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Abstract

We present an automated method for the tracking and dy-
namics modeling of microtubules -a major component of the
cytoskeleton- which provides researchers with a previously
unattainable level of data analysis and quantification capa-
bilities. The proposed method improves upon the manual
tracking and analysis techniques by i) increasing accuracy
and quantified sample size in data collection, ii) eliminat-
ing user bias and standardizing analysis, iii) making avail-
able new features that are impractical to capture manually,
iv) enabling statistical extraction of dynamics patterns from
cellular processes, and v) greatly reducing required time
for entire studies. An automated procedure is proposed to
track each resolvable microtubule, whose aggregate activ-
ity is then modeled by mixtures of Hidden Markov Models
to uncover dynamics patterns of underlying cellular and
experimental conditions. Our results support manually es-
tablished findings on an actual microtubule dataset and il-
lustrate how automated analysis of spatial and temporal
patterns offers previously unattainable insights to cellular
processes.

1. Introduction

Advances in computer vision and pattern analysis find
excellent applications in biological data, specifically in the
analysis of patterns on massive image and video libraries.
Over the years, researchers generated large amounts of im-
age and video libraries that stimulated research efforts for
pattern analysis applications. In this context, microtubule
(MT) dynamics research is one of these fields where auto-
mated and advanced analysis techniques are anticipated to
make a significant and imminent contribution.

MTs are filamentous subcellular structures involved in
essential cellular functions. Research on MT dynamics
seeks to understand and quantify underlying cellular mech-
anisms relating to normal and abnormal functioning of the
cell in response to changes in environmental conditions [8].
A striking example is as follows: MTs regulate cell divi-

sion by attaching to chromosomes and segregating them in
dividing cells, and common conjecture is that certain vital
diseases such as Alzheimer’s and cancer are at least cor-
related with the regulatory abnormalities in MT dynamics.
A clear understanding of MT activity (behavior) and causal
factors may advance the state of the art in medicine.

The main objective in analyzing MT dynamics is quanti-
fying effects of MT associated proteins (MAP) and MT tar-
geting drugs (MTD) on MT behavior. To that end, current
methods rely on manual tracking and studies are typically
limited by a small number of MTs per experimental condi-
tion, such as the presence of a MTD. There are no attempts
of analyzing dynamics patterns using computational meth-
ods. Potential computational contributions are automating
the tracking task and offering pattern analysis techniques.
Further details are provided in section1.1.

We present an automated activity analysis system for MT
dynamics, which provides researchers with previously in-
accessible data analysis and quantification capabilities. In
overview, the procedure consists of computing dynamics
features, growth and shortening events, by automatically
tracking MTs and extracting activity patterns by mixtures of
Hidden Markov Models (HMMs) for indications of poten-
tial cellular or experimental regulatory mechanisms, Fig.1.
Our results support manually established findings, and illus-
trate how extraction of temporal patterns offers previously
unattainable insights, potentially elucidating novel biologi-
cal discussion.
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Figure 1. Overview of the proposed system.

Key contributions arei) increasing accuracy and num-
ber of tracks collected,ii) eliminating operator bias,iii)
computation of new features that are impractical to capture
manually,iv) providing analysis tools for MT activity en-
abling discovery of temporal patterns in cellular processes,
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v) standardization of tracking and analysis across MT re-
search labs, andvi) reducing required time and effort for
entire studies to a fraction.

Next, we present the biological motivation for the pro-
posed system. In section2, we review previous work in
applicable methods. Then we introduce the tracking proce-
dure in section3. In section4, we discuss how MT activity
is modeled using data from tracking. Following the experi-
ments in section5, we conclude with a discussion of results
in section6.

1.1. Impact on microtubule dynamics research

MT dynamics research is vital in understanding critical
mechanisms in cellular function. Cell division, movement,
distribution of nutrients and similar functions are facilitated,
in part, by MTs. Main tool of MT dynamics research is
to analyze time lapse images of MTs and manually track
and quantify observed events, such as growth and shorten-
ing, Fig.2, followed by analyzing statistics of events in re-
sponse to variations of regulatory elements, such as MAPs
and MTDs.

