vector correspondence helps

in faster identification of the best matching model keyframe for a given query keyframe (discussed in Sec. VII-B).

This frame-to-frame correspondence is needed for effective registration.

III. FEATURE EXTRACTION

Candidate Features

We performed duplicate video detection with various frame based features - CLD, CFMT [13], Localized Color

Histogram (LCH) [32] and EHD [41]. The LCH feature divides the image into a certain number of blocks and the

3D color histogram is computed per block. E.g., if each color channel is quantized into 4 levels, the 3D histogram

per image block has 43 = 64 levels. If the image is divided into two partitions along each direction, the total

LCH feature dimension is 43×22 =256. To study the variation of detection accuracy with signature size, we have

considered the LCH feature for dimensions 256 and 32 (22×23 = 32). For the frame-based features, we use our

proposed distance measure, which is explained in Sec. IV.

We also considered video features (computed globally, i.e. over the entire video and not per key-frame). One such

global feature used is the m-dimensional histogram obtained by mapping each of the 256-dimensional LCH vectors

to one of m codebook vectors (this signature creation is proposed in [32]), obtained after k-means clustering of

the LCH vectors. We have experimented with m=20, 60, 256 and 8192, and L2 distance is used. The other global

feature is based on a combination of the ordinal and color histograms [43]. Both the ordinal and color histograms

are 72-dimensional (24 dimensions along each of the Y, Cb and Cr channels) and the distance measure used is a

linear combination of the average of the distance between the ordinal histograms and the minimum of the distance

between the color histograms, among all the 3 channels.

Experimental Setup and Performance Comparison

We describe the duplicate detection experiments for feature comparison. We use a database of 1200 video

fingerprints and a detection error occurs when the best matched video is not the actual model from which the query

was derived. The query is produced using one of various image processing/noise addition methods, discussed in

Sec. VI-A. The query length is gradually reduced from 50% to 2.5% of the model video length and the detection

error (averaged over all noisy queries) is plotted against the fractional query length (Fig. 2). For our dataset, a

fractional query length of 0.05 corresponds, on an average, to 6 sec of video ≈ 30 frames, assuming 25 frames/sec
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Fig. 2. Comparison of the duplicate video detection error for (a) keyframe based features and (b) entire video based features: the query
length is varied from 2.5% to 50% of the actual model video length. The error is averaged over all the query videos generated using noise
addition operations, as discussed later in Sec. VI-A. The model fingerprint size used in (a) is 5x.

and a sub-sampling factor of 5. Fig. 2(a) compares frame based features while Fig. 2(b) compares video based

features.

In our past work [38], we have shown that the CFMT features perform better as video fingerprints than SIFT

features for duplicate detection. Here, it is seen that for duplicate detection, 18-dim CLD performs slightly better

than 80-dim EHD, which does better than 36-dim CFMT and 256-dim LCH (Fig. 2(a)). Due to the lower signature

dimension and superior detection performance, we choose 18-dim CLD feature per keyframe for fingerprint creation.

It is seen that for a short query clip, the original video histogram is often not representative enough for that clip

leading to higher detection error, as in Fig. 2(b). Hence, using a global signature with L2 distance works well only

for longer queries.

We briefly describe the CLD feature vector and also provide some intuition as to why it is highly suited for

the duplicate detection problem. The CLD signature [24] is obtained by converting the image to a 8× 8 image,

on averaging, along each (Y/Cb/Cr) channel. The Discrete Cosine Transform (DCT) is computed for each image.

The DC and first 5 (in zigzag scan order) AC DCT coefficients for each channel constitute the 18-dimensional

CLD feature. The CLD feature is compact and captures the frequency content in a highly coarse representation

of the image. As our experimental results suggest, different videos can be distinguished even at this coarse level

of representation for the individual frames. Also, due to this coarse representation, image processing and noise

operations, which are global in nature, do not alter the CLD significantly so as to cause detection errors; thus, the

feature is robust enough. Significant cropping or gamma variation can distort the CLD sufficiently to cause errors -

a detailed comparison of its robustness to various attacks is presented later in Table VII. Depending on the amount

of cropping, the 8× 8 image considered for CLD computation can change significantly, thus severely perturbing

the CLD feature. Also, significant variations in the image intensity through severe gamma variation can change the

frequency content, even for an 8× 8 image representation, so as to cause detection errors.
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Storage-wise, our system consumes much less memory compared to methods which store key-point based

descriptors [11], [21]. The most compact key-point based descriptor is the 20-dim vector proposed in [21] where

each dimension is represented by 8 bits and 17 feature vectors are computed per second. The corresponding storage

is 10 times that of our system (assuming 18-dimensional CLD features per frame where each dimension is stored

as a double, 25 frames/sec, temporal sub-sampling by 5, 5% of the sub-sampled frames being used to create the

model signature).

IV. PROPOSED DISTANCE MEASURE

Our proposed distance measure to compare a model fingerprint Xi with the query signature Q is denoted by

d(Xi, Q) 1 (1). This distance is the sum of the best-matching distance of each vector in Q with all the vectors in

Xi. In (1), ‖Xi
j −Qk‖1

refers to the L1 distance between Xi
j , the jth feature vector of Xi and Qk, the kth feature

vector of Q. Note that d(·, ·) is a quasi-distance.

d(Xi, Q) =
M∑

k=1

{
min

1≤j≤Fi

‖Xi
j −Qk‖1

}
(1)

What is the motivation behind this distance function? We assume that each query frame in a duplicate video is a

tampered/processed version of a frame in the original model video. Therefore, the summation of the best-matching

distance of each vector in Q with all the vectors in the signature for the original video (Xi) will yield a small

distance. Hence, the model-to-query distance is small when the query is a (noisy) subset of the original model

video. Also, this definition accounts for those cases where the duplicate consists of a reordering of scenes from the

original video.

A comparison of distance measures for video copy detection is presented in [18]. Our distance measure is similar

to the Hausdorff distance [18], [19]. For our problem, the Hausdorff distance h(Xi, Q) and the partial Hausdorff

distance hP (Xi, Q) are interpreted as:

h(Xi, Q) = max
1≤k≤M

{
min

1≤j≤Fi

‖Xi
j −Qk‖1

}
(2)

hP (Xi, Q) = P thlargest︸ ︷︷ ︸
1≤k≤M

{
min

1≤j≤Fi

‖Xi
j −Qk‖1

}
(3)

For image copy detection, the partial Hausdorff distance (3) has been shown to be more robust than the Hausdorff

distance (2) in [18]. We compare the performance of hP (Xi, Q) (3) for varying P , with d(Xi, Q), as shown in

Fig. 3, using the same experimental setup as in Sec. III. It is seen that the results using d(Xi, Q) are better - the

improved performance is more evident for shorter queries.

