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Abstract

Segmentation is the low-tevel operation in image processing
which pariitions an image into disjoint and homogeneons
regions. [n this paper, we consider segimentation of color
images, a task which plays « very important role in many
multimedia applications concerned with color informuation,
In partictilar, we review the main contriltdions in tis field
in the past few years,

1 Introduction

The essential goal of segmentation is to decompose an
image into parts which should be meaninglul for a ceitain
application.  Tn many multimedia applications color seg-
menttation plays an important role. For instance, in digifal
{ibraries large collections of images and videos nced to be
catalogued, ordered, and stored in order to efficiently browse
atl retrieve visual information [ 1, 2]. Color and texture are
the two most important low-tevel attributes used for eonfent-
based retrieval of information in images and videos, Be-
cause of the complexity ol the problem, segmentation with
respeet to hath calor and texture 15 often vsed for indexing
and managing the data. Another example is in the trans-
mission of information over the Infernet. Nowadays, huge
streams of multimedia data circulate over the Internet where
the limited bandwidth available creates the need for data
compression. Current technology provides coding schemes
which try to reduce visnal artifacts by imitating (he [uncticns
of the human visual system |2, 3]. They seek a semantic rep-
resentation of the scene by subdividing it into regions which
ate psyche-visually incaningful. Such a partitioning is ob-
tained through segmentation, Compression is then achicved
by allocating more bits to areas visually more important and
fewer bits to less important details, A further example is in
the latest wireless communication systems which allow the
transmission of both speech and images. Hand-held wire-
less sets are now available which may also display color im-
agery with a limited reselution. Compression issues arise as
in the above example with the further constraint of a lin-
ited availability of bits (or displaying. In this application,
segmenlation is then impoertant nol only for compression but
also Tor coler quantization,

Until a few years ago, segmentation techniques were pro-
posed muainly for gray-level images on which rather com-
preliensive surveys can be found 1o [4]-[7]. There bhas been
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aremarkable growth of algorithms lor segmentation of color
images in this last decade. Most of the times, these are kind
of “dimensional extensions” of techniques devised for gray-
level images; thus they cxploit the well-estublished back-
ground laid down in that ficld. In other cases, they ave ad
hoc technigues tailored en the particular nature of the color
informalion and on the physics of the interaction of light
with colored materials, Here we prescut a briet survey on
these techniques and we propose a classification scheme for
thent Basically, we divide the segmentation algorithms into:
1) feattire-space based fechnigues, 2) image domain-based
tecimiques; and 3) physics-based technigues. Each cate-
gory is then further subdivided. As far as the first two cate-
gories are concerned, the further subdivision is suggested by
the analogous classification schemes proposed for gray-level
images [4]-[7]. Such a classification is not always straigh-
forward since some techniques resort to more than one strat-
egy to achieve sepmentation and thus cannot be sharply cat-
egorized, The techniques of the third calegory instead adapt
specific models of the interaction of light with colored mate-
rials of various nature and therefore they have no counterpart
in the field of gray-level image segmentation.

This work is ovganized as follows. Section 2 presents
the Teature-based techniques; Section 3 reports on the class
of image domain-bused techniques, The algorithms based
on physical models describing the interaction of light with
color are discussed in Scetion 4, Section 5 finally draws the
conclusions,

2 T'eature space-based techniques

Il we assume that color is & constant property of the sur-
face of the objects portrayed in an image and we map each
pixel of the image into & certain color space, it is very likely
that the different objects present in the image will manifest
themselves as clusters or clouds of points. The spreading
of these points within each cluster is mainly determined by
color variations due to shading effects and o the noise of
the acquisition device. On the other hand, if, instead of
mapping pixels into color spaces, we build some g4 hoc his-
Lograms upon color features, such as hue, for instance, it is
likely that the objects will appear as peaks within these his-
tograms. Therelore, the problem of segmenting the objects
of an image cin be viewed as that of finding some clusters,
according to the first stralegy mentioned above, or as (hat of
finding the peaks of some lislograms, according to the sec-
ond siralegy. Fhese two approaches share 4 common prop-
crty: they work in a certain feature space and they neglect
the spatial relationships among colors. Tor this reason, we
have decided to group them under the common denomina-
Uon of feature space-Dused technigues; they will be however
separately analized in the following scctions.
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2.1 Clustering

