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Abstract— A number of techniques have been pro-
posed for the design of tree-structured filter banks
matched to the statistics of the input signal. Amongst
all of the proposed techniques, a top-down design ap-
proach has been recognized as a computationally ef-
ficient method for the design of tree-structured filter
banks. However, the conventional top-down technique
is sub-optimal. In this paper, we modify the exist-
ing top-down design approach to deal with its sub-
optimal nature. Under certain assumptions, analyti-
cal expressions are derived for filter banks of uncon-
strained lengths that maximize the overall coding gain
of the tree-structured filter bank.

I. INTRODUCTION

Uniform and non-uniform tree-structured filter banks are
used in-a number of iimage and audio compression algo-
rithms. The extensive use of tree-structured filter banks
in source coding algorithms provides the motivation for
developing design procedures for such filter banks. In
a tree-structured filter bank, the input signal is decom-
posed into M subbands. Each or some of the M sub-
bands are recursively decomposed further till the depth
of the tree, reaches a certain pre-defined limit. The num-
ber of bits available to the input signal are distributed
amongst the various subbands. The problem of designing
tree-structured filter banks involves determining which
subbands need to be split, the number of bits assigned
to the subbands and coefficients of the filter banks used
to carry out the M-band decomposition at every subband
which is decomposed further. The objective of the de-
sign procedure is to chose these parameters such that the
overall coding gain of the tree-structured filter bank is
maximized, given the power spectral density (psd) of the
input signal. For the rest of the paper, we use the term
“node” to refer to a particular subband and “splitting a
node” to refer to an M-band decompostion of the sub-
band. It is assumed that an Af-channel paraunitary filter
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bank, with possibly different coefficients, is used at all the
nodes, in the tree which are split further.
Two possible approaches can be used for the design of tree
structured filter banks. One of the approaches, referred to
as the “bottom-top” approach, involves starting the de-
sign procedure at the leaf nodes (nodes that are not split
any further) and then designing the root nodes. However,
a problem with the bottom-top approach is the fact that
we need to know the psd of the input at the leaf nodes.
But the psd of the input to the leaf nodes can be deter-
mingd only when the filter banks, at nodes above the leaf
nodes have been designed. This poses a potential prob-
lem in the bottom-top approach since it would seem that
we need to design the filter banks at nodes above the leaf
nodes before filter banks at the leaf nodes are determined.
Iterative techniques can be used to circumvent the prob-
lem, however such techniques tend to be computationally
complex. In [1] a bottom-top algorithm is used to de-
termine the optimal non-uniform decomposition (called
wavelet packet) under the assumption that a fixed filter
bank is used at every node of the decomposition.
The second techuique, referred to as the “top-down” ap-
proach, involves designing filter banks at the root nodes
before designing those at the leaf nodes. In some of the
proposed top-down approaches [3], [4], each node is vis-
ited in a top-down fashion, starting from the root node.
The coefficients of the filters at a node are obtained by
maximizing the coding gain provided by the filter bank at
the node. If the coding gain provided by the filter bank
is greater than one, then the node is split further. The
total number of bits allocated to the node are distributed
amongst the M “child” nodes. This procedure is recur-
sively carried out at all the nodes till all the leaf nodes
have the property that the coding gain provided by the op-
timal filter bank at these nodes is close to unity. A similar
top-down approach is also used in [2] to design the filter
bank coefficients of a fixed non-uniform tree-structured
decomposition. The top-down approach is computation-
ally simpleg than the iterative bottom-top approach, but
suffers from the disadvantage of being sub-optimal.

The sub-optimal nature of the top-down approach in
[2], [3), [4] (hereafter referred to as the conventional top-
down approach) can be illustrated by means of an exam-
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Fig. 1. Power Spectral density of the input to one of the nodes in
the tree

ple. Consider the case when M = 2 and the input psd to
one of the nodes in the tree, is as shown in Figure 1. The
maximum coding gain provided by any two-channel or-
thogonal filter bank, (even the ideal brick-wall orthogonal
filter bank) for the given input psd, is equal to one. Thus
in the conventional top-down approach this node will not
be split any further. However, the decision is subopti-
mal because if we split the node in question and also split
each of the child nodes obtained, then a coding gain of
0.5(v/c+ %) can be achieved by the ideal brick-wall fil-
ter bank. This simple example illustrates the fact that
the conventional top-down approach is “greedy” since it
does not consider the possibility that even though split-
ting a node does not provide coding gain greater than
one, higher coding gains might be achieved by splitting
the node and its child nodes. The reason for this greedy
behaviour is the fact that the coding gain provided by the
tree at the child nodes is not included in the design of the
" parent node.