1For ease of understanding, the quasi-distance measure d(·, ·) is referred to as a distance function in subsequent discussions.
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Fig. 3. Comparison of the duplicate video detection error for the proposed distance measure d(·, ·) (1) and the Hausdorff distances: here,
(hp : P = k) refers to the partial Hausdorff distance (3) where the kth maximum is considered.

Intuitively, why does our distance measure perform better than the Hausdorff distance? In (2) (or (3)), we first

find the “minimum query frame-to-model video” distance for every query frame and then find the maximum (or

P th largest) among these distances. Thus, both h(Xi, Q) and hP (Xi, Q) effectively depend on a single query frame

and model video frame, and errors occur when this query (or model) frame is not representative of the query (or

model) video. In our distance function (1), d(Xi, Q) is computed considering all the “minimum query frame-to-

model video” terms and hence, the effect of one (or more) mismatched query feature vector is compensated.

Dynamic time warping (DTW) [37] is commonly used to compare two sequences of arbitrary lengths. The

proposed distance function has been compared to DTW in [2], where it is shown that DTW works well only when

the query is a continuous portion of the model video and not a collection of disjoint parts. This is because DTW

considers temporal constraints and must match every data point in both the sequences. Hence, when there is any

mismatch between two sequences, DTW takes that into account (thus increasing the effective distance), while the

mismatch is safely ignored in our distance formulation.

V. SEARCH ALGORITHMS

In this section, we develop a two-phase approach for fast duplicate retrieval. The proposed distance measure

(1) is used in our search algorithms for duplicate detection. First, we discuss a naive linear search algorithm in

Sec. V-A. Search techniques based on the vector quantized representation of the fingerprints that achieve speedup

through suitable lookup tables are discussed in Sec. V-B. Algorithms for further speedup based on dataset pruning

are presented in Sec. V-C.

We perform temporal sub-sampling of the query video to get a signature Qorig having TQ vectors (see Fig. 1

and Table I). The initial coarse search (first pass) uses a smaller query signature Q, having M (M < TQ) vectors.

Q consists of the cluster centroids obtained after k-means clustering on Qorig. When M = (5/100)TQ, we refer to

the query fingerprint size as 5x. The first pass returns the top-K NN from all the N model videos. The larger query



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

TABLE II
WE PRESENT THE TIME COMPLEXITY OF THE VARIOUS MODULES INVOLVED IN COMPUTING A = {d(Xi, Q)}N

i=1 (4), RETURNING THE

TOP-K NN, AND THEN FINDING THE BEST MATCHED VIDEO Vi∗ FROM THEM. F̄ =
PN

i=1 Fi/N DENOTES THE AVERAGE NUMBER OF
VECTORS IN A MODEL FINGERPRINT. FOR THE VQ-BASED SCHEMES, THE DISTANCE d(·, ·) IS REPLACED BY THE DISTANCE dV Q(·, ·)

(9), WHILE THE OTHER OPERATIONS INVOLVED REMAIN SIMILAR.

Time Operation involved Complexity
T11 computing L1 distance between vectors Xi

j and Qk : ‖Xi
j −Qk‖1

O(p)
T12 = T11.Fi finding the best matched model vector for a query vector : min

1≤j≤Fi

‖Xi
j −Qk‖1

O(Fip)

T2 = M.T12 finding best match for all M frames in Q to compute d(Xi, Q) O(MFip)
T3 =

∑N
i=1 T2 computing all N model-to-query distances : A = {d(Xi, Q)}N

i=1 O(MNF̄p)
T4 use minimum K values from A to return top-K videos using a priority queue O(N log K)
T5 finding Vi∗ from top-K videos using larger query signature Qorig O(TQKF̄p + K)

signature (Qorig) is used for the second pass to obtain the best matched video from these K candidates using a

naive linear scan. As the query length decreases, the query keyframes may differ significantly from the keyframes

of the actual model video; hence, the first pass needs to return more candidates to ensure that the actual model

video is one of them.

A naive approach for the search is to compute all the N model-to-query distances and then find the best match.

This set of N distances is denoted by A (4). We speedup the coarse search by removing various computation steps

involved in A. For the purpose of explaining the speedup obtained by various algorithms, we provide the time

complexity breakup in Table II.

A = {d(Xi, Q)}N
i=1 =

{
M∑

k=1

{
min

1≤j≤Fi

‖Xi
j −Qk‖1

}}N

i=1

(4)

A. Naive Linear Search (NLS)

The Naive Linear Search (NLS) algorithm implements the two-pass method without any pruning. In the first pass,

it retrieves the top-K candidates based on the smaller query signature Q by performing a full dataset scan using

an ascending priority queue L of length K. The priority queue is also used for the other coarse search algorithms

in this section to keep track of the top-K NN candidates. The kth entry in L holds the model video index (Lk,1)

and its distance from the query (Lk,2). A model signature is inserted into L if the size of L is less than K or its

distance from the query is smaller than the largest distance in the queue. In the second pass, NLS computes the

distance of the K candidates from the larger query signature Qorig so as to find the best matched candidate. The

storage needed for all the model signatures = O(NF̄p), where F̄ denotes the average number of vectors in a model

fingerprint.
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B. Vector Quantization and Acceleration Techniques

From Table II, it is observed that time T11 can be saved by pre-computing the inter-vector distances. When the

feature vectors are vector quantized, an inter-vector distance reduces to an inter-symbol distance, which is fixed

once the VQ codevectors are fixed. Hence, we vector quantize the feature vectors and represent the signatures as

histograms, whose bins are the VQ symbol indices. For a given VQ, we pre-compute and store the inter-symbol

distance matrix in memory.

We now describe the VQ-based signature creation. Using the CLD features extracted from the database video

frames, a VQ of size U is constructed using the Linde-Buzo-Gray algorithm [31]. The distance d(·, ·) (1) reduces to

dV QM (·, ·) (5) for the VQ-based framework, where D is the inter-VQ codevector distance matrix (6). CSXi
j

refers

to the SXi
j

th codevector, i.e. the codevector to which the VQ maps Xi
j .

dV QM (Xi, Q) =
M∑

k=1

min
1≤j≤Fi

‖CSXi
j

− CSQk
‖
1

=
M∑

k=1

min
1≤j≤Fi

D(SXi
j
,SQk

) (5)

where D(k1, k2) = ‖Ck1 − Ck2‖1, 1 ≤ k1, k2 ≤ U (6)

Let −→q = [q1, q2, · · · , qU ] denote the normalized histogram-based query signature (7) and −→xi = [xi,1, xi,2, · · · , xi,U ]

denote the corresponding normalized model signature (8) for video Vi.

qk = |{j : SQj
= k, 1 ≤ j ≤ M}|/M (7)

xi,k = |{j : SXi
j

= k, 1 ≤ j ≤ Fi}|/Fi (8)

Generally, consecutive video frames are similar; hence, many of them will get mapped to the same VQ codevector

while many VQ codevectors may have no representatives (for a large enough U ). Let {t1, t2, · · · , tNq
} and

{ni,1, ni,2, · · · , ni,Nxi
} denote the non-zero dimensions in −→q and −→xi , respectively, where Nq and Nxi

denote

the number of non-zero dimensions in −→q and −→xi , respectively.