A great many techniques have been preposed in the liter-
ature of cluster analysis [11, 12]. A classical technique for
color image segmentation is the k-means (01 ¢-means) algo-
rithm [13], widely adopled also for veclor quantization and
data compression. Park e, of [14] apply this algorithm to a
pattern space represented by G coordinates while Weeks
and Hague [15] apply it to the 7T 57T space. The k-means al-
gorithm has been mostly used however in its fuzzy version
{fuzzy k-means algorithm) [16]-[20]; a comparison between
k-means and fuzzy k-means clusiering is reported in [21].
The possibilistic approach (o clustering of [22] is closely
relaled to these fuzzy lechniques, ISODATA (Tierative Self-
Organizing Data Analysis Technigues) [12] is another algo-
rithm often used for color space clustering [23, 24]. Co-
maniciu and Meer [25] resort instead to (the mearn shift al-
gorithm which is a nonparametric procedure for estimat-
ing density gradients of paltern distributions. Competitive
learning Dased on the least-square criterion is ctuployed in
[26, 27] wheveas the theory of connected components {28] is
adopted by Wang et al. in [29]. An original teehnique, pro-
posed by Yung and Lai [30], adopts the constrained gravi-
tational clustering. The RGB space is represented in a Lree
strucwre by Uchimura in [31] and clustering is achieved by
simplification of the tree. Kehlarnavaz ef al. choose a 2D
color space called geodesic chromaticity in which they in-
troduee a mudti-scale clustering; this algorithm determines
the prominent color clusters through their lifetime [33]. Shi
and Malik [34] and Shi er ol {35] tackle image scgmenla-
tion via clustering as a graph partitioning problem, Wu and
Lehay [36] originally devised an algorithm for segmentation
based on the mirimun cot of the graph vepresenting an iny-
age in a certain feature space. In [34] and [35} the aothors
further develop this idea and veport an interesting technique
for {inding a normalized version of the minimum cut. More-
over, Shah [37] formulates the analyiic analog counterpart
of the graph-theoretic formulation given above, Lucchese
and Mitra [38] present a technique which first {inds clusters
in the w'v’ chromaticity plane and then associates them with
proper luminaace values, respectively, with a 21y and a 1D
k-means algorithm.

2.2 Adaptive k-means clustering

A special classification has to be devoted 1o a class of seg-
mentation algorithms that combine the idea of k-means clus-
tering with the desirable propertics of local adaplivity to the
color regions and of spatial continuity. Tn this sense, this
class of algorithms might be regarded as lying in between
the feature space-based techniques discussed liere and the
image domain-based techniques to be considered next. The
traditional clustering techniques considered in the previous
section classify pixels into clusters based only upon their
color; each cluster is then characterized by a constant color
value and no spatial constraints are imposed. [n [39] Pappas
introduces a gencralization of the k-means clustering algo-
rithm which is adaptive and includes spatial canstraints; this
algorithm considers the segmentation of gray-level images
as o maximwn a posteriori probability {MAP) estimation.
The extension of this technique te color images is proposed
by Chang er al. in [40). A Gibbs Random Field (GRF)
[41, 42] is used as an image prior to model and enforce spa-
tial homogeneity constraints, Saber ef af. [43] extend the
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algorithm of [40] to synergically combine color image seg-
mentalion and edge linking; in particalar, they apply a split-
and-merge strategy (sce Scetion 3.1 on the regions of the
segmented map so as to enforee consistency with the cdge
returned by color edge detector (sce Scetion 3.3). Luo ¢f al.
in [44] modily the algorithm of [40] (o incorporate a color
space called Lt (instead of the RGBY and a certain color
difference that can be defined within (s space; they claim
that with thesc provisions their algorithm can return segmen-
tations physically more coherent, The same authors in [45]
extend the algorithm of [40] by introducing in it derivative
priors and by combining both region-based and edge-bused
statistical forces tn sepmentation,

2,3 Histogram thresholding

Histogram thresholding is among the most popular tech-
niques for segmenting pray-level images and several strate-
gics have been proposed to implement it {4]-18]. In fact,
peaks and valleys of the 113 brighiness histogram can be eas-
ity idenlified, respectively, with objects and backgrounds of
gray-levcl images. In the case of color images, things are
a litlle more compiicated since one has to identify different
parts ol a scene by combining peaks and valleys of three
histograms or by pavtitioning a 3D histogram. A common
problem with the histogram-based techniques is that often,
becausc of naise, the profiles of the histograms are rather

Jagged giving risc to spurious peaks and thus o segmen-

tation ambiguitics; to prevent this from bappening, some
smoothing provisicns are usually adopted.

