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Abstract

This paper presents an algorithm for unsupervised
segmentation of color images. The main idea behind it
is the use of the low-frequency content of images which
allows for smoothing of segments and sharpening of
histograms of color attributes. Our algorithm handles
images in a palettized format and operates in the fea-
ture space constituted by the cylindrical representation
of the L*u*v* color space. Within such space, it finds
representative colors by determining first the main hue
families, through histogram thresholding, and then the
main clusters on planes at constant hue, by means of
k-means clustering. Two examples of the practical per-
formance of the algorithm are reported and discussed.

1 Introduction

The human visual system performs extraordinarily
well in distinguishing and recognizing the various ob-
jects portrayed in images. However, for computers it is
very difficult to recognize objects in images, even with
simple scenes. In image processing and computer vi-
sion, segmentation is the low-level operation which con-
sists in partitioning an image into disjoint and homoge-
neous regions, which should be meaningful for certain
applications, before higher-level procedures such as ob-
ject recognition and semantic interpretation are called
for.

Until a few years ago, segmentation techniques were
proposed mainly for gray-level images since for a long
time these have been the only kind of visual informa-
tion that acquisition devices were able to take and com-
puter resources to handle. Rather comprehensive sur-
veys on techniques for segmentation of gray-level im-
ages can be found in [1]-[4]. In this last decade, there
has been a remarkable growth of algorithms for segmen-
tation of color images. Among others, two phenomena
in particular have triggered such an interest: the recent

and fast evolution of the Internet and the parallel de-
velopment of digital libraries and large databases of im-
ages which have been gathering an impressive amount
of visual information. Color represents indeed an ef-
fective means for indexing and organizing this kind of
information.

Several techniques have recently been contributed to
the literature of color segmentation [5, 6, 7]. Most of
the times, these are kind of “dimensional extensions” of
techniques devised for gray-level images; thus, they ex-
ploit the well-established background laid down in that
field. In other cases, they are ad hoc techniques tailored
on the particular nature of color information and on the
physics of the interaction of light with colored materi-
als. Basically, the techniques for color image segmenta-
tion may be divided into three main categories [7]: 1)
feature-space based techniques; 2) image-domain based
techniques; and 3) physics based techniques.

In this paper, we propose a feature-space based tech-
nique for color segmentation which significantly ex-
tends and improves the algorithmic ideas originally de-
vised in [10] and [11]. Our method has the following
characteristics: i) works with color palettes; ii) exploits
the low-frequency content of color; and iii) finds repre-
sentative colors in the cylindrical representation of the
(CIE) L*u*v* color space [8, 9] by determining first the
main hue families and then the main clusters on planes
at constant hue.

This paper is organized as follows. Section 2 dis-
cusses the various steps of the proposed segmentation
algorithm and reports on some experimental results.
Section 3 draws the conclusions.

2 Segmentation algorithm
2.1 Color representation

Color images are usually represented and handled in
RGB coordinates; in this format, an image F of size
M x N may be represented as F = {R'”, G B},
i.e., as a set of three M x N matrices respectively con-



Figure 1. Two examples of color images F with C' = 256 and C' = 1024 colors (left and right, respectively).

taining the red, green, and blue components of F. This
image can be also conveniently represented! in a palet-
tized format as F = {QY7, P}, where Q7 € N &V
is a matrix of pointers to a look-up-table of colors
P e RGL), C being the number of possible com-
binations of the entries of the three color matrices
R, GV BY € Ryy"Y. The color palette P’ may
be structured as P = [R” G’ B”’], where R,
G, B € RS |, are, respectively, the vectors contain-
ing the red, green, and blue coordinates of the possible
combinations of colors within the image F.

As an example, Fig. 1 shows two color images F
having C = 256 and C' = 1024 colors (left and right,
respectively).

2.2 Low-pass filtering

The first step of our algorithm consists in apply-
ing a low-pass filtering to the image F in order to
smooth it and emphasize this way the main color fam-
ilies within the image. In particular, a low-pass fil-
tered version £ of F is obtained as L = F xH =
{RP «H, G « H,BY «+H}, where H is a 5 x 5
binomial filter [12], chosen for its isotropy proper-
ties, and “x” denotes 2D discrete convolution. Let
L = {Q“,P“} be the palettized representation of
L, where P® has size C" x 3.

It is easy to figure out that the number of colors
C' is much bigger (a few orders of magnitude!) than
the number of colors C' due to the averaging opera-
tion; in principle, there might exist as many colors in
L as the number of image pixels, namely M N. At first
glance, this increased number of colors may appear to
be a computational drawback, but, as a matter of fact,
it is the key idea of our algorithm and some simple

'Throughout the text, notation A € Sf‘gxﬁ?’ indicates that

each element a;; of the matrix A € SM*¥ takes in values within
the set [a, 3] C S.

provisions can be adopted to achieve computational ef-
ficiency in handling huge amounts of colors.