(a) (b)
Figure 2. Consecutive frames from a microtubule video. Marked
microtubules in (a) are dynamic.

Manual analysis has the following shortcomings:i) ac-
curacy (arbitrarily selected reference point, from which
Euclidean tip distances in consecutive frames are calcu-
lated), ii) limited usable sample size (3-5 MTs tracked
per video), iii) subjectivity (tracking dynamic MTs as
they seem more visible),iv) variability (research labs dif-
fer in data collection and analysis procedures),v) limited
with traditional dynamics events in a context free manner
(each track is parsed into events and treated independent of
each other for finding average parameter values like growth
rates), andvi) span months to years to complete.

Automated tracking provides not only considerably more
data per image stack, but also facilitates the computation
of other features, such as curving, which cannot be feasi-
bly collected manually. Computational modeling technique,
introduced in this paper, keeps contextual information of
growth and shortening events intact. By considering an en-
tire life history(track) as a unit of MT dynamics (as opposed
to frequencies of independent events), researcher are able
to establish and examine groups of MTs that exhibit similar
dynamic behavior.

Regulatory mechanisms of the cell control the dynam-
ics of MT behavior. However, much of the details of these
mechanisms and the functional principles are still unknown.
Because we can now estimate models with considerably
more dynamics data, we can address questions of common-
alities between regulatory mechanisms influencing MT be-
havior. With the availability of machine learning methods,
it will be possible to design biological experiments around
the capabilities the offered method. For example, if a cellu-
lar switch was hypothesized to alternate the cell’s state for
regulating MT dynamics, we should expect to observe the
switch in action from pre-treatment to post-treatment be-
haviors of the MTs.

2. Related work

2.1. Microtubule tracking and modeling

In the literature few papers [5, 7, 13, 12, 9, 3] have ad-
dressed the MT detection and tracking problems. In [5],
the central axis of MTs is estimated by the shortest path
on a graph with manually selected end points. In [12], the
authors utilize MT shape information to segment MTs us-
ing active shape models and Kalman filters. In [9], MTs
are extracted in terms of consecutive segments by solving
Hamilton-Jacobi equations. The algorithm extracts the MT
starting from a manually selected tip. In [7], starting from
an initial point on the MT, the MT body is extracted and
tracked over frames using tangent constraints. Though the
tracking algorithm is automated, the authors report difficul-
ties in handling MT intersections. The main issue with their
approach is that MT tracking is carried out using a local
measure of consistency that can lead to problems at inter-
sections. To solve this issue, we propose a global multi-
frame approach to resolve tracking conflicts. It is worth
noting the work done on speckle microscopy [20] where dif-
ferent points are tagged along molecular structures. These
tags can be tracked using particle methods. However, for
the case of MTs there is no guarantee that the MT tip will
be tagged and hence tips dynamics cannot be computed.

On the modeling side, there has been prior work aiming
at building physical models for MTs in [17]. We could not
locate prior work using machine learning tools to model MT
dynamics.

2.2. Detecting and tracking curvilinear structures

MTs are a type of curvilinear structures. Other examples
include neuron, retinal blood vessels, road, mammographic
and fingerprint images. For example [15] addresses the
problem of fully automated tracing of neurons from noisy
confocal microscopy images. In [19], the authors present
automated tracking methods for the analysis of changes in
neuron image sequences. In [11], narrowing of retinal blood
vessels is automatically estimated using a vessel tracing al-



gorithm. Besides, many techniques have been proposed to
detect general curvilinear structures such as scale space ap-
proaches, anisotropic Gauss filtering, fusion of two local
line detectors followed by a global Markov random field,
using differential geometric properties of images and using
active contours. For the problem of matching curvilinear
structures between sets of images, in the majority of the pro-
posed methods, lines are first detected and then line proper-
ties such as orientation, position, width and center lines are
used to establish correspondences [18, 2, 14].