In this paper,we develop an algorithm for the design of
orthogonal tree-structured filter banks which takes into
account an estimate of the coding gain provided by the
child nodes when the filter bank for a particular node is
designed. This allows the proposed algorithm to avoid the
sub-optimal nature of the conventional top-down design
approach.

11. ProPOSED DESIGN PROCEDURE

We use a top-down approach to design orthogonal tree-
structured filter bank. In the proposed algorithm, we

make use of the “spectral flatness” [5] measure to decide

whether to split a node or not. This is unlike the con-
ventional top-down approach which uses the coding gain
provided by the M-channel filter bank to decide whether
to split a node or not. In the proposed design algorithm,
we compute the value of spectral flatness measure, given
by

i jw dw 2
Yz = e.’L‘p(/ 10geSzz(€) '2';)/‘7:: (1)
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at every node. If the value of 1/7, is greater than one,
then the node is split. The rationale behind the use of
spectral flatness measure is that if 1/v, is equal to one,
then the spectrum is flat and hence there is no gain in
splitting the node any further. However, if the value of
1/7; is greater than one, then we can potentially obtain
higher coding gains by splitting the node even if the im-
mediate split into M-subbands provides a coding gain of
only one (it is possible that splitting one of the child nodes
obtained by the split of the node could provide a large cod-
ing gain). Using the inverse of spectral flatness measure
to decide whether to split a node or not, is equivalent to
using the coding gain provided by an infinite channel fil-
ter bank at the node. If the coding gain provided by the
infinte channel filter bank is not greater than one, then
there is no gain in splitting the node any further. We
compute the inverse of spectral flatness measure at every
node in the tree. If this turns out to be greater than 1+e¢,
where € is a pre-determined quantity, then the node is
split further.

Once the decision to split a node has been made, the next
step is to find the bit allocation amongst the M child
nodes and the coeflicients of the M-channel filter bank
used to split the node into M subbands (nodes). Consider
the case when we have made the decision to split a node
n; and let b; be the number of bits that were allocated to
the node n;. We need to determine the bit allocation by
k=0,1,...,M — 1 amongst the M child nodes and the
filter bank used to split the node. The constraint on the
bit allocation is

1 M
7 Z bir = b;. (2
k=1

If the filter bank used to split the node n; is orthonor-
mal then the variance of the signal at n; is related to the
variance of the signals at its child nodes, n;; through

M
ol = Z o2 (3)
k=1

This is due to the fact that the analysis filters in an M-
channel orthonormal filter bank satisfy the property

M
> I Hu(e™)P =1, )]

k=1

where, H;x(e’”) represents the frequency response of the
kth analysis filter. If the child nodes of n; were not being
split, then the distortion due to the quantization of signals
at the child nodes would be

M

D; = ZC 0;2”‘ 9-2bix (5)
k=1



where b,k is the number of bits allocated to the kth child
node, o2, is the variance of the signal at the kth child
node and c is a constant. The presense of a possible tree
structure at one or more child nodes, say n;m,, causes the
variance of the quantization noise at n;, to be reduced
“by a factor equal to the coding gain provided by the tree
structure at njy,. Thus the value of distortion due to
quantization of subband signals at node n; is

M 2 9—2b

C Oy
D = %I
“ k=1 i

where G, is the coding gain provided by the tree at node
Nim. The coding gain provided by the tree structure at
nym cannot be determined untill the filter bank and bit
allocation at the parent node n; is determined. However,
we can estimate the coding gain at each child node by
the value of the asymptotic coding gain, G%5,, at that
node. The justification for using G55, as an estimate of
the coding gain provided by the tree at node n;y, is the
fact that the tree starting from this node will be grown
till the coding gain provided by the tree is closed to its
asymptotic value. The estimated distortion at the node
n; can be written as

M 2 2—26;,,

A i i
k=1 ik
M ™
dw
= Scean(| logu(Seusu (NG 27 (6)
k=1 -

The use of G5, as an estimate of G, is another difference
between the proposed approach and the conventional top-
down approach. In the conventional top-down approach
Gim is set to one when the filter bank at n; is designed.
The bit allocation amongst the child nodes of n; is done
such that D; is minimized subject to the bit constraint
given in Eq. (2). The optimal bit allocation is given by

’szka‘gﬁg (7)
(Hl\.d.l 73110 )l/M

where, 7z, = ezp([” (109eSz;zi (67¥)) %2)/02,,. The
value of the distortion D; under optimal bit allocation, as
given by Eq. (7), is