Some authors have already resorted to low-pass fil-
tering of images to obtain smooth regions in segmen-
tation applications (see references in [6] and [7]); how-
ever, the substantial improvement that can be achieved
in histogram based segmentation by working with the
low-pass content of color images has not been fully ex-
ploited yet. This concept is clearly pointed out in [2]
where the authors discuss about the sharpening effect,
produced by local averaging, of the histogram peaks of
certain features of gray level images. An analogous his-
togram sharpening of color attributes, such as the hue-
angle used in this work, is determined by the low-pass
filtering of color images; in fact, this operation evens
out color differences that, for various reasons, may nor-
mally arise among pixels belonging to perceptively uni-
form color patches within an image. Accordingly, a
low-pass smoothing dampens local color fluctuations,
and reduces the variability of colors, while preserving
their mean values. The general effect is that of gen-
erating a great many new colors, somehow nuances of
the original colors, which perceptively cluster towards
them; this fact can be appreciated very well from a ge-
ometric point of view in whatever color space and, per-
ceptually, by comparing the color palette of an image
with that of its low-pass filtered version. As a coun-
terpart though, the low-pass filtering introduces false
and spurious colors nearby the borders of adjacent uni-
form regions; but, statistically, they are much less than
those belonging to the regions and do not represent an
impairment to our procedure.

2.3 Hue-angle histogram

The RGB color space allows for a very straight-
forward representation of colors but, unfortunately, it
has a Riemannian nature; this means that it is not a
uniform space and perceived differences among colors



Figure 2. Semilogarithmic plots of the hue-angle histograms ©(h) ordinately associated with the two color images of
Fig. 1. The horizontal dashed lines represent the threshold 7, and the curved dashed lines the parabolas p = f,(h)
fitting the histograms at hg, s =1,...,S.

can be assessed only by means of complicated metrics.
Therefore, in order to have at disposal a simple mea-
sure for evaluating perceptive distances, we have cho-
sen the uniform color space CIE L*u*v* [8, 9], which
is an orthogonal Cartesian coordinate system endowed
with the simple Euclidean metric ||(L*,u*,v*)|| =
VI + (w)? + (v7)2.

In this paper, we resort to the representation
in cylindrical coordinates hcL* of the L*u*v* color
space, where the coordinates h and ¢ are respec-
tively called hue-angle and chroma and defined as
h = arctan (v*/u*) and ¢ = /(u*)? + (v*)2.

The colors of the palette P are mapped into the
heL* space and the histogram ©(h) is built with respect
to their hue-angles h’s; this also requires the knowl-
edge of the number of pixels per each color entry of
P and such a piece of information is easily derived
from the matrix @“’. The histogram ©(h) is then
low-pass filtered to obtain a smooth profile and normal-
ized with respect to its area in such a way that it can
also be regarded as a hue-angle probability function.
Fig. 2 shows the hue-angle histograms (in semiloga-
rithmic plots to compress the vertical range) relative
to the images of Fig. 1.

Hue is the most important attribute of color [8, 9];
thus, the most prominent peaks of the hue-angle his-
togram O(h) correspond to the main “color families”
(e.g., the reds, the oranges, the yellows, and so forth)
of an image. These dominant color families are clearly
noticeable in the plots of Fig. 2.

We then determine a threshold 7, such that a pre-
established percentage of the area of the histogram
©(h) is above 74 (in the examples reported in this pa-
per we have set 7, = 80%). Only the peaks (relative
maxima) above 7 are retained and fitted with parabo-

las; this gives an easy way of estimating the curvature,
and thus the aperture, of the peaks. Let {hs}s=1,.. 5
be the set of hue-angles corresponding to the max-
ima of the histogram ©(h) satisfying ©(hs) > 74,
s =1,...,8 and let p = fs(h) = ash® + bsh + cs,
s = 1,...,5, be the parabolas fitting in the least-
squares sense the function ©(h) in neighborhoods of
points hs (such parabolas are drawn with dashed lines
in Fig. 2). We then define Ah; « 1/|ag|, s =1,...,5,
which is a quantity proportional to the radius of cur-
vature at hg.

2.4 Search for clusters in planes at con-
stant hue-angle

The next step consists in spanning the space
hcL* along cylindrical sectors centered at angles
{hs}s=1,.. s and respectively having angular apertures
{Ahg}s=1,. 5. All the points within each cylindrical
sector are projected onto the plane II; spanned by the
coordinates (¢, L*) and associated with the central hue-
angle hs. According to the criterion defined in the pre-
vious section, the greater the aperture, and accordingly
the radius of curvature, of a peak of the histogram O (h)
in correspondence of hg, the wider the angle Ahs and
therefore the number of colors (points) projected onto
the plane II,.

The low-pass filtering produces a few very prominent
clusters within the planes II; these clusters can be
easily found through an ad hoc implementation of the
k-means algorithm [13, 14] which is detailed in Fig. 3.

It can be readily proven that, to a broad extent,
the final number of segments does not depend on the
threshold 75, but it does depend on the two thresholds
71 and 7 of the clustering procedure of Fig. 3.



fors=1tos=S
are disposed in two vectors ¢, £; € RY*;

point of II;

extraction order;
forl=1tol =D,

> define y(I) = (cs(p, (1)), €s(p,(1)));

let k(i) € Ks denote the closest seed;
if d(i) >n
then

else

associated weight are respectively updated as

> define IT; = {(¢, L") : hs — Ahs/2 < h < hs + Ahs/2}; let D, be the number of points (¢, L*) belonging to II; which
> compute the normalized distribution vector w, € Q)%,, || ws ||= 1, containing the number of image pixels per each
> compute the baricenter of the data in the plane I, as 3, = (w!es,w? £s);

> sort the vector ws in descending order and define the vector p, € Nﬁst] containing such ordering;

> set B, as the initial seed for clustering in the plane II;, associate it with a weight 0, and initialize with them, respectively,
two ordered sets Ks C R2 and W) C Qy,1; whose elements are dinamically ordered according to their insertion or

> compute the minimum distance d(i) between y(I) and the cluster seeds in the set K; as d(i) = mi]lré | y() — ks ||;

> add y(I) to the set K; as a new seed and its associated weight w;(p, (1)) to the set W(¥);

> y(l) belongs to the cluster defined by ks (i); this induces the shifting of the seed ks (i) whose new position and

Ks€

> define m = min(s, j) and » = max(s, j);
> update

(K) (7 ;
rali) = L DO 0D g4 6) = w0 + w0, (0,0
ws (1) + ws (p, (1))
> compute the minimum distance d(j) between k(i) and the other seeds in K; as d(j) = min || ks(?) — ks ||
wams (i)
if d(j) < 7=
then

> the clusters associated with the seeds k(i) and ks(j) must be merged together and the position and weight
of the new resulting cluster are computed according to the following procedure:

w (i)ks (6) + wi () ks (5)

and  w{™(m) = wi (i) + wi (j);

Ks(m) =

end
end
end
end

) (7 )
ws (1) + ws*(J)
> remove the seed k(M) from K and its weight w(™ (ar) from W),

(K)

Figure 3. Algorithm for k-means clustering in the planes II;, s =1,...,5.

In fact, the parameter 7, determines the average dis-
tance among clusters within the planes II; whereas the
parameter 7, is related to the average radius of the
clusters, regarding them as circles.

The number of segments wanted in an image may de-
pend on the particular applications and these thresh-
olds should to be chosen according to some suitable
criteria on the segmentation coarseness. For instance,
in the examples reported in this paper, we have experi-
mentally found that a number of final segments on the
order of 15 may be obtained by setting 74 = 25 and
Ty = 20.

2.5 Palette color matching

At the end of clustering procedure we end up with
a limited number of representative colors C"' (usually

C" < 20) in the heL* space which are projected back to
the RGB space and arranged into a new color palette
P of size C" x 3; the final segmented image is rep-
resented as Z = {Q®, P}, which is obtained by
matching the entries of P with those of P in
the L*u*v* space and re-indexing the matrix Q) as
a new matrix Q®’. These operations as well as the
post-processing, which basically consists in performing
a median filtering of @', can be found in [10].

Fig. 4 shows the segmented versions Z of the two
color images of Fig. 1, where the segments (C" = 14 in
both cases) are separated by white borderlines.

It turns out that our algorithm may effectively sep-
arate homogeneous regions of color images. Nonethe-
less, some areas appear to be oversegmented, mainly
because of shadows, highlights, and reflections. This



Figure 4. Original color images of Fig. 1 with borderlines drawn

segments in both examples).

is generally inavoidable with segmentation algorithms
operating in some feature space without any physical
model of the interaction of light with color. Physics
based techniques for color segmentation may be found
in the references of [6, 7].

3 Conclusions

We have presented an original algorithm for unsu-
pervised segmentation of color images based on their
low-frequency content. Indeed, the low-pass filtering
of color images produces smooth segments and sharp-
ens histograms of color attributes. Our algorithm op-
erates in the cylindrical representation of the L*u*v*
color space where it finds representative colors by deter-
mining first the main hue families, through histogram
thresholding, and then the main clusters on planes at
constant hue, by means of k-means clustering.

We have reported and discussed two examples which
confirm the effectiveness of our technique.
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