In most of these techniques, binarizing line detector re-
sponse is a preprocessing step before matching images. In
case of noisy video sequences such as MTs, binarization can
be very challenging. We believe a more robust approach
is to use the continuous response to establish correspon-
dences.

3. Automated tracking of microtubules

There are several challenges facing the automated track-
ing of MTs:

• MTs are tubular structures with highly variable shapes
across the cell. An accurate estimation of MT length
must consider the nonlinear shape.

• MT length and body trajectory can undergo large
changes from frame to frame with high chance of oc-
clusions.

• MT images have low signal-to-noise ratio and exhibit
nonuniform illumination spatially and temporally.

To address the above challenges, we model MTs as flex-
ible open curves in the image plane. We assume one of the
ends to be fixed, while the other -the tip- is free to move.
Formally, a single MT is modeled by the open curveC(s)
wheres ε [0, 1] is the curve parameter. The goal of the MT
tracking task is to estimate 1) the position of the tip and 2)
the deformation of the curve forming the MT body, in every
frame.

3.1. Estimating MT tip positions

In order to reduce the effect of background noise, MT
videos are first processed using a line filter. Let the intensity
function in a frame be denoted asI, the output after filtering
is then:

If (x, y) = max
θ

(I(x, y) ∗G′′
σ,θ(x, y)) (1)

whereG′′
σ,θ(x, y) is a second derivative of Gaussian kernel

with scaleσ and orientationθ at position(x, y). σ is chosen
experimentally based on the MT width. The motivation be-
hind the use of a second derivative of Gaussian filter kernel
is that MTs look like black curvilinear structures on a light
background in an ideal scenario. An example of finding

the maximum of a second derivative of Gaussian convolved
with the image at all pixel locations is shown in Fig3.

(a) (b) (c)

Figure 3. A window, (b) filter output and (c) binarization.

The filtered frames are binarized to generate a mask
showing MT polymer mass. The binary mask serves for de-
tecting MT tip candidates in every frame. It is worth noting
that though the tip positions are estimated, no correspon-
dence between different frames has been established yet.

We model the problem of matching MT tips between
frames to form MT tracks using a graph, constructed glob-
ally over the entire video. The main advantages of formu-
lating the matching problem in a spatiotemporal context are

• it can handle missing tips due to noisy conditions by
allowing the final MT tracks to skip frames in between,

• it can potentially remove spurious tips found if the noise
or signal loss does not occur repeatedly at nearby loca-
tions in consecutive frames.

3.1.1 Graph formulation on the video

Consider a MT video of lengthT frames. Let us denote
Ni to be the number of candidate tips detected in frame
i for 1 ≤ i ≤ T . Then, each detected tip over the en-
tire video can be denoted bythi wherei is the frame num-
ber, andh corresponds to the tip number within the range
1 ≤ h ≤ Ni. We construct a graphG = (V,E) whose
verticesV are the detected tips (positions) in every frame
and the edgesE represent similarity (computed from dis-
tance in position) between vertices. The edge weights of
the graph represent the matching gain of corresponding two
tips in different frames. By allowing edges between ver-
tices in non-consectuive frames, we can generate MT tracks
that skip frames in the middle to overcome temporary oc-
clusions.

3.1.2 Edge weights on the graph

Edge weights on the graphG correspond to the similarity
measure linking tips in different frames. Consider two tips
thi and trj in two different framesfi and fj . We can not
simply use an inversely proportional measure of the Euclid-
ean distance between tips since this will have problems in
cases of tips of different MTs coming in close proximity. A
better choice would be to compute a distance between tips
constrained on a MT body. The main idea is to test if there
is a path along some MT body between the two tipsthi and
trj . If these two tips come from the same MT, then we have



two cases between framesfi andfj : a) the MT is growing
and b) the MT is shortening. Since we do not know apriori
which case holds, we have to test both.
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Figure 4. Illustration on how the similarity weight between ver-
tices of the graph is computed between tips in two different frames
fi andfj . Case of growing (a) and shortening (b).

