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ABSTRACT

A new texture feature extraction method utilizing
dual tree complex wavelet transform (DT-CWT)
is introduced. The complex wavelet. transform is
a recenbly developed tool that uses a dual tree of
wavelet filters to find the real and imaginary parts
of complex wavelet, coefficients (1). Approxinlate
shift. invariance, good directional selectivity, compu-
tational efficiency properties of DT-CWT make it a
good candidate for representing the texture features.
In this paper, we propose a methodfor efficiently
using the properties of DT-CWT in finding the di-
rectional and spatial/fregiiency characteristics of the
patterns and classifying different texture patterns in
terms of these characteristics. Experimental results
show that the proposed feature extraction and classi-
fication method is efficient, in terms of computational
speed and retrieval accuracy.

1INTRODUCTION

Efficient, texture representation is important. in
search and retrieval of similar texture patterns
from a large image database. There has been re-
search on texture feature extraction by finding the
spatial/frequency distribution of the patterns with
tools like the Gabor filters (2), Teager filters (3),
pyramid-structured wavelet transform (4), and tree-
structured wavelet transform (5). Tests indicate that
the texture features which can efficiently define di-
rectional and spatial/frequency characteristics of the
patterns lead to good texture analysis and classifica-
tion results.

Gabor filters have been used in texture analysis
due to their good directional selectivity in differ-
ent frequency scales (2). Rut there are drawbacks
with using the Gabor filters in practical applica-
tions. The selection of filters is dependent on the
image frequency characteristics. The aceurate im-
plementation of a complete Gabor expansion would
necessiatr an impractical number of filters. Also the
discrete versions of the Gahor function should be
obtained in order to be used for image applications.

In tree structured wavelet transform method, the
given textured image is decomposed into 4 subim-

ages in low-low, low-high, high-low and high-high
subhands. After calculating the energies of each
subimage, the decomposition is continued only for
the subhands with energy greater than a given
threshhold. The threshhold is chosen as a certain
percentage of the largest. energy value in the same
level. This method enables one to concentrate only
on the frequency channels that are significant, for
the particular pattern. Since the general assumption
that the energy of an image is concentrated o11 the
low-low hand is not valid for some texture patterns,
this method gives better results than the pyramid-
structured wavelet. transform method. However,
directional selectivity is poor when real DWT is
used for the subband decomposition and the texture
patterns with similar spatial/frequency and differ-
ent directional properties cannot, he differentiated.
Also since small shifts in the input, signal can result,
in large differences of DWT coefficients at different
scales, same two patterns with small spatial shifts
will produce distant, feature vectors.

Previous work shows that DT-CWT gives good
results in image restoration and enhancement (1).
Remarkable improvement over using real DWT for
bhese image processing applications is obtained.

In this paper, we use DT-CWT for deromposiug
a textured image into six bandpass subimages that
are strongly oriented at 6 different. angles and two
lowpass subimages. Since higher directional selectiv-
ity is obtained, the dominant, frequency channel and
orientation of the pattern is detected with a higher
precision. The dominant orientations are found by
comparing the energies of the directionally tuned
bandpass and the lowpass images. The complex
wavelet decomposition is continued for the most, sig-
nificant subimages.

This paper is organized as follows. In Section 2,
the DT-CWT, its extension to two dimensions, and
its properties are explained. The texture feature ex-
traction and classification algorithms are explained
in Section 3. Efficiency comparisons with other fea-
ture extraction methods are performed and results
are listed in Section 4. Section 5 contains the dis-
cussion of the results.
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2 DUAL TREE COMPLEX WAVELET

TRANSFORM :

in order to have directional selectivity with Mallat’'s
efficient separable, Iterative structure (6}, it is nec-
essary Lo use complex coefficient filters . Since short
support complex FIR filters in a single tree cannot
provide perfect. reconstruction and good frequency
characteristics. using two parallel fully decimated
trees with real filter coefficients is proposed {1). The
approximate shift. invariance is obtained by having
the downsampled outputs of first level filters of one
tree one sample offset from the outputs of the other.
This corresponds to doubling the sampling rate at
each level of the tree, which gives 2:1 redundancy for
one dimensional signals.

When odd length biorthogonal filters are used in
one tree, even length filters are used in the other
to have uniform intervals hetween samples from the
two trees below first level. Filters are chosen to be
linear phase so odd-length highpass filters have even
symmetry and the even-length highpass filters have
odd symmetry about their midpoints. So the im-
pulse responses of these filters are like the real and
imaginary parts of a complex wavelet.

Extension of the one dimensional DT-CWT to two
dimensions enables us to obtain directional selectiv-
ity for texture patterns. The extension is performed
by separable filtering. Real images have significant
information in both first and second quadrants of
the spectrum, so column filter outputs are also fil-
tered by complex conjugates of the row filters. This
gives 4:1 redundancy for two dimensional signals.
The subsampled outputs of the row filters and their
complex conjugates form six bandpass images, three
in each quadrant, and these subimages are strongly
oriented at .¥15%% 45% F 75°. The orientation is ob-
tained since complex filters can separate positive and
negative frequencies in both horizontal and vertical
directions.

3 TEXTURE FEATURE EXTRACTION
WITH DT-CWT

The idea of finding the frequency channels with
most significant information and performing further
decomposition in these channels is first proposed by
Chang et al (5). Here, we extend the same algorithm
for finding the most significant orientations of the
texture pattern and continuing the decomposition
only for the corresponding subimages. The decom-
position algorithm is as follows:

1) Perform 2D-CW'T to decomipose the given pattern
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into & subimages {2 lowpass. 6 bandpass)

2) Find the averaged energy of each subimage by
the following equation. (Subimages have real and
imaginary parts)

1 X
B = MN Z Z [sy(m, n}|

m=1n=1

where si(m,n) is the k'th subimage (k = 1,2,..8)
and M,N are width and height of the subimage.

(1)

3) Stop the decomposiiion of a subimage if its energy
is not large enough. The energy is compared with
the largest energy in the same scale.

So'if Er < K % Epmar, the decomposition is stopped
for k'th subimage in that decomposition level.

4) Continue the decomposition for the remaining
subimages and their corresponding mirrors in the
adjacent spectral quadrant.

The decomposition should continue only while the
subimages are large encugh. The 2D-CWT energy
distribution cannot effectively define the character-
istics of the pattern when the subimage is too small.

Figure 1: A decomposition example using the ex-
plained algorithm.

In Figure 1, a DT-CWT based decomposition is
shown. Here, label L indicates lowband, and iabel
B indicates bandpass subimages. After the second
level of the decomposition, two significant subimages
were found and decomposed in this example.

The classification is performed by using the means
and standard deviations of the first L most significant
complex subimages. The classification algorithm is
as follows.

1) Find the first L subimages of the decomposed



texture pattern with largest averaged energy values.

2) Find the means and standard deviations of these
subimages and form the feature vector including 2L
complex feature elements.

3) For another texture pattern in the database,
form its feature vector using the means and the
standard deviations of its subimages corresponding
to the same channels with the first paitern. If the
corresponding subimage is not found in the decom-
position, that texture pattern is not included in the
candidate list.

4) Compute the normalized Euclidian distance be-
tween the feature vectors.

5) Repeat steps 3 and 4 for all patterns in the
~ database. Sort the distances between the feature
vectors of the query pattern and the other patterns
in the database and choose the ones with closest
feature vectors as the most similar texture patterns.

Normalized Euclidian measure is used in order to
give each feature element the same weight in finding
the distance.

4 EXPERIMENTAL RESULTS

To test the efficiency of this feature extraction
method, Brodatz texture album with 116 images
was used (7). Each image was divided into 16 por-
tions of equal size, so a texture database of 1856
images was obtained. The image portions are of size
128x128, so in order to have large enough subimages
in the highest level, 4 level DT-CWT was performed
to these portions. For the dual filter tree, two lin-
ear phase biorthogonal filter sets with odd and even
lengths were used. The odd and even filter sets were
used alternately in the two trees to have symmetry.
Also the filters are chosen so that they have good
smoothness characteristics and rational coefficients.
(13,19)-tap filters were formed by using the trans-
formation of variables methed (8) for the odd-length
set. A (12,16)-tap filter set was formed according to
the characteristics of the odd-length set, so that the
irnpulse responses to inputs for the last two levels of
both trees are as close as possible in mean squared
distance sense. In Figure 3, a sample texture pat-
tern from the Brodatz database is shown, and the
directionally oriented bandpass subimages obtained
from the topleft portion of the sample pattern can
be seen in Figure 4. During subband decomposition,
the threshhold was chosen as 40% of the largest
energy in the same scale. This choice of threshhold
gives a reasonable number of subimages to be further
decomposed (between 1 to 3 for each level). While
performing the classification, the most significant 16

subimages were used to form the feature vector of
the query image, giving a feature vector of length 32.

Real-valued even-symmetric Gabor filters were im-
plemented for efficiency comparisons (2) (according
to the given classification algorithm and the Bro-
datz texture album). The directionally tuned Gabor
filters were formed at 4 radial frequencies and 4 ori-
entations (07,45% 90° 135%) This gives 16 different
Gabor filters and 32 feature vector elements were
obtained from the means and standard deviations of
the filter outputs. 4 level pyramid-structured wavelet
decomposition was performed on the image portions
to obtain 13 subimages and feature vectors of length
26 were formed. Tree structured wavelet transform
with 4 levels was used and the most significant 12
subimages were selected, giving feature vectors of
length 24.

Normalized Euclidian distance method was used for
the classification with all feature extraction meth-
ods. The retrieved images are the 15 images having
the nearest feature vector to the query image feature
vector. The image portions that are originally from
a different image are regarded as false retrievals and
the percentage of correct retrievals over all image
portions in the database is called the retrieval rate.

The feature vector length and retrieval rate com-
parisons for different feature extraction methods is
displayed in Table 1 for the particular texture clas-
sification experiment.

Feature Feature Retrieval
Extraction Method | Vector Length Rate
DT-CWT 32 79.73%
Gabor Filters 32 75.37%
Pyramid-structured
wavelet transform 26 68.82%
Tree-structured
wavelet transform 24 69.64%

Table 1: Efficiency comparisons of different feature
extraction methods

19X (L33 15X 16

Figure 2: Retrieved image portions from the
database (False retrievals are indicated by X)



Figure 3: A sample texture pattern from
Brodatz texture database

Figure 4: Directionally selected bandpass subimages
obtained from a portion of the texture pattern

5 DISCUSSION OF THE RESULTS

According to the unsupervised classification method
and the Brodatz texture database used in the ex-
periments, DT-CWT method produced the most
efficient results in terms of retrieval rate. The fact
that the significant subimages are directly related
with the most important visual properties of the
texture pattern enables the patterns retrieved from
other images (false retrievals) to be very similar to
the query pattern. In Figure 2, we see that the false
retrievals are also very much like the given pattern.
Also, the feature extraction methods that have di-
rectional selectivity properties are successful, since
completely different texture patterns may have sim-
ilar frequency distributions while their directional
behaviours are much different. So when a combina-
tion of both properties are utilized, the retrieval rate
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increases.

Since the feature extraction is performed by adding
limited redundancy, independent of the number of
levels, to highly eflicient maximally decimated dis-
crete wavelet transform, the extraction method is
computationally efficient. Although, perfect recon-
struction is not mnecessary in texture analysis, this
property can be used in further applications.
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