The distance between the VQ-based signatures −→xi and −→q can be expressed as:

dV Q(−→xi ,
−→q ) =

Nq∑
k=1

qtk
.

{
min

1≤j≤Nxi

D(tk, ni,j)
}

(9)

It can be shown that the distances in (5) and (9) are identical, apart from a constant factor.

dV QM (Xi, Q) = M.dV Q(−→xi ,
−→q ) (10)

The model-to-query distance (9) is same for different model videos if their VQ-based signatures have the same

non-zero dimensions. For our database of 38000 videos, the percentage of video pairs (among
(
38000

2

)
pairs) that

have the same non-zero indices is merely 3.2×10−4% [2]. A note about our VQ-based signature - since we discard
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the temporal information and are concerned with the relative frequency of occurrence of the various VQ symbols

(one symbol per frame), the signature is similar to the “bag-of-words” model commonly used for text analysis and

computer vision applications [1].

The distance computation involves considering all possible pairs between the Nq non-zero query dimensions and

the Nxi
non-zero model dimensions. We propose a technique where the distance computation can be discarded

based on a partially computed (not all Nq.Nxi
pairs are considered) distance - we call it “Partial Distance based

Pruning” (PDP) (Sec. V-B1). We then present two VQ-based techniques (VQLS-A in Sec. V-B2 and VQLS-B in

Sec. V-B3) which use different lookup tables, utilize PDP for faster search and significantly outperform the NLS

scheme.

1) Partial Distance Based Pruning (PDP): We present a technique (PDP) that reduces time T3 (Table II) by

computing only partially N model-to-query distances in A. This speedup technique is generic enough to be used

for both the un-quantized and the VQ-based signatures. We insert a new distance in the priority queue L if it

is smaller than the largest distance in the queue (LK,2). The logic behind PDP is that if the partially computed

model-to-query distance exceeds LK,2, the full distance computation is discarded for that model video.

Let d̂(Xi, Q, k′) be the distance between Xi and the first k′ vectors of Q - this is a partially computed model-to-

query distance for k′ < M . If d̂(Xi, Q, k′) exceeds LK,2, we discard the model video signature Xi as a potential

top-K NN candidate and save time spent on computing d(Xi, Q), its total distance from the query. Though we

spend additional time for comparison in each distance computation (comparing d̂(Xi, Q, k′) to LK,2), we get a

substantial reduction in the search time as shown later in Fig. 5(b).

When PDP is used in the un-quantized feature space, we call that method as Pruned Linear Search (PLS). The

total storage space required for PLS is also O(NF̄p), like NLS. Since we do not consider all the M vectors of

Q in most of the distance computations, we have m ≤ M vectors participating, on an average, in the distance

computation. Therefore, the time required to compute A, T3 (Table II) now reduces to O(mNF̄p). The other

computational costs are same as that for NLS.

d̂(Xi, Q, k′) =
k′∑

k=1

{
min

1≤j≤Fi

‖Xi
j −Qk‖1

}
(11)

For k′ ≤ M, d̂(Xi, Q, k′) ≤ d̂(Xi, Q,M), and d̂(Xi, Q,M) = d(Xi, Q)

∴ d̂(Xi, Q, k′) ≥ LK,2 ⇒ d(Xi, Q) ≥ LK,2 (12)

2) Vector Quantization based Linear Search - Method A (VQLS-A): In VQLS-A, we pre-compute the inter-VQ

codevector distance matrix D (6) and store it in memory. We perform a full search on all the video signatures

using dV Q(−→xi ,
−→q ) (9) to find the top-K NN signatures - however, it directly looks up for a distance between
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two VQ symbols in the matrix D (e.g., D(tk, ni,j) in (9)) and hence saves time (T11 in Table II) by avoiding the

L1 distance computation. This method also uses PDP for speedup. PDP in NLS implies searching along a lesser

number of query frames. Here, it implies searching along a lesser number of non-zero query dimensions. Sorting of

the non-zero dimensions of the query signature results in improved PDP-based speedup. As in NLS, we maintain

an ascending priority queue L.

d̂V Q(−→xi ,
−→q , k′) =

k′∑
k=1

qt∗k .

{
min

1≤j≤Nxi

D(t∗k, ni,j)
}

(13)

where qt∗1 ≥ qt∗2 · · · ≥ qt∗Nq
represents the sorted query signature. After considering the first k′ non-zero (sorted in

descending order) query dimensions, we discard the distance computation if d̂V Q(−→xi ,
−→q , k′) (13) exceeds LK,2.

The storage requirement for D is O(U2). Let the average number of non-zero dimensions in the VQ-based model

signatures be F ′, where F ′ = (
∑N

i=1 Nxi
)/N . We need to encode Q before search which incurs a time of O(MU).

Since this algorithm uses a constant time lookup of O(1), the complexity of T2 is reduced to O(NqF
′). The time

T3 to compute all the N model-to-query distances, without PDP, is O(MU + NqNF ′). Using PDP, the average

number of non-zero query dimensions considered reduces to N ′
q, where N ′

q < Nq. The corresponding reduced value

of T3 is O(MU +N ′
qNF ′). The time needed to sort the query dimensions is O(Nq log Nq), which is small enough

compared to (MU + N ′
qNF ′).

3) Vector Quantization based Linear Search - Method B (VQLS-B): This method obtains higher speedup than

VQLS-A by directly looking up the distance of a query signature symbol to its nearest symbol in a model video

signature (e.g., {min1≤j≤Nxi
D(tk, ni,j)} in (9)). Thus, the computations involved in both T11 and T12 (Table II)

can be avoided, hence reducing the time to find a model-to-query distance to O(Nq). We pre-compute a matrix

D∗ ∈ RN×U where D∗(i, k) (15) denotes the minimum distance of a query vector, represented by symbol k after

the VQ encoding, to the ith model.

dV Q(−→xi ,
−→q ) =

Nq∑
k=1

qtk
.D∗(i, tk), using (9) (14)

where D∗(i, tk) = min
1≤j≤Nxi

D(tk, ni,j), 1 ≤ i ≤ N, 1 ≤ k ≤ Nq (15)

VQLS-B differs from VQLS-A only in the faster distance computation using D∗ instead of D; the distance

d̂V Q(−→xi ,
−→q , k′) is now computed using (16) instead of (13).

d̂V Q(−→xi ,
−→q , k′) =

k′∑
k=1

qt∗k .D
∗(i, t∗k) (16)

There is an increase in the storage required for lookup - D∗ needs storage of O(NU) but the time T3 to compute

all the distances in A, without PDP, is now reduced to O(MU +NNq). Using PDP, T3 reduces to O(MU +NN ′
q),
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TABLE III
THE RUNTIME NEEDED TO COMPUTE ALL THE MODEL-TO-QUERY DISTANCES (T3) AND STORAGE (IN BITS) ARE COMPARED FOR

VQLS-A AND VQLS-B.