In the case of a growing MT, we project the location
of tip thi on framefi to the same location on framefj .
We computedgrowing(thi , trj) as shown on Fig.4(a). In the
case of shortening, we project the location of the tip on
framefj to the same location on framefi. The distance
dshortening(thi , trj), shown on Fig.4(b) is computed. The
similarity metric (edge weight on the graphG) used be-
tween the two tipsthi andtrj is computed as follows:

Sim(thi , trj) = e−min(dshortening,dgrowing) (2)

3.1.3 Maximum matching on the graph

Given the graphG of MT tips as vertices and the tip sim-
ilarities as edge weights, we compute a maximum weight
matching ofG which corresponds to MT tracks. From
graph theory, we know that avertex disjoint path coverC
is a covering ofG where each vertex ofG is in one and
only one path ofC. The weight of a path cover is defined
as the sum of weights on its edges. Using the notion of
path cover, the problem of finding the best MT tracks cor-
responds to finding themaximum weight path coverof G
with the weights defined by the similarity in (2). Formally,
a maximum weight path coverC(G) is a path cover which
satisfies:

C(G) = arg max
Ci

W (Ci) (3)

whereW (Ci) =
∑

euvεCi
Sim(euv) andu, v are two ver-

tices inG for which the similarity is computed as in (2).
The maximum weight path cover is computed as suggested
in [24].

3.2. MT body estimation

Computing MT length estimates based on tip position
only is inaccurate in the case when the MT body is not lin-
ear, which is very common in reality. This motivates us to
estimate the deformable curve constituting the MT body in

every frame of the MT track. By virtue of the spatiotem-
poral matching of tips, we now have the tip of a given MT
available at each frame. We fix another point on each MT
(along the MT body) for all the frames so that we have the
two MT ends available at each frame. The technique used
to estimate the MT fixed point is detailed in the next subsec-
tion. Given the two ends of the MT and an intial curve, we
estimate the MT body in each frame using an active contour
based on line features. Recall that the MT curve is repre-
sented parametrically asC(s) wheres ε [0, 1]. The internal
energy is the usual combination of tension and rigidity of
the contour. Being interested in tracking MTs that appear
as curvilinear structures in an imageI(x, y), we useridge
features as the external forceEext(C(s)). Ridge features
are detected using a second order derivative of a Gaussian
G′′

σ(x, y). Consider the following external force:

∇Eext = w1 (−∇L) + w2 Lsign(〈−∇L,
−→
N 〉)

−→
N (4)

where the first term:

−∇L(x, y) = −∇ 1
1 + |G′′

σ(x, y) ∗ I(x, y)|2
(5)

is a gradient vector field created from the line detector re-
sponse|G′′

σ(x, y)∗ I(x, y)|. The purpose of this vector field
is to pull the active contour towards the desired curvilinear
structure of the MT. The second termLsign(〈−∇L,

−→
N 〉)

−→
N

is a balloon-based term used to help moving the contour in
smooth areas (with the sign term inspired by the work of
[16]).

Finally, note that in the initial frame of the track (may
differ from the initial frame of the video), we find the fixed
end of MT by Fast Marching, [23], as detailed in the next
section.

3.2.1 Estimating the fixed end position on a MT

The active contour model presented above assumes that the
MT fixed end is already available. We proceed as follows to
estimate the position of the fixed MT end in the initial frame
of the track. Denoting the position of the tip of interest as
tstart, the goal is to find a pointtend on the MT body. First,
we define the setP of points satisfying:

P = {(xi, yi) |
ti∫

tstart

If (s)ds < ξ} (6)

whereIf (.) is as defined in (1) andti is the parameteri-
zation corresponding to the point(xi, yi). Basically,P is
the set of points satisfying the condition that the weighted
distance from the tiptstart is below the thresholdth (with



suitable values determined experimentally in the range [0.7-
1.5]). We definetend as the point maximizing:

tend = arg max
cand∈P

‖tstart − tcand‖2 (7)

This is equivalent of finding the closest point to the tip while
leading to the least curvature path. The MT body is then
traced fromtstart using a gradient descent procedure. The
process of tracing the MT body is shown in Fig.5.

(a) (b) (c) (d) (e)
Figure 5. MT body formation: A window around the considered
tip in the track with tip overlaid as a black square (a), filtering re-
sult used as an input to the distance transform (b), distance trans-
form from the tip with darker values denoting smaller distances
(c), points satisfying a distance threshold less than 1 (d), extracted
MT body (e).

3.3. Experimental tracking results

We present example tracking results of our proposed
technique on real MT video frames. In the spatiotempo-
ral graph matching, we allowed up to three missing frames
between tips of the same MT track. The computation of the
geodesics is performed using the Fast Marching algorithm.
Visual tracking results are shown in Fig.6. We quanti-
tatively evaluated the tracking performance using manually
tracked data as ground truth for 26 MTs in a video sequence.
The average duration of MT tracks is 25 frames. The com-
puted mean and standard deviation of error in tracking are
2.85 and 4.36 pixels respectively. This error level is accept-
able for biological studies.

Automated tracking delivers on the data collection as-
pects of the MT dynamics analysis and enables machine
learning methods to provide capabilities well beyond the
current state-of-the-art. In the next section, we describe our
analysis approach.

(a) (b) (c) (d)
Figure 6. Original microtubules (a), example tracks (b,c,d).

4. Activity modeling

Systematically, MT dynamics statistics under different
experimental conditions are analyzed to understand cellular
mechanisms, see section1.1. A limitation in this process is

that statistics consist of mainly average growth and short-
ening events without contextual information. For example,
if growth and shortening events are denoted byg ands, re-
spectively, there is no distinction between tracks consisting
of gggsgsss andgsgsgsgs, despite potential biological sig-
nificance. Therefore, descriptive activity models can pro-
vide invaluable information. Furthermore, such models can
be used to ascertain a notion ofdistancebetween experi-
mental conditions.

Similar dynamics characteristics are known to be shared
between different conditions. Conversely, MTs within a cell
exhibit dissimilar dynamic behavior patterns. For example,
part of the MTs may be transporting molecules within the
cell while others may provide motion to the cell. Thus,
modeling design should handle expected variations of dy-
namics within each experimental condition, and similarities
between experimental conditions.

Formally, we denote each experimental condition by
EC, consisting of groups of dynamic categoriesw. All ex-
perimental conditions have a known label, while patterns
making up a condition are unknown, Fig.7. The problem
is to estimate a modelλi for each categorywi, such that
differences betweenECi andECj , i 6= j, are emphasized.

Note that our formulation calls for a discriminative ap-
proach betweenECi, while descriptive models ofwj is the
goal within eachECi.

w1 w2

w4

w5

w3 w6

EC1 EC2

Figure 7. Graphical depiction of experimental conditionsEC and
dynamics categoriesw.

A well known class of models used in representing ac-
tivity is the Hidden Markov Models (HMMs). In the past,
they have been used successfully in numerous applications.
Particularly in activity context, HMMs were used in hu-
man activity recognition [10], abnormal activity detection,
gesture recognition, and American sign language recogni-
tion. In the next section we present the essential overview
of HMMs, while referring the reader to [21] for further de-
tails on modeling with HMMs.

4.1. Hidden Markov models

HMMs are probabilistic generative models estimating
statistics of a process from observation sequences generated
by that process. The modeled process is assumed to be not
directly observable, thushiddenstates capture statistics of
the process, subject to stochastic constraints. In practice,
hidden states generally correspond to certain physical char-



acteristics of the process. An extensively studied example
is sounds in the context of speech recognition [21].

Concisely, HMMs, denoted byλ, are described by pa-
rametersλ = (π, A, B), whereπi are prior,aij ∈ A are
transition, andbij ∈ B are emission probability distribu-
tions. Given an observation sequenceO = (o1, o2, ..., oT ),
wheret = 1..T denotes time, and a modelλ = (π, A, B),
the quantityP (O|λ) can be computed efficiently. Given a
set of observation sequences, estimating the parameters ofλ
is generally performed using maximum likelihood methods,
while discriminative techniques were suggested in classifi-
cation tasks [22, 1].