Celenk and Uijt de Hang [46] indipendently threshold
three histograms based on BB coordinates by maximizing
within-group variance and combine the three resnlts with o
predicate logic function. Shafarenko er al. [47] vse a wa-
tershed algorithn [48] to scgment either the 21 or the 31D
calor histogran ol a color image; the histograms are built
from L*u™¢* coordinates and “coarsencd” through convolu-
tion with a spherical window to prevent oversegmentation,
Tseng ef al. [49] use only hue formation and suggest a
circular histogram thresholding of such attribute. The bis-
togram smoothing is achieved by mcans of a seale-spuce

Jfilter [33]. The approaches of [50]-] 53] have in common the

pactition of a cylindrical color space representing hue, satu-
ration, and intensity into chromalic and achromalic regions,
The former is scgmented by using (he hue histogram and
the latter is segmented by using the intensity histogram. A
scale-space filtering is adepted in [52]. A similar approach
is followed also by Bobottka and Pitas {54] who single out
fuces from color images by defining approprizte domaing
corresponding to skin-like regions within the .SV space;
by disregarding the value V' {luminance), robusiness is ob-
tained against changes in illumination and shadows, Guo
ef «l. [55] suggest an endropy-bused threshoiding which as-
swmes that samples or patterns in the feature space L*u*v*
arc generaled by two distinel sources called mode and veal-
ley; first they classily patterns in either categories by using
entropy thresholding and then they determine the number of
maodes in the feature space with amodified Akaike s informe-
tion criterion. Saber ef al. [36] model the distribution of the
chrominance components of the ebjects in a scene as Gaws-
stan probability density functions (PD{s) allowing this way
an adaptive seiting of the object-class (wesholds, Liu ef ol
[57] devise an adaptive threshold function for both RGE
and JITST spaces by using B-splines; they can sepurate cell
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nuclei by means of this thresholding function which is ob-
tained in a prelimiary fearning phase, Lucchese and Mitra
[58] suggest smoothing the hue histogram in L*u*v* coor-
dinates by working with the low-low band of the wavelet
transform of the image undergoing segmentation.

3 Image domain-based techniques

All the segmentation algorithms of the previous section
exclusively operate in some feature spaces. Thus the re-
gions {segments) they return are expected fo be homoge-
neous with respect to the characteristics represented in these
spaces; however, there is no guarantee at all that these re-
gions have also spatial compactness, which is a second de-
girable property in scgmentation applications besides homo-
geneity. In fact, cluster analysis and histogram thresholding
account in no way for the spattal locations of pixels; the de-
scription they provide is global and it does not exploit the
important fact that points of a same object are usually spa-
tially close due to surface coherence [8]. On the other hand,
if pixels are clustered exclusively on the basis of their spa-
tial relationships, the end result 1s likely to be with vegions
spatially well connected but with no guarantee that these re-
grons are also homogeneous in a certain feature space. In
the literature of segmentation of gray-level images, a great
many techniques have been suggested that try to satisfy both
feature homogencity and spatial compactaess at the same
time [4, 6]. The latter is ensured either by subdividing and
merging or by progressively growing image regions, while
the former is adopted as a criterion to direct these two pro-
cesses [4, 5, 6, 8]. According to the strategy preferred for
spatial grouping, these algorithms are usually divided into
split-and-merge and region growing techniques; this distine-
tion may also be extended to the corresponding algorithms
for color image segmentation which will be analized in the
following sections. In the class of image domain-based tech-
niques we have considered also a family of algorithms which
exploit spatial information in neural network classifiers and
the group of algorithms that partition images by finding the
edges between homogencously colored regions.

3.1 Split-and-merge technicues

A common characteristic of these methods is that they
start with an initial inhomogeneous partition of the image
(usually the initial segment is the image itself) and they keep
performing splitting until homogencous partitions are ob-
tained. A common data structure used to implement this
procedure is the quadiree representation (8, 12] which is a
multiresolution scheme. After the splitting phase, usvally
there exist many small and fragmented regions which have
to be somehow connected. The merging phase accomplishes
this by associating neighboring regions and guaranteeing
that homogencity requirements are met until maximally con-
nected segmenis can be produced. The region adjacency
graph (RