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Rotation-Invariant Texture Classification
Using a Complete Space-Frequency Model

George M. Haley and B. S. Manjunath,Member, IEEE

Abstract—A method of rotation-invariant texture classification
based on a complete space-frequency model is introduced. A
polar, analytic form of a two-dimensional (2-D) Gabor wavelet
is developed, and a multiresolution family of these wavelets
is used to compute information-conservingmicrofeatures. From
these microfeatures amicromodel, which characterizes spatially
localized amplitude, frequency, and directional behavior of the
texture, is formed. The essential characteristics of a texture
sample, itsmacrofeatures, are derived from the estimated selected
parameters of the micromodel. Classification of texture samples is
based on themacromodelderived from a rotation invariant subset
of macrofeatures. In experiments, comparatively high correct
classification rates were obtained using large sample sets.

Index Terms—Gabor filters, texture classification, wavelets.

I. INTRODUCTION

T HE SPECTRUM of texture analysis techniques ranges
from those focusing on structural features to those empha-

sizing statistical modeling. In most statistically oriented tech-
niques within the last 15 years [6], [11], [15], [16], [20], the
image is modeled as a Markov random field (MRF) of pixels.
In these approaches, the relationships between the intensities
of neighboring pixels are statistically characterized. These
methods have proven very effective for texture segmentation
and classification. More recently, feature-based approaches
have been introduced. Features are typically extracted using
Gabor functions [3], [4], [7], [24], [26], [28] or wavelet basis
functions [8], [12], [23]. Feature-based methods are often less
computationally intensive and more effective than MRF-based
approaches.

The general approach to developing rotation-invariant tech-
niques has been to modify successful nonrotation-invariant
techniques. Since general MRF models are inherently de-
pendent on rotation, several methods have been introduced
to obtain rotation invariance. Kashyap and Khotanzad [21]
developed the “circular autoregressive” model with parameters
that are invariant to image rotation. Choe and Kashyap [9]
introduced an autoregressive fractional difference model that
has rotation- (as well as tilt- and slant-) invariant parameters.
Cohenet al. [10] extended a likelihood function to incorporate
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rotation (and scale) parameters. To classify a sample, an
estimate of its rotation (and scale) is required.

For feature-based approaches, rotation-invariance is
achieved by using anisotropic features. Porat and Zeevi [27]
use first- and second-order statistics based upon three spatially
localized features, two of which (dominant spatial frequency
and orientation of dominant spatial frequency) are derived
from a Gabor-filtered image. Leung and Peterson [22] present
two approaches, one that transforms a Gabor-filtered image
into rotation-invariant features and the other of which rotates
the image before filtering; however, neither utilizes the spatial
resolving capabilities of the Gabor filter. You and Cohen [29]
use filters that are tuned over a training set to provide high
discrimination among its constituent textures. Greenspanet
al. [17] and Haley and Manjunath [19] use rotation-invariant
structural features obtained via multiresolution Gabor filtering.
In both of those approaches, rotation invariance is achieved
by using the magnitude of a discrete Fourier transform (DFT)
in the rotation dimension. Haley and Manjunath also use
statistical features that are rotation invariant.

The approach defined herein is novel in the following
respects:

• the basis for classification is a complete feature space
model;

• Rotation invariance is achieved by transforming Gabor
features into rotation invariant features (using autocor-
relation and DFT magnitudes) and by utilizing rotation
invariant statistics of rotation dependent features;

• A polar form of a two-dimensional (2-D) Gabor function
that is truly analytic (frequency causal) is introduced.

The motivation for the complete feature space model is to
exploit the benefits of both model-based and feature-based
approaches. The underlying assumption is that conserving
information (spatial, spectral and directional characteristics)
will result in maximizing classification performance. For clas-
sification purposes, “information” is defined as data useful
in discriminating between different texture types. Unless the
set of texture types is known and fixed, all feature data is
potentially important for discrimination. To ensure that the
method is as robust as possible, minimal data is discarded.

To conserve information in feature space, an invertible
transform is required. While there are several viable options,
including orthogonal wavelet transforms, Gabor wavelets were
chosen for their desirable properties, as follows.

• Gabor functions achieve the theoretical minimum space-
frequency bandwidth product [13], [14], [18], i.e., spatial
resolution is maximized for a given bandwidth.
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• Gabor functions are used as (nonorthogonal) basis func-
tions for exact signal representation.

• A narrowband Gabor function closely approximates an
analytic function. Signals convolved with an analytic
function are also analytic, allowing separate analysis of
the magnitude (envelope) and phase characteristics in the
spatial domain.

• The magnitude response of a Gabor function in the
frequency domain is well-behaved, having no sidelobes.

• Gabor functions appear to share many properties with the
human visual system [25].

While Gabor functions are a good choice, the standard forms
can be further improved. Under certain conditions, very low
frequency effects (e.g., due to illumination and shading vari-
ations) can cause a significant response in a Gabor filter,
leading to misclassification. An analytic form is introduced
to minimize these undesirable effects. In the flower petal
configuration of the 2-D Gabor function, the polar form allows
for superior frequency domain coverage, improves rotation-
invariance and simplifies analysis, compared to the standard
2-D form.

The method for establishing a model is as follows.

1) Transform image samples into Gabor space.
2) Transform the Gabor space samples into amicrofeature

space that completely segregates the rotation dependent
information from the rotation independent.

3) Estimate parameters of the microfeature-basedmicro-
model, which characterizes spatially localized amplitude,
frequency and directional behavior of the texture in
microfeature space. A sample’s micromodel parameters,
its macrofeatures, provide a more global description of
the sample.

4) Estimate parameters of the macrofeature-basedmacro-
model.

Classification of texture samples is based on the rotation-
invariant components of the macromodel. Section II provides
a review of Gabor space analysis and presents the true ana-
lytic and 2-D polar forms of the Gabor function. Section III
explains the transformation of the Gabor space sample into
microfeatures. In Section IV, the micromodel and macromodel
are developed. Experimental results are presented in Section V
and conclusions, in Section VI.

II. GABOR FUNCTIONS

A. One-Dimensional Gabor Function

A Gabor function is the product of a Gaussian function and
a complex sinusoid. Its general one-dimensional (1-D) form is

(1)

(2)

Thus, Gabor functions are bandpass filters. Gabor functions
are used as complete, albeit nonorthogonal, basis sets. It has

Fig. 1. Response of Gabor function at! = 0 versus bandwidth.

been shown that a function is represented exactly [18] as

(3)

where , and , and are
all parameters and .

B. An Analytic Gabor Function

exhibits a potentially significant response at
and at very low frequencies. This manifests itself as an

undesirable response to interimage and intraimage variations
in contrast and intensity due to factors unrelated to the texture
itself, potentially causing misclassification. Cases include:

• sample images of a texture with differences in average
intensity;

• images with texture regions having differences in contrast
and/or intensity (Bovik [3] has demonstrated that region
boundaries defined in segmentation using unmodified
Gabor filters vary according to these differences between
the regions);

• images with uneven illumination.

The response to a constant-valued input (i.e., ) relative
to the response to an input of equal magnitude at can
be computed as a function of octave bandwidth [3]:

(4)

where and
and is the half bandwidth. This plot is shown in Fig. 1.

It is interesting to note that the response at depends
upon the but not .

There are two approaches to avoiding these problems:
preprocessing the image or modifying the Gabor function.
Normalizing each image to have a standard average inten-
sity and contrast corrects for interimage, but not intraimage,
variations. Alternative methods of image preprocessing are
required to compensate for intraimage variations, such as point
logarithmic processing [3] or local normalization.

An equally effective and more straightforward approach is
to modify the Gabor function to be analytic1 by forcing the real

1SinceGS(!) 6= 0 for ! � 0, a Gabor function only approximates an
analytic function.



HALEY AND MANJUNATH: ROTATION-INVARIANT TEXTURE CLASSIFICATION 257

and imaginary parts to become a Hilbert transform pair. This
is accomplished by replacing the real part of
with the inverse Hilbert transform of the imaginary part

:

(5)

The Fourier transforms of the real and imaginary parts of
are, respectively, conjugate symmetric and conjugate

antisymmetric, resulting in cancellation for :

.
(6)

Because it is analytic, possesses several advantages
over for for many applications including texture anal-
ysis:

• improved low frequency response since
for small and ;

• simplified frequency domain analysis since
for ;

• reduced frequency domain computations since
for ;

These advantages are achieved without requiring additional
processing. Thus, it is an attractive alternative for most texture
analysis applications.

C. Two-Dimensional Gabor Function: Cartesian Form

The Gabor function is extended into two dimensions as
follows. In the spatial frequency domain, the Cartesian form is
a 2-D Gaussian formed as the product of two 1-D Gaussians
from (2):

(7)

where is the orientation angle of ,
and . In the spatial domain, is
separable into two orthogonal 1-D Gabor functions from (1)
that are, respectively, aligned to the and axes:

(8)

As in (3), an image is represented exactly [1], [2]2 as

(9)

where
, and are constants; and

. Approximations to are
obtained by using [25]

(10)

provided that the parameters are chosen appropriately.
2The proofs in the references are based on the standard, not analytic, form

of the Gabor function.

D. Two-Dimensional Gabor Function: Polar Form

An alternative approach to extending the Gabor function
into two dimensions is to form, in the frequency domain, the
product of a 1-D analytic Gabor function (the subscript is
omitted to indicate that the concepts are generally applicable
to the standard form as well) of radial frequencyand a
Gaussian function of orientation:

(11)

(12)

where and . Thus, (11) is
a 2-D Gaussian in the polar, rather than Cartesian, spatial
frequency domain. The frequency domain regions of both
polar and Cartesian forms of Gabor functions are compared
in Fig. 2.

In the Cartesian spatial frequency domain, the3 dB
contour of the Cartesian form is an ellipse, while the polar form
has a narrower response at lowand a wider response at high

. When arranged as “flower petals” (equally distributed along
a circle centered at the origin), the polar form allows for more
uniform coverage of the frequency domain, with less overlap
at low frequencies and smaller gaps at high frequencies. The
polar form is more suited for rotation invariant analysis since
the response always varies as a Gaussian with rotation. The
Cartesian form varies with rotation in a more complex manner,
introducing an obstacle to rotation invariance and complicating
analysis.

E. Multiresolution Representation with Gabor Wavelets

The Gabor function is used as the basis for generating a
wavelet family for multiresolution analysis. Wavelets have
two salient properties: the octave bandwidthand the octave
spacing are both constant, where is
the center frequency. The filter spacing is achieved by defining

(13)

where is the highest frequency in the wavelet family.
Constant bandwidth requires that be inversely proportional
to :

(14)

where

is a constant. The orientations of the wavelets are defined as

(15)

where is the starting angle, the second term is the angular
increment, and and are both integers such that .
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Fig. 2. The�3 dB contours of Cartesian and polar Gabor functions of varying bandwidths. The angular�3 dB width of the polar Gabor functions is 45�.

Fig. 3. A family of 2-D polar form Gabor wavelets in the polar spatial
frequency domain, withS = 3; R = 8; !0 = 3�=2, and �0 = 22:5�.
Regions of� �3 dB response is indicated by shading. The scale (s) and
orientation (r) indexes are indicated inside each filter’s response region.

Using (13)–(15) in (11), the 2-D Gabor wavelet family is
defined as

(16)

(17)

where and , the sampling intervals, are inversely pro-
portional to the bandwidths corresponding to. Fig. 3 depicts
an example wavelet family of this form.

As in (9), an image is represented using the polar wavelet
form of the Gabor function from (17):

(18)

Approximations to are obtained as in (10):

(19)

and parameters , and are chosen appropri-
ately. Instead of a rectangular lattice, a polar Gabor wavelet
representation has the shape of a cone.

III. M ICROFEATURE REPRESENTATION

A. Transformation into Gabor Space

As described in Section II, a set of 2-D Gabor wavelets
can represent an image. Assuming that the image is spatially
limited to , , where
and represent the number of samples in their respective
dimensions, and is bandlimited to ,3 the number
of Gabor wavelets needed to represent the image is finite.
Substituting from (19) for in (18), a
texture image is approximately represented using the polar
wavelet form of the Gabor function as

(20)

3For sampled texture images, the upper frequency bound is enforced,
although aliasing may be present since natural textures are generally not
bandlimited. It is both reasonable and convenient to assume that, for textures
of interest, a lower frequency bound!L > 0 exists below which there is no
useful discriminatory information.
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Fig. 4. us; r(nx; ; ny) in response to a sinusoidal input texture oriented at 120�.

where parameters , and are chosen
appropriately. Note that thesubscript is added to and
to indicate their dependencies on and . Thus, a texture
image is represented with relatively little information loss by
the coefficients .

Following Bovik et al. [4], is interpreted as a
channel or band of the image tuned to
the carrier frequency (13), oriented at angle

(15) and sampled in the spatial domain
at intervals of and . Since is formed
by convolution with a narrowband, analytic function (19),

is also narrowband and analytic, and is therefore
decomposable into amplitude and phase components that can
be independently analyzed as follows:

(21)

where and
. contains information about

the amplitude and amplitude modulation (AM) characteris-
tics of the texture’s periodic features within the band, and

contains information about the phase, frequency
and frequency modulation (FM) characteristics. For textures
with low AM in band , is approximately
constant over . For textures with low FM in band ,
the slope of with respect to is nearly
constant.

Both and are rotation-dependent
and periodic in such that

(22)

(23)

(24)

Rotating by produces a circular shift in of
for and for .

The characteristics of are clearly illus-
trated by using a sinusoidal input,

. Both AM and FM are nonexis-
tent. The Gabor space representation that follows from

(21) is , where
and is a constant

for a given and . From (16)

For each and , is a plane in the spatial domain
with a slope of .

B. Local Frequency Estimation

While contains essential information about a
texture, it is not directly usable for classification. However, lo-
cal frequency information can be extracted from
as follows:

(25)

and

(26)

where and are gradient estimation functions,
is the orientation of the Gabor function, and

is the direction
of the gradient vector. is a spatially localized
estimate of the frequency along the direction, and

is the direction of maximal phase change rate,
i.e., highest local frequency. For the preceding sinusoidal
input example, for ,
and when is outside that range. The
behavior of for the example is shown in Fig. 4.
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Fig. 5. Transformation from Gabor coefficients into microfeatures.

C. Transformation into Microfeatures

To facilitate discrimination between textures,
is further decomposed into microfeatures that contain lo-
cal amplitude, frequency, phase, direction, and directionality
characteristics. This decomposition is depicted in Fig. 5. In
the following, for simplicity, is assumed to be even. The
microfeatures are defined to be

(27)

(28)

(29)

(30)

(31)

(32)

contains the amplitude envelope information
from . Because of the periodicity of (22),

Fig. 6. as; r(nx; ny) andfAs; p(nx; ny) in response to a sinusoidal input
texture oriented at 120�. fAs; p(nx; ny) does not depend upon the rotation
of the input.

only components are needed in the sum in (27). Eliminat-
ing the redundant components from the circular autocorrelation
allows complete representation by the compo-
nents of . It is rotation-invariant because the
autocorrelation operation eliminates the dependence on, and
thus, on . For a sinusoid input, is a Gaussian
in , and is the autocorrelation of a Gaussian
in , as shown in Fig. 6.

contains the frequency envelope information
from . Similar to , has

periodicity. Since is real is
conjugate symmetric in, and consequently, its
components are sufficient for complete representation. It is
rotation-invariant because the DFT operation maps rotationally
induced shifts into the complex numbers’ phase components,
which are removed when the magnitude operation is per-
formed.

contains the directionality information from
. Since

, only the components with odd are nonzero. For
the same reason as , is rotation-
invariant.

, , and
contain the direction information from . Because

and are conjugate symmetric
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Fig. 7. Textures with similar microfeatures.

in , they are represented completely by their
components. However, the component is

always zero since the DFT’s are on real sequences in
both cases. has the same nonzero indexes
as . , , and

are inherently rotation-variant since the
phases of the DFT contain all of the direction information.

Since all transformations in this decomposition are in-
vertible (assuming boundary conditions are available), it is
possible to exactly reconstruct from their micro-
features. Thus, , , ,

, , and provide
a nearly exact representation of .

IV. THE TEXTURE MODEL

A. The Texture Micromodel

A texture may be modeled as a vector-valued ran-
dom field , where

, and are vectors containing the
microfeature components for all and or indexes. It is
assumed that is stationary and has a multivariate Gaussian
distribution. For simplicity, a non-Markovian model is chosen.

Given these assumptions, themicromodelfor texture is
stated as

(33)

where and ,
are the mean and covariance of, respectively, and is the
number of microfeatures.

B. Macrofeatures

While microfeatures can be used to represent a texture
sample, microfeatures are spatially localized and do not char-
acterize global attributes of textures. For instance, consider
the textures in Fig. 7. Most of the spatial samples in the
upper-right and lower-left quadrants of texture A would be
classified as texture B based on microfeatures alone. Fur-
thermore, , and are rotation-dependent, making
them unsuitable for rotation-invariant classification.

For classification, a better texture model is derived from
the micromodel parameters, and . For instance, for
the two textures shown in Fig. 7, the standard deviations of

, and provide excellent discrimination informa-
tion not available in the microfeatures themselves. A texture
’s macrofeaturesare defined to be

(34)

where . For texture ,
, and describe amplitude, frequency and

directionality characteristics, respectively, of the “carrier.”
, and describe a texture’s amplitude mod-

ulation, frequency modulation, and directionality modulation
characteristics, respectively. ,
and are all rotation-invariant because the micro-
features upon which they are based are rotation-invariant.

, and capture the directional modula-
tion characteristics. While , and are rotation-
dependent, their variances are not. Means of , and

are directional in nature and are not used as classification
features. For simplicity, off-diagonal covariance terms are not
used, although they may contain useful information.

C. The Texture Macromodel

For purposes of classification, a textureis modeled as a
vector-valued Gaussian random vectorwith the conditional
probability density function

(35)

where and
are the mean and covariance of, respectively,

is the number of macrofeatures, andis an estimate of
based on a sample of texture. This is the texturemacromodel.

The parameters and are estimated from statistics
over samples for each texture:

and

(36)

where is the estimate of based on sample of texture .

V. EXPERIMENTAL RESULTS

Experiments were performed on two groups of textures. The
first group comprises 13 texture images [30] digitized from
the Brodatz album [5] and other sources. Each texture was
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Fig. 8. Textures from the first group. Each texture was digitized at rotations of 0�, 20�, 60�, 90�, 120�, and 150�. Table I summarizes the results for
rotation invariant classification for these textures.

digitized at rotations of 0, 30 , 60 , 90 , 120 , and 150 as
512 512 pixels, each of which was then subdivided into
16 128 128 subimages. Fig. 8 present the 120rotations
of these images. The second group comprises 109 texture
images from the Brodatz album digitized at 0with 512
512 pixels at 300 dpi resolution, each of which was then

subdivided into 16 128 128 subimages. A polar, analytic
Gabor transform was used with parameter values ,

( octave) and
( 3 dB width of 90 ).

Two types of feature analysis were performed for the
group of 13 textures. Feature parametric analysis characterizes
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Fig. 9. Feature parametric analysis forFFFCA (p = 0; p = 1, and s = 2); and for FFFCF (s = 2). The presentation format forFFFCA (p = 0) is
unique since the features are normalized to have a sum of 1.0 for each texture.

feature types by the scale (), rotation frequency () and/or
autocorrelation index (). Quality analysis focuses on the dis-
crimination capabilities of a single feature across all textures.
Many of the feature values have been normalized for improved
presentation.

Classification performance was demonstrated with both
groups of textures. Half of the subimages (separated in
a checkerboard pattern) were used to estimate the model
parameters (mean and covariance) for each type of texture,
while the other half were used as test samples. Features were
extracted from all of the subimages in an identical manner.

To reduce filter sampling effects at high frequencies due to
rotation, the estimation of model parameters was based on
the features from subimages at all rotations in the first group
of images.

A. Feature Parametric Analysis

Recall that represents the amplitude envelope informa-
tion. Referring to Fig. 9, at , is particularly high for
weave at ( 60%) and brick at ( 50%). Visually
distinct textures such as straw and leather have similar
signatures. For , the most directional textures (water,
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Fig. 10. Feature parametric analysis forFFFCY (s = 2); FFFAM (q = 0); FFFFM (q = 1); FFFYM (s = 1); andFFFDMA (s = 1).

wood, straw, and brick) had the lowest values, especially at
higher values of . For all textures, generally decreased
with increasing , except for raffia at , which had two
maxima ( and ). The behavior of raffia is due
to its bidirectional structure. The Gabor response of raffia has

two peaks separated by 90, manifested as two maxima in the
autocorrelation ( corresponds to 90).

For , which represents the frequency envelope infor-
mation from , most textures had values that decreased
with increasing . Notable exceptions are wool and weave.
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Fig. 11. Feature quality for carrier amplitude and carrier frequency characteristics,FFFCA (p = 0) andFFFCF (q = 0). Amplitude modulation and frequency
modulation characteristics,FFFAM (q = 0) andFFFFM (q = 0). Feature quality for carrier directionality characteristics,FFFCA (p = 1) andFFFCF (q = 3).

The features for wool increased from having relatively low
values at to having the highest values at .
At , wool had the lowest value for but a
relatively high value for . Weave had relatively low

values at but the highest values at . At
, weave exhibited a very distinctive signature, with

the lowest values for all except , which had an
average value.
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Fig. 12. Feature quality for carrier directionalityFFFCY (q = 3), and directionality modulation characteristics,FFFFM (q = 2), FFFYM (q = 3), FFFDMA
(q = 2), FFFDMF (q = 1), and FFFDMY (q = 3).

Referring to Fig. 10, for , higher the values cor-
responded to stronger directionality. Strongly unidirectional
textures had values that peaked at and decreased
rapidly with increasing . Textures with low directionality
tended to peak at . Raffia, bubbles and weave had
distinctive signatures, with raffia and bubbles having relatively
high values at both and , and weave increasing
with (at ) instead of decreasing or peaking at .

For , the most amplitude-uniform textures, raffia and
weave, had the lowest values overall. The differences in
intensity levels between bricks is reflected in its relatively high

values, particularly at low frequencies (higher). The large
variations in the strength of the wood grain patterns resulted
in high values for higher frequencies. Weave and brick had
unique signatures for .

For , the multidirectional textures weave and raffia (for
higher frequencies) and wool and brick (for lower frequencies)
had the highest values for . Weave had a particularly
complex variation over and .

For , the textures with a single predominant orientation
monotonically increased with; all others had a minimum at

and a maximum at .
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TABLE I
CLASSIFICATION PERFORMANCE FORFIRST GROUP OFTEXTURES

For , the textures with the most consistent direction,
water and wood, had the lowest values. The value for leather
for was significantly lower than that for grass, one
of the few features distinguishing the two. Textures generally
increased with except for multidirectional textures (wool,
raffia, brick), for which the values at were the lowest
at their principal frequencies. Again, weave had a peculiar
signature over all .

The values for (not shown) were generally similar
to those for . However, there were several notable
exceptions. The signatures for water and wood were quite
different. For instance, for , their values were
similar in , but in the values for wood were
much higher in wood than in water. Wool had a particularly
dramatic depression at , .

For all textures at decreased with increasing
, except for weave which had its minimum at . At

, wood and water had the lowest values for , raffia
and wood for and wool and brick for . At ,
weave had a very low value for .

B. Feature Quality Analysis

Figs. 11 and 12 graphically present examples of the relative
quality of the features used. The shaded area at the top of
each bar represents . For a given feature, the greater the
vertical separation between shaded areas for a set of textures,
the greater the discrimination capabilities provided by that
feature for those textures. The following identifies textures
for which the example features provided notably good dis-
crimination (defined as roughly nonoverlapping regions
between a texture and most similar textures): Most features

FFFCA(p = 0) grass (s = 0; 1); wool (s = 2); weave (s = 2; 3); brick

(s = 3);
FFFCF(q = 0) sand, wood (s = 0); weave (s = 1; 3); raffia (s = 2);
FFFAM(q = 0) sand, leather, water (s = 0); wood (s = 0; 1); weave

(s = 2); brick (s = 2; 3);
FFFFM(q = 0) bubbles, grass, wool, water, wood, straw, brick (s = 0);

weave (s = 1; 2);
FFFCA(p = 1) straw (s = 0); bubbles (s = 0; 1); raffia, wood

(s = 0; 1; 2); brick (s = 3);
FFFCF(q = 3) very similar toFFFFM(q = 0);