VQLS-A VQLS-B
T3 O(MU + N ′

qNF ′) O(MU + NN ′
q)

storage U2.bSQ,A/2 + NF ′bV Q + 64.KF̄p +
64.2bSQ,A + 64.18.2bV Q

NUbSQ,B+64.KF̄p+64.2bSQ,B +64.18.2bV Q

as explained for VQLS-A in Sec. V-B2. Our experiments do confirm that this method has the lowest query time

among all proposed methods (Table VIII), the only disadvantage being that the storage cost (linear in N ) may

become prohibitively high for very large datasets.

4) Storage Reduction for VQLS Methods: For a large codebook size U , the storage cost for the distance matrix

D can be significantly high. The solution is to perform a non-uniform scalar quantization (SQ) on the elements

in D. Suppose, we have used a SQ of codebook size U1. In that case, we just need to send the quantizer indices

(each index needs dlog2(U1)e bits) and maintain a table of the U1 SQ centroids. Depending on the codebook size

used, the memory savings can be substantial - without quantization, each element is a double needing 8 bytes = 64

bits. Our experiments have shown that we can do without very high resolution for the distance values and a 3-bit

quantizer also works well in general. A low-bit scalar quantizer has also been used for the elements in D∗, where

the storage needed is O(NU).

We present a quick comparison of the two VQ-based search methods, VQLS-A and VQLS-B, in Table III. The

time complexity has already been explained while introducing the methods. Here, we elaborate on the storage

complexity. For VQLS-A, the storage cost for D is U2.bSQ,A/2 where 2bSQ,A is the SQ codebook size used to

encode the elements in D. The SQ codebook is stored with a cost of 64.2bSQ,A bits. The storage cost for all the

non-zero dimensions in the model video signatures is NF ′bV Q where the CLD features are quantized using a VQ

of size 2bV Q . The storage size for the VQ that is used to encode the CLD features = (64.2bV Q .18) bits = 9.43 MB

(for bV Q = 13). For VQLS-B, the storage cost for D∗ is NUbSQ,B where 2bSQ,B is the scalar quantizer size used

to encode the NU members in D∗. The storage cost for the unquantized signatures of the top-K model videos

returned by the first pass is 64.KF̄p, where the video signatures are assumed to have F̄ feature vectors on an

average.

C. Search Algorithms with Dataset Pruning

The VQLS schemes described above consider all the N model videos to return the top-K NN videos. Further

speedup is obtained by reducing the number of model videos accessed during the search. We present two dataset

pruning methods for VQ-based signatures. The first method (VQ-M1) guarantees that the same top-K NN videos

are returned even after pruning, as using naive linear search. The second method (VQ-M2) is an approximation
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of the first and achieves much higher pruning, though it is not guaranteed to return the correct top-K NN. The

model-to-query distance (for the videos retained after pruning) can be computed using VQLS-A or VQLS-B (with

PDP), for both VQ-M1 and VQ-M2.

1) Method VQ-M1: VQ-M1 uses a multi-pass approach for pruning. The logic is that for a given query, the

model videos which are nearest to it are likely to have some or all of the non-zero dimensions, as the query signature

itself, as non-zero.

The pre-computed information needed for VQ-M1 is listed below.

• We store a proximity matrix P ∈ RU×U which stores the U nearest neighbors, in ascending order, for a certain

VQ codevector, e.g., P(i, j) denotes the jth NN for the ith VQ codevector. For U = 8192(213), the storage cost of

P = U2.13 bits (each of the U2 terms represents an integer ∈ [0, 213 − 1] and hence, is represented using 13 bits,

giving a total storage cost of 109 MB).

• We also maintain a distance matrix D′ ∈ RU×U which stores the NN distances, in ascending order, for each

VQ codevector. Here, D′(i, j) denotes the distance of the {P(i, j)}th codevector from the ith VQ codevector, i.e.

D′(i, j) = D(i, P(i, j)). We do not need to store D′ explicitly as it can be computed using D and P.

• We also store U clusters {C(i)}U
i=1, where C(i) denotes the cluster which contains those model video indices

whose signatures have the ith dimension as non-zero. The storage cost for 8192 clusters containing 38000 videos

(the total model video dataset size for our experiments as mentioned in Sec. VI-A) is found to be equal to 6.3 MB.

C(i) = {j : xj,i > 0, 1 ≤ j ≤ N} (17)

We now provide a list of symbols used in VQ-M1 (Algorithm 1) along with their definitions:

• Sj : the set of distinct model videos considered in the jth pass,

• G: the set of non-zero query dimensions, where G = {t1, t2, · · · , tNq
},

• d∗j : the minimum of the distances of all non-zero query dimensions to their jth NN codevectors,

d∗j = min
tk∈G

D′(tk, j) (18)

• Aj : the set of distinct VQ indices which are encountered on considering the first j NN for all the elements in

G. Therefore, (Aj \ Aj−1) denotes the set of distinct (not seen in earlier passes) VQ indices encountered in the

jth pass, when we consider the jth NN of the elements in G.

We maintain an ascending priority queue L of size K, for the K-NN videos, which is updated after every iteration.

In the first iteration, we consider the union of the clusters which correspond to the non-zero query dimensions.

We consider all the model videos from this union for distance computation. For the 1st iteration, d∗1 equals 0 and

the second iteration is almost always required. In the jth iteration, we find the j-NN codevector of the non-zero
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query dimensions and the new codevectors (not seen in the earlier iterations) are noted. We obtain the new model

videos which have common non-zero dimensions with these newly encountered dimensions and consider them for

distance computation. For the jth iteration, we terminate the search for top-K NN if d∗j ≥ LK,2 (or if all the N

model videos have already been considered). For a formal proof that we are assured of finding the correct top-K

NN if d∗j ≥ LK,2, see [2]. If the terminating condition is satisfied at iteration j =J , the sequence of model videos

considered is given by {S1, S2, · · · , SJ−1}.