4.2. Modeling MT dynamics by HMMs

From the biological perspective, classification of tracks
to EC is not the end goal for dynamics analysis asEC
labels are known a priori. However, estimatingλ with de-
scriptive parameters is a significant task. Our formulation
of the problem aims to extract patterns through estimating
λ, and in doing so we employ the classification score as our
measure of model fitness. The problem description moti-
vates us to use a model based clustering approach to esti-
mateλi for eachwi. HMM based clustering methods are
discussed in [6].

After parameter estimation, eachEC is represented by a
mixture ofλi where dynamics variations within anEC are
modeled by the components of the mixture. In this sense,λi

represent the (pseudo)-centers ofwi, where estimatingλi is
primarily a modeling task and cluster forming provides the
discrimination betweenEC.

4.3. Model estimation

We define the quantityP (O|λ) as the similarity measure
between the observation sequenceO and the cluster center
λw of dynamics categoryw. Expected overall likelihood

L =
∑
w

∑
o∈Cw

log P (O|λw) (8)

is maximized by iterating through

• Repartition

– assigno to clusterCw such that
w = arg maxw′ log p(o|λw′)

• Reestimate models

– trainλw onCw, w = 1..W

4.4. Evaluation

As mentioned, we utilize the classification accuracy be-
tweenEC as our measure for overall model reliability. We
compute the probabilityp(o|EC) by

p(o|EC) =
W∑

w=1

p(o|λw,EC)Pw (9)

wherePw is the relative number of cluster members, and
estimate the separation by counting correct classifications
of trackso ∈ O with

EC∗ = arg max
i

[P (o|ECi)] (10)

5. Experiments

In this work, we used the dataset from [4]. 111 videos
were collected, each one with25 frames recorded every 4
seconds.

Growth and shortening rates were computed as the
length difference of a MT between consecutive frames,
measured in pixels. Thus, each track consists of an obser-
vation sequence25 points in time. Resulting observation
sequences were in the range[−13.03, 11.22], where(−)
corresponds to shortening and(+) corresponds to growth
rates.

Experimentation with both left-right and fully connected
HMMs revealed that fully connected models were better
suited for the modeling task, in line with biological input.
Growth and shortening rates were assumed to be drawn
from (single) Gaussian emissions. Since good initialization
values are essential with continuous emission distributions,
we derived statistics from observation vectors for initializ-
ing emissions. Transition and state priors were initialized
randomly, and the number of clusters was determined ex-
perimentally, Table3.

The study in [4] analyzes the potential for Taxolc© (a
cancer therapeutic) resistance of different tubulin isoforms.
Five experimental conditions were recorded,βIII-tubulin
(no Taxol treatment),βIII-Taxol, βIII-Taxol uninduced
(Taxol exists in the cell but is inactive),βI-tubulin (no Taxol
treatment), andβI-Taxol denoted byEC1 throughEC5, re-
spectively. A total of 3068 MTs were tracked from these
conditions, with{897, 614, 414, 370, 773} tracks in respec-
tiveECi. Results in [4] show that two groups ofEC exhibit
different dynamics:{EC1, EC2, EC4} vs. {EC3, EC5},
where the first group shows suppressed dynamics in terms
of the growth and shortening events, as opposed to the latter
group. It is also known thatEC4 andEC5 exhibit different
dynamics, whereEC5 is less dynamic thanEC4.

5.1. Results

The first experiment was designed to confirm biologi-
cal results. A classification score betweenEC4 andEC5

(denoted by EX:A), and between{EC1, EC2, EC4} and
{EC3, EC5} (denoted by EX:B) were computed with a 3-
way cross-validation, Table1. Well defined separations be-
tween the two groups and between Taxol-treated and control



EX:A EX:B EX:C
Correct (%) 95.91 94.27 62.67

Table 1. Correct classification rates for EX:A,B,C.

q1 q2 q3 q4

λ1 µ 0.58 0.32 0.56 0.22
σ 0.61 3.32 0.65 8.32

λ2 µ 4.03 -2.42 0.48 0.01
σ 2.17 2.59 0.91 8.08

Table 2. Example emission distributions ofλ1 from EC4 (Taxol),
andλ2 from EC5 (non-Taxol), for statesq1−4.

W 1 2 3 4 5
Correct (%) 62.11 76.28 94.27 72.33 57.44

Table 3. Change in classification by number of modelsW .

tracks agree with established biological findings. A third
test, denoted by EX:C, was aimed to separateEC3 from
EC5. Biological results indicate that these experimental
conditions exhibit highly similar dynamics. A maximum
separation of much less than EX:A and EX:B verify this
finding.

Since the statistics captured in the model parameters are
more significant for biological studies than the classification
scores, we examined the models of eachEC.

Table2 shows example emission distributions for esti-
mated models from EX:A. Nearly all states ofλ4 show sta-
ble distributions, while states inλ5 show higher dynamic
behavior with occasional stable states. Parameters confirm
the biological conclusion that Taxolc©-treated MTs exhibit
suppressed dynamics.

Finally, the number of clusters in eachEC was deter-
mined experimentally, Table3. Correct classification rates
peak atW = 3 for EX:B.

Next, we discuss what new analysis capabilities can be
provided to researchers by the proposed method.

5.2. Future analysis capabilities

Fig.8 shows a frame of a video fromEC5, with overlaid
tracking results. All tracks are evaluated forp(o|EC4), and
p(o|EC5). p(o|EC5) values are shown for selected tracks
for illustration purposes. The upper left track is an erro-
neous track of an image artifact, while others are actual MT
tracks. By evaluating each track with estimated models and
overlaying the results on the frame, it is possible to visualize
the dynamics relationship of all tracked MTs with respect to
known models.

Furthermore, distance measures between models or

Figure 8. Tracked MTs with associatedp(o|EC5).

model mixtures can be defined to quantify aggregate dis-
similarities between dynamics pattern. An example dis-
tance measure between models can be found in [21].

Finally, models can be estimated not only for traditional
dynamics parameters, but for any combination of biologi-
cally significant data. An example feature set that is readily
available by the tracking component of the proposed system
is the degree of curviness as a function of time. Such fea-
tures offer significant information, yet they are nearly im-
possible to collect manually.

5.3. Discussion

Our modeling approach considers individual MTs from
various conditions as the basis of observations and does
not make a distinction between cells from which MTs were
tracked. An alternative analysis can be performed by treat-
ing each cell as the observation vector and models can be
estimated for activity of various cell lines.

Note that tracking may generate occasional erroneous
tracks by following image artifacts, losing a track prema-
turely, and so on. Estimated models provide an added layer
of robustness by encoding relevant patterns of dynamics
from computed tracks. Furthermore, noise may be explic-
itly modeled by dedicating a component of the model mix-
ture for this purpose. For example, Table2 shows large
deviations in the last states of each model. Further investi-
gation may reveal the cause and meaning of such deviations,
possibly as noise.

6. Conclusion

In this work, we presented an activity analysis system for
MT dynamics research. Most notable contribution of the



proposed method is the novel analysis capabilities that are
beyond the current state-of-the-art. Other contributions are
the radical improvements over the manual data collection
methods, such as higher accuracy (length along MT body
vs Euclidean estimate), larger samples (3068 automated vs
339 manual) and objective consideration of all MT tracks
at a fraction of the normally required time. Our results
support manually established findings, and show that auto-
mated analysis of spatial and temporal patterns offers previ-
ously unattainable insights. Most notably, the standardiza-
tion of data collection and analysis facilitates a comparative
platform for future biological research.

As the volume and number of dynamics datasets has
increased in recent years, similarities between the behav-
ioral influence of MAPs and MTDs upon dynamics have
emerged, leading to speculation of similar mechanisms.
Dynamics models may facilitate the union of previously iso-
lated MAP and MTD datasets, furthering our understanding
of regulatory mechanisms of MTs.

Despite the difficulty in assessing performance of the
method, we hope that our work will serve as the ground
truth for future advances in this direction.
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