FFFCY(q = 3) sand, leather, water (s = 0); wood (s = 0; 1); weave

(s = 2); brick (s = 2; 3);
FFFFM(q = 2) water (s = 0); weave (s = 2);
FFFYM(q = 3) none;

FFFDMA(q = 2) raffia (s = 0; 1; 2); straw (s = 1); wood (s = 2);
FFFDMF(q = 1) water (s = 0; 1; 2);

FFFDMY(q = 3) bubbles (s = 0); raffia (s = 1; 2); wood (s = 2);

provided very good discrimination for particular textures, at
least for some values of and . While, for some features,
discrimination quality generally deteriorated asand/or
increased, exceptions were evident. For wool and pigskin, the
most difficult texture pair to differentiate in the experiments,

( ) and ( ), were
particularly useful discriminators.

C. Classification

A model of each type of texture was established using half
of its samples to estimate mean and covariance, the parameters
required by (35). For the other half of the samples, each was
classified as the texturethat maximized . Because of
rank deficiency problems in the covariance matrix due to high
interfeature correlation, off-diagonal terms in the covariance
matrix were set to zero. This is believed to have had a
significant adverse effect on classification performance.

Classification performance for the first group of textures
(at different rotations) is presented in Table I. Out of a
total of 624 sample images, 604 were correctly classified
(96.8%). The misclassification rate per competing texture type
is (100–96.8%)/12 0.27%. Bark was misclassified as brick,
bubbles, pigskin, sand, and straw; sand as bark; pigskin as
bark and wool; grass as leather; leather as grass and straw;
wool as bark and pigskin; water as straw; and wood as straw.

Classification performance for the second group of textures
(the complete Brodatz album) is presented in Table II. Out of
a total of 872 sample images, 701 were classified correctly
(80.4%). The misclassification rate per competing texture type
is (100–80.4%)/108 0.18%. Perhaps some comments are in
order regarding the classification rate. Many of the textures in
the Brodatz album are not homogeneous. Some examples of
such textures with less than 50% classification are shown in
Fig. 13. Although one can use a selected subset of textures,
it will make comparisons between different algorithms more
difficult. Notice (in Fig. 13) that the D58 texture has similar
segments to those of the other three textures shown, and not
surprisingly, 50% of misclassified images from these textures
were classified as D58. Examples of some homogeneous
textures that resulted in 100% classification are also shown
in Fig. 13. Finally, for comparison purposes, when using the
same subset of the Brodatz album used by Chang and Kuo
[8], 100% of the samples were correctly classified.

VI. CONCLUSIONS

The approach described herein has proven to be an effective
method of rotation-invariant texture classification. However,
there is potential for substantial improvement in the classi-
fication stage. Performance was limited by using a model
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TABLE II
CLASSIFICATION PERFORMANCE FOR THESECOND GROUP OF TEXTURES

(a)

(b)

Fig. 13. (a) Some examples of nonhomogeneous textures. About 50% of the sample patterns from D2, D7, and D73 were classified as D58. (b) Few
examples of homogeneous texture patterns with 100% classification rate.

based on a variance vector rather than a covariance matrix.
This implies that the features are independent, when in fact
there is a high degree of interdependence as manifested in the
covariance matrices. This is comparable to using Euclidean
distance rather than a Bayesian distance, which has been
shown to result in over a tenfold reduction in performance

in a similar application [8]. An alternate approach would be to
orthogonalize the features using a Karhunen–Loeve transform.
This approach would have the ancillary benefit of fitting the
Gaussian assumption better, since many of the histograms
observed were very non-Gaussian. However, a much larger
sample set would be required.
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The concepts described herein may be used in other ap-
plications. The two level modeling approach facilitates an
integrated texture segmentation/classification scheme. Seg-
mentation could be performed using only the micromodel,
followed by classification using the macromodel. Microfea-
tures are potentially useful features for classification of images
other than textures.

Finally, an approach worthy of future consideration is the
development of a rotation invariant Markovian model based on
microfeatures. While the complexities would be considerable,
it may provide significant improvements in classification (as
well as segmentation) performance by combining the strengths
of Markovian model-based and feature-based approaches.
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