Algorithm 1 Algorithm for VQ-M1 - here, unique(E) returns the unique (without repeats) elements in E

Input: N model video signatures, −→xi ∈ RU , 1 ≤ i ≤ N
Input: the query signature ~q, and lookup matrices P and D′ (along with the lookup tables needed by the distance

computation method VQLS-A/B)
Output: Best sequence to search N videos for top-K NN and also top-K NN (model video indices)

1: Initialization: (1st pass)
2: G = {t1, t2, · · · , tNq

}, the non-zero query dimensions
3: A1 = G, set of 1-NN of elements in G is G itself
4: S1 =

⋃
1≤i≤Nq

C(ti), set of model videos having at least 1 non-zero dimension from G
5: d∗1 = mintk∈G{D′(tk, 1)} = 0
6: We maintain an ascending priority queue L of length K, based on the elements in S1, where dV Q(−→xi ,

−→q ) is
found using (9) or (14), depending on whether VQLS-A/B is being used.

7: End of 1st pass
8: for j = 2 to U do
9: d∗j = mintk∈G{D′(tk, j)}, minimum distance between non-zero query dimensions to their jth NN

10: if LK,2 ≤ d∗j or
∑j

k=1 |Sk| = N (all model videos have been considered) then
11: break;
12: end if
13: Bi = P(ti, j), 1 ≤ i ≤ Nq, B = set of VQ indices which are jth NN of elements in G
14: E = B \Aj−1, E = unique(E), set of VQ indices that are jth NN of elements in G and were not seen in

earlier iterations
15: Sj =

⋃
1≤i≤|E| C(Ei)

16: Sj = Sj \
⋃

1≤i<j Si, set of all model videos having at least one element in E as a non-zero dimension and
these videos were not seen in earlier iterations

17: Aj = Aj−1 ∪ E, set of all VQ indices which belong to one of the top j-NN for elements in G
18: Update the priority queue L based on the elements in Sj

19: end for
20: return the sequences observed so far {S1, S2, · · · , SJ−1} (assuming that the search terminates at iteration

j = J) and top-K NN from the priority queue L

We find that the maximum number of iterations (J) needed to obtain all the K-NN for a given query increases

with both K and the fractional query length (`), as shown in Table IV. For example, from Table IV, for K=10

and ` = 0.10, the value of J is 500. Since we consider the j-NN for a VQ codevector at the jth iteration, the

number of NN that needs to be stored for each codevector equals the maximum number of iterations (J). Hence,

the corresponding storage cost for P reduces to (500/8192).109 = 6.65 MB. We refer to this fraction (J/U) as

f(K, `) (a function of K and `) when referring to the effective storage cost of P, as used later in Table VIII.

We compare the dataset pruning obtained using DBH [3], trained using our distance function, with that of VQ-
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TABLE IV
WE TABULATE THE AVERAGE Javg (AVERAGING OVER ALL QUERIES) AND MAXIMUM NUMBER OF ITERATIONS J FOR VARYING

FRACTIONAL QUERY LENGTHS (`) AND K , FOR U = 8192. BOTH Javg AND J INCREASE WITH K AND `.

K Javg(`=0.05) J(`=0.05) Javg(`=0.10) J(`=0.10) Javg(`=0.50) J(`=0.50)
10 2 450 3 500 31 1300
50 4 750 9 850 62 1600

100 8 950 17 1000 82 1750

TABLE V
WE COMPARE THE PERCENTAGE OF MODEL VIDEOS RETAINED AFTER DATASET PRUNING FOR VQ-M1 WITH THAT OBTAINED USING

DBH, FOR DIFFERENT FRACTIONAL QUERY LENGTHS (`) AND K . FOR DBH, perror = 0.05 IS USED.

` VQ-M1(K = 10) VQ-M1(K = 50) VQ-M1(K = 100) DBH(K = 10) DBH(K = 50) DBH(K = 100)
0.05 15.03 20.52 23.90 71.85 78.37 81.97
0.10 21.22 27.23 30.83 73.64 80.93 82.13
0.50 42.04 48.21 51.51 78.16 81.40 83.24

M1 (Table V) 2. It is observed that the pruning obtained using VQ-M1 is significantly higher than that obtained

using DBH. For DBH, the pruning obtained depends on the allowed error probability (perror) - we report results

for perror of 0.05. As mentioned earlier, we are guaranteed (perror =0) to return the top-K NN using VQ-M1.

2) Method VQ-M2: Based on empirical observations, we assume that the signature of the duplicate video,

created from a subset of frames in the original video with noise attacks on the frames, will have common non-

zero dimensions with the original model video signature. Hence, the list of model videos considered for K-NN

candidates corresponds to S1, the sequence of videos returned by the first iteration of VQ-M1. Thus, VQ-M2 is a

single iteration process.

This method introduces errors only if there is no overlap between the non-zero dimensions of the query and the

original model video, i.e. if the best matched video index i∗ /∈ S1. When the noise attacks introduce enough distortion

in the feature vector space (so that non-zero query dimensions may not overlap with the non-zero dimensions of the

original model signature), a simple extension is to consider P NN (P >1) across each non-zero query dimension.

Thus, P should increase with the amount of distortion expected, and pruning gains decrease with increasing P .

The number of videos in S1 and the storage cost for the proximity matrix P (defined for VQ-M1) depend on P .

For P > 1, the storage cost for P is O(UP ).

The sequence S1, for P ≥ 1, is obtained as follows (for VQ-M1, S1 corresponds to P = 1):

S1 =
⋃

1≤i≤Nq

C(ti) using (17), for P = 1

S1 =
⋃
j∈B

C(j) using (17), where B =
⋃

1≤i≤Nq,1≤k≤P

P(ti, k), for P ≥ 1

In Fig. 4, we compare the dataset pruning obtained for different choices of P , fractional query lengths, and

using different number of keyframes for creating the query signatures. Using a higher fraction of query keyframes

2The DBH implementation is courtesy Michalis Potamias, a co-author in [3].
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Fig. 4. Comparison of the fraction of model videos retained after VQ-M2 based pruning, for varying fractional query lengths, and using
different sized query signatures. The number of cluster centers for the query is fixed at 2% and 10% of the number of query frames, after
temporal sub-sampling, i.e. M/TQ = 0.02 and 0.10 (notations as in Fig. 1) for the 2 cases.TABLE VI

THE TIME NEEDED (IN TERMS OF Tpr , T3 , AND T4) AND STORAGE (IN BITS) ARE COMPARED FOR VQ-M1 AND VQ-M2.