M 1/M
c (H 7:&'&02;5) 2_26‘.' (8)
k=1

The coefficients of the filter bank at n; are designed such
that the value of D; given in Eq. (8) is minimized subject
to the constraint that the resulting filter bank is orthonor-
This can be done by using standard algorithms for
.he design of M-channel paraunitary filter banks [6]. Once

1
bik = bi -+ -2-logg (
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the coefficients of the filter bank at n; have been opti-
mized, it is possible to determine the psd of the signals at
the M child nodes. The number of bits allocated to each
child node can then be determined using the bit-allocation
result given in Eq. (7). A similar procedure can be recur-
sively carried out at every node in the tree, till all the leaf
nodes have the property that the value of the inverse of
spectral flatness measure at each of these nodes is equal
(close) to unity.

III. CHARACTERIZATION OF OPTIMAL FILTER BANKS

In this section we determine the optimal filter bank at
n; that minimizes Eq. (8), under the assumption that
there is no constraint on the length of the filters. The
expression for D; can be simplified as

lo.qe(sz.kﬂ:sk (er)) )I/MZ—%

1 " d ju dw ~2b;
=cM ezp(M— loge H Sziezi (€7) 51_1:)2 :
- k=1

= cM exp(-— /_ loge <H B(eJ“) ) _‘;‘_:)2_21,,-’

where B(e?“) = E(e9¥)S;,s, (€7“)E*(e/¥), (A)x denotes
the diagonal element of the matrix A, E(e’¥) denotes
the polyphase matrix of the analysis filter bank, * is
used to indicate the transpose conjugate of a matrix and
Sz.2:(€7) denotes the psd matrix (7], [8] of the signal at
the input to the analysis poplyphase matrix at n;. Min-
imizing D; in the above equation is equivalent to finding
the polyphase matrix transfer function E(e’™) such that

M
D;=cM emp(z
k

- loge H E(e7)Sa,0, (7)E* (&) ) d“’

(9)

is minimized (since exponential is a monotonocally in-
creasing function). Now

duw

a=[ zoge<H (€)Sain (VB () ) 5
—n T
> / toge (det (B(e™)Saez,(¢)E* (7)) 5
bati
= ler(det(Sx,z.(e]w))) (10)
-
where, we have made use of the inequality, Hz—l Ay >

det(A), for a positive definite matrix with equality only
if A is a diagonal matrix. The positive definiteness
of E(e?¥)S;,z,(e7*)E*(e’¥) follows from the fact that
Sz.z:(e7*) is a spectral matrix (8] and is hence positive



definite. Thus the quantity C; in Eq. (9) is minimized
when the inequality becomes an equality. This happens
when E(e/?) is chosen to be the eigenvector of the psd
matrix Sz, (e7°) for each value of wy € [0,27). Thus
the optimal filter bank at n; that minimizes the distortion,
D; in Eq. (8), is given by the eigenvalue decomposition
of the psd matrix of the input at n;.

IV. PRELIMINARY RESULTS

The proposed design algorithm was used to determine
the optimal tree structured filter bank for an AR(1) source
with p = 0.95. The value of M was chosen to be equal
to two. The optimal decomposition and the coefficients
of the filter bank were determined, starting from the root
node, as explained in Section 2. Figure 2 shows the value
of the overall coding gain achieved versus the length of
the filters. The value of € was chosen to be 0.1. The fig-
ure shows the overall coding gain of the tree structure for
different values of the depth upto which the tree struc-
tures are grown. The depth of the tree refers to the depth
of the last leaf node starting from the root node (which
is assigned a depth of one). The maximum value of cod-
ing gain that can be obtained for the AR(1) process with
p = 0.95 is 10.25. The results in Figure 2 indicate that for
filters of a given length, the value of the coding gain ob-
tained from the tree increases with the depth of the tree.
But when the depth of the tree increases beyond a certain
limit, the coding gain of the tree saturates at a value that
depends upon the length of the filters used.
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Fig. 2. The value of coding gain versus the length of the filters for
different depths of the tree

V. CONCLUDING REMARKS

In this paper, we developed an algorithm for the design
of tree structured filter banks. The use of the spectral flat-
ness measure at each node, rather than the coding gain
of an M-channel filter bank is proposed as a criterion to
determine the decomposition. The coefficients of the filter
banks are computed at every node by minimizing a cost
function that takes into account an estimate of the cod-
ing gains provided by the tree at the child nodes. When
there are no constraints on the length of the filter bank, it
is shown that the optimal orthogonal filter bank at each
node is determined by the eigenvector decomposition of
the psd matrix at that node.
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