Tpr T3 T4 storage
VQLS-A 0 O(MU + N ′

qNF ′) O(N log K) U2.bSQ,A/2+NF ′bV Q +64.KF̄p+64.2bSQ,A +
64.18.2bV Q

VQ-M1(A) Tpr,1 O(MU + N ′
qNpr,1F

′) O(Npr,1 log K) U2.13.f(K, `) + 6.3 MB (for bV Q = 13) +
storage(VQLS-A)

VQ-M2(A) Tpr,2 O(MU + N ′
qNpr,2F

′) O(Npr,2 log K) 6.3 MB (for bV Q = 13) + storage(VQLS-A)

(M/TQ), the pruning benefits are reduced, as more model videos are now considered due to the higher number of

non-zero query dimensions. The percentage of videos retained after VQ-M2 based pruning is 3% and 7.5%, for

10% length queries, for P = 1 and P = 3, respectively. From Table V, the corresponding pruning obtained using

VQ-M1 varies from 21%-31% as K is varied from 10-100.

For dataset pruning, we have presented two methods: VQ-M1 and VQ-M2. We present a quick overview of these

methods through Table VI, where we compare their runtime and storage requirements. Tpr,1 and Tpr,2 refer to the

time needed for dataset pruning for VQ-M1 and VQ-M2, respectively.

For VQ-M1(A), the additional costs, over that of VQLS-A, needed for pruning are U2.13.f(K, `) (the cost for

maintaining the proximity matrix P) and 6.3 MB (the cost for maintaining the 8192 clusters). For VQ-M2(B),

the proximity matrix P is not needed. The number of model videos retained after pruning are denoted by Npr,1

and Npr,2 for VQ-M1(A) and VQ-M2(A), respectively. This helps to reduce T3 and T4, which are defined in

Table II. The pruning obtained by VQ-M1 and VQ-M2 are determined at runtime depending on the query and we

have numerically compared the pruning achieved using Fig. 4 and Table V. To reiterate, VQ-M1 is an iterative

process (e.g., we need J ≥ 1 iterations) while VQ-M2 is a one-pass process. Thus, in general, Tpr,1 > Tpr,2 and

Npr,1 > Npr,2.
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VI. EXPERIMENTAL SETUP AND RESULTS

Sec. VI-A explains the dataset creation for duplicate detection. We have performed a variety of noise attacks

and we empirically compare the duplicate detection accuracy over these attacks. Sec. VI-B presents the comparison

of the different speedup techniques proposed for improving the coarse search. Sec. VI-C shows how our distance

measure outperforms other histogram-based distances for VQ-based signatures.

A. Dataset Generation and Evaluation of Duplication Attacks

Two online video repositories www.metacafe.com and www.youtube.com are crawled to obtain a database of 38000

model videos, worth about 1600 hours of video content. A randomly chosen subset of 1200 videos (≈ 50 hours

of content), is used to generate the query videos. We perform various modifications on the decoded query frames

for each of these 1200 videos to generate 18 duplicates per video. We empirically observe that the CLD feature is

robust to the discussed modifications. The number of duplicates for each noise class is shown in parentheses.

• Gaussian blurring using a 3× 3 and 5× 5 window, (2)

• resizing the image along each dimension by a factor of 75% and 50%, respectively, (2)

• gamma correction by -20% and 20%, (2)

• addition of AWGN (additive white Gaussian noise) using SNR of -20, 0, 10, 20, 30 and 40 dB, (6)

• JPEG compression at quality factors of 10, 30, 50, 70 and 90, (5)

• cropping the frames to 90% of their size (1).

The frame drops that are considered can be random or bursty. We simulate the frame drops by creating a query

video as a fraction (2.5%-50%) of the model video frames. The duplicate detection accuracy after the individual

noise attacks is shown in Table VII.

Re-encoding Attacks: The downloaded videos are originally in Flash Video Player (FLV) format and they

are converted to MPEG-1 format to generate the query video. We have also re-encoded the video using MPEG-2,

MPEG-4, and Windows Media Video (WMV) formats. The CLD feature is robust against global attacks induced by

strong AWGN and JPEG compression attacks and hence, robustness is expected against video re-encoding attacks

- this is also experimentally verified. For MPEG-4 compressed videos, we experiment with varying frame rates

(5, 10, 20, 30, 40 and 80 frames/sec) and the average detection accuracy is 99.25% - the results remain almost

constant for different frame rates.

Color to Gray-scale Conversion: We have also converted the model video frames from color to gray-scale

to create the query - here, the Y component is slightly modified. For gray-scale videos, we consider the first 6

dimensions of the CLD feature, which correspond to the DCT terms for the Y channel, as the effective signature.

The decision to use 6 or 18 dimensions is made based on whether dimensions 8-12 and 14-18 (AC DCT coefficients

www.metacafe.com
www.youtube.com
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TABLE VII
THE DETECTION ERROR OBTAINED USING CLD FEATURES, FOR INDIVIDUAL NOISE ATTACKS, AVERAGED OVER FRACTIONAL QUERY

LENGTHS FROM 2.5%-50%, AND OVER VARYING PARAMETERS FOR A GIVEN ATTACK, ARE SHOWN.

Attack Error Attack Error Attack Error Attack Error
blur 0.0114 resize 0.0111 gamma 0.0221 AWGN 0.0113

JPEG 0.0125 crop 0.0145 (blur + crop) 0.0154 (resize + crop) 0.0148
(blur+resize) 0.0119 (AWGN+crop) 0.0156 (gamma + crop) 0.0243 (AWGN + resize) 0.0128

MPEG-2 0.0098 MPEG-4 0.0088 WMV 0.0076 gray-scale 0.0388
logo (5%) 0.0140 logo (10%) 0.1780 logo (15%) 0.0198 logo (20%) 0.0228

caption (30%) 0.0155 caption (50%) 0.0190 caption (70%) 0.02301 caption (90%) 0.0288

for Cb and Cr channels) are all zero, i.e. it is a gray-scale frame. If frames of a different video are added to

the query video, then as the percentage of inserted frames (from other videos) increases, the detection accuracy

decreases significantly as shown in Fig. 5(a).

Logo and Caption Insertions: We have also experimented with logo and caption insertions. The initial logo

considered is a 60×90 binary patch with 700 pixels (they constitute the logo pattern) being set to 1. We then resize

the logo to 5%, 10%, 15% and 20% of the image size. We superimpose the logo pattern on the bottom leftmost

part of the image and the image pixels, whose positions coincide with the 1’s in the logo, are set to zero (black

logo). For the caption insertion, the original block of text can be captured in a 50× 850 binary patch where 2050

pixels (constituting the caption) are set to 1. We then resize the caption such that it can span a different number of

columns (30%, 50%, 70% and 90% of the image size). The same principle is used to modify the image as in the

logo insertion example. The coarseness of the CLD feature explains its relative robustness against logo and caption

insertions. The averaging of the entire image to an 8× 8 representation dilutes the effect of local changes.

B. Empirical Evaluation of Various Proposed Algorithms

We analyze the performance of the proposed algorithms for duplicate detection. The final detection accuracy, for

a certain query length, is obtained by averaging over all the (1200× 18) noisy queries, where the 18 duplication

schemes were introduced in Sec. VI-A.

• Firstly, we show the speedup obtained using PDP, by comparing PLS (NLS + PDP) with NLS, and comparing

VQLS-A and VQLS-B schemes, with and without PDP (Fig. 5(b)). It is also seen that the VQ-based schemes

significantly outperform NLS and PLS, that use un-quantized features.

• Secondly, we show the performance improvements obtained using VQ-M1(A) and VQ-M2(A), in place of

VQLS-A, and using VQ-M2(B) in place of VQLS-B - these methods achieve additional speedup through dataset

pruning (Fig. 6(a) and 6(b)).

Speedup Obtained Using PDP: We show the runtime needed (T3 + T4 from Table II), with and without PDP

for NLS, VQLS-A and VQLS-B schemes, in Fig. 5(b-1), (b-2) and (b-3), respectively, to return the top-K model
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(b-3) Results using VQLS-B: with and without pruning

 

 

without pruning: K=10
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Fig. 5. (a) Variation of the detection accuracy with varying levels of video clip (from a different video) insertion - a fractional query length
of 0.1 means that the query consists of 10% frames present in the (original query + inserted video clip). (b) Runtime improvements due to
PDP are shown for the PLS and VQ-based linear search schemes. “Pruning/ no pruning” indicates whether or not PDP has been used. Here,
runtime = (T3 + T4) is the time needed to return the top-K model videos after the first pass.

videos. T3 is reduced by using PDP. T4 = O(N log K) increases with K and thus, the effective runtime saving

decreases as K increases. PDP provides significant runtime saving so that “with pruning: K = 100” takes lesser

time than “without pruning: K = 10”. Also, comparing (b-2) and (b-3) with (b-1) in Fig. 5, we observe that the

runtime needed by VQLS-A and VQLS-B (with PDP) is much lower than that for PLS and NLS.

Speedup Obtained through Dataset Pruning: We observe the runtime saving obtained through dataset pruning

(using VQ-M1 and VQ-M2) using VQLS-A and VQLS-B for the model-to-query distance computation, in Fig. 6(a)

and 6(b), respectively. PDP is employed for all the methods and “prune/no prune” denotes whether or not we employ

dataset pruning methods (VQ-M1 or VQ-M2).

• For VQLS-A, the runtime comparison for the different methods is: VQLS-A>VQ-M1(A)>VQ-M2(A). Hence,

using dataset pruning results in significant speedup (Fig. 6(a)).

• For VQLS-B, the use of the lookup table D∗ reduces runtime significantly, so that the time required for the

iterative pruning technique (VQ-M1) is higher than the runtime without pruning, especially for higher values of K

and longer queries. Hence, for VQLS-B, for fractional query lengths exceeding 0.10, the runtime comparison for

the various methods is: VQ-M1(B)>VQLS-B>VQ-M2(B) (Fig. 6(b)).

Storage and Time Comparison: We present the variation of the detection accuracy with query time, along

with the associated storage costs, for the various methods in Table VIII. The query lengths considered were 10%

and 50% of the actual model video lengths. It is seen that among methods with higher storage costs (using D∗,

where storage ∝ N ), VQ-M2(B) has the minimum query time while for methods with lower storage costs (using D,

where storage ∝ U2), VQ-M2(A) has the minimum query time. The various values used in Table VIII are F̄ = 25,

F ′ = 18, bV Q = 13, bSQ,A = 3, bSQ,B = 3, N = 38000 (dataset size) and U = 8192 (VQ size).
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Fig. 6. Runtime improvements due to pruning in the model video space, for VQLS-A and VQLS-B, are shown. By “no prune”, we mean
that pruning in model video space (VQ-M1 or VQ-M2) is absent, while PDP is used for all the methods. Significant runtime savings are
obtained for VQ-M1(A) and VQ-M2(A) over VQLS-A (Fig. a) and for VQ-M2(B) over VQLS-B (Fig. b).

TABLE VIII
WE COMPARE ALL THE 3 PARAMETERS - DETECTION ACCURACY, QUERY TIME (EXPRESSED IN SECONDS) AND STORAGE FOR THE

DIFFERENT METHODS, AT VARYING K , AND OBSERVE THE ASSOCIATED TRADE-OFFS. THE QUERY TIME EQUALS (T3 + T4 + T5)
(ALONG WITH THE TIME FOR KMEANS-CLUSTERING TO OBTAIN Q FROM Qorig AND THE TIME FOR SORTING THE QUERY DIMENSIONS).

UNLESS OTHERWISE MENTIONED, THE ELEMENTS ARE STORED IN “DOUBLE” FORMAT (= 64 BITS). THE STORAGE COST OF
VQ-M1(A) DEPENDS ON THE FRACTIONAL QUERY LENGTH (`): THUS, FOR K = 10, THE STORAGE COST EQUALS 35.86 AND 46.51

MB FOR ` = 0.10 AND 0.50, RESPECTIVELY.

Index Method K Storage (bits) Storage (MB) ` = 0.10 ` = 0.50
query time Accuracy query time Accuracy

1 NLS 10 64.NF̄p 133.47 0.42 0.989 0.48 0.998
NLS 50 0.43 0.994 0.49 0.999

2 PLS 10 64.NF̄p 133.47 0.27 0.989 0.32 0.998
PLS 50 0.28 0.994 0.33 0.999

3 VQLS-A 10 64.18.2bV Q (9.43 MB) + 22.91 0.096 0.883 0.201 0.975
VQLS-A 50 U2.bSQ,A/2 + NF ′bV Q 23.06 0.102 0.958 0.227 0.994
VQLS-A 100 +64.KF̄p + 64.2bSQ,A 23.24 0.109 0.969 0.257 0.996

4 VQ-M1(A) 10 U2.13.f(K, `) + 6.3 MB + 35.86, 46.51 0.048 0.883 0.165 0.975
VQ-M1(A) 50 U2.bSQ,A/2 + NF ′bV Q+ 40.67, 50.65 0.065 0.958 0.206 0.994
VQ-M1(A) 100 64.KF̄p + 64.2bSQ,A + 9.43 MB 42.85, 52.83 0.076 0.969 0.237 0.996

5 VQ-M2(A) 10 9.43 MB + cluster cost (6.3 MB) 29.21 0.014 0.883 0.047 0.975
VQ-M2(A) 50 +U2.bSQ,A/2 + NF ′bV Q 29.36 0.020 0.958 0.062 0.994
VQ-M2(A) 100 +64.KF̄p + 64.2bSQ,A 29.54 0.024 0.969 0.080 0.996

6 VQLS-B 10 9.43 MB + 123.36 0.012 0.883 0.035 0.975
VQLS-B 50 NUbSQ,B + 64.KF̄p 123.51 0.015 0.958 0.047 0.994
VQLS-B 100 +64.2bSQ,B 123.69 0.019 0.969 0.065 0.996

7 VQ-M2(B) 10 9.43 MB + cluster cost (6.3 MB) 129.66 0.010 0.883 0.032 0.975
VQ-M2(B) 50 +NUbSQ,B + 64.KF̄p 130.26 0.013 0.958 0.043 0.994
VQ-M2(B) 100 +64.2bSQ,B 130.99 0.016 0.969 0.061 0.996
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Fig. 7. Comparison of the detection accuracy obtained using the different VQ based distances, for K = 10 and K = 100, is shown. Results
using dint and dL1 are near-identical and so, only dL1 based results are shown. Results using dV Q are significantly better than that using
dcos (which in turn performs better than dL1 and dJac) at smaller query lengths.

C. Comparison of Other Histogram based Distances for VQ-based Signatures

We compare our distance measure between the VQ-based signatures with the L1 distance (dL1), an intersection

based distance (dint), the cosine distance (dcos) and the Jaccard coefficient based distance (dJac), which was used

for copy detection in [9]. The different distance measures are defined here:

dint(−→xi ,
−→q ) = 1−

U∑
k=1

min(xi,k, qk), dcos(−→xi ,
−→q ) = (

U∑
j=1

xi,jqj)/(||−→xi ||2.||
−→q ||2)

Jaccard coefficient Jcoeff =
U∑

k=1

min(xi,k, qk)
max(xi,k, qk)

, and dJac = −Jcoeff

The performance comparison of the different distance measures (Fig. 7) shows that the detection accuracy using

dV Q is significantly higher than the other distances, especially for small query lengths. For our proposed measure,

the effective distance is the sum of distances between “query vector to best matching vector in model signature”.

For traditional histogram-based distances, the effective distance is computed between corresponding bins in the

model and query signatures - this distance is small only when the query signature is similar to the entire model

signature, which is true mainly for longer queries. Hence, the advantage of using our asymmetric distance is more

obvious for shorter query lengths.

VII. DUPLICATE CONFIRMATION

After finding the best matched video Vi∗ , we discuss a distance threshold based (Sec. VII-A) and a registration-

based (Sec. VII-B) approach to confirm whether the query is a duplicate derived from Vi∗ .

A. Distance Threshold based Approach

The training phase to obtain the distance threshold involves finding the 1-NN and 2-NN distances for 1200

query videos, over various noise conditions and query lengths. The distance between Xi∗ , the fingerprint of the
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1-NN video Vi∗ , and the larger query signature Qorig, is computed using (1) and is normalized by the query

length TQ, so as to make the threshold independent of the query length. Thus, the effective 1-NN distance equals

{d(Xi∗ , Qorig)/TQ}. Since the same 1200 videos were considered as the model videos, the 1-NN always refers to

a duplicate video and the 2-NN to a non-duplicate one. Ideally, the threshold δs should be such that all the 1-NN

(or 2-NN) distances are less (or greater) than it. By equally weighing the probability of false alarm PFA (wrongly

classifying the 2-NN retrieval as a duplicate) and missed detection PMD (failing to classify the 1-NN retrieval as

a duplicate), the threshold δs is empirically set at 230 - distribution of 1-NN and 2-NN distances and illustrative

explanation of threshold selection are shown in [2]. The corresponding PFA and PMD values equal 0.07. Depending

on whether the emphasis is on minimizing PFA or PMD, δs can be decreased or increased, accordingly.

For verifying the effectiveness of the distance threshold, we repeat the duplicate detection experiments on an

unseen dataset of 1700 videos (≈ 75 hours of video), all of which are different from the model videos. For each

video, 18 duplicates are created as in Sec. VI-A. Using a threshold δs of 230, 3% of the videos were classified as

“duplicates” - for them, the 1-NN distance is less than δs.

For those cases where the query-to-model distance is very close to the threshold δs, we use a registration-based

approach (Sec. VII-B). The registration method is computationally intensive but is more accurate in determining if

the query is indeed a duplicate of the retrieved candidate.

B. Registration based Approach

In this approach, we need to know which model keyframe should be considered for registration for a given query

keyframe. While computing the distance d(Xi∗ , Qorig) in the second pass of the search process, we have already

obtained the best matching vector in the model signature (Xi∗ ∈ RFi∗×p) for every query vector in Qorig. What

we now need is a way to map every model (query) vector to its corresponding keyframe. This is done as follows.

Considering the cluster centers (Xi∗) obtained after k-means clustering on the feature matrix (Zi∗), we can find

which vector in Zi∗ best matches to a certain vector in Xi∗ - the frames corresponding to the selected vectors in

Zi∗ constitute the model keyframes.

Registration method: First, a set of salient points is detected in the respective frames. Then the SIFT feature

descriptor is computed locally around those points followed by establishing correspondences between them by

computing the distance in the SIFT feature space. As this usually yields a lot of false matches (more than 50% in

some scenarios), RANSAC [14] is included in this framework to filter out the bad point correspondences and to

get a robust estimate of homography parameters. Finally, we conclude that the query video is a duplicate of Vi∗

if majority of the query frames (approximately 70% in our case) can indeed be registered with the best matching

keyframes in Vi∗ . This fraction (70%) can be increased or decreased depending on whether the emphasis is on

minimizing PFA or PMD.
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VIII. DISCUSSION

Here we have addressed the duplicate video detection problem. We empirically selected CLD for fingerprinting as

it was robust to the duplication attacks. However, if there is extensive cropping, padding, or rotation/shear, salient

point-based descriptors can be more effective. We developed a new non-metric distance measure which is very

effective for short queries. This distance measure has high computational complexity as it computes the distances

between all model-to-query keyframe pairs. We reduce the computational cost using pre-computed information,

partial distance based pruning and dataset pruning. This distance measure can be explored in other domains which

require subset matching. The proposed dataset pruning method has been effective for our distance function and

VQ histogram based signatures. It would be interesting to study how well the pruning method generalizes for

histogram-based distances.

IX. CONCLUSION

The problem of fast and real-time duplicate detection in a large video database is investigated through a suite

of efficient algorithms. We retrieve the duplicate video for about a minute long query in 0.03 sec with an average

detection accuracy of over 97%. Our proposed distance measure is shown to perform very well when the query is

a noisy subset of a model video and keyframe-based signatures are used. In the future, we will explore how the

duplicate detection system scales to larger sized datasets.

In our problem, we have assumed that the query is entirely constituted from a model video. If, however, a query

contains portions of multiple videos, the same asymmetric distance will not be effective. In that scenario, one can

consider disjoint windows (of suitable length) of the query video and issue multiple queries. The aim is to identify

the model to which a certain query window can be associated. This topic will be explored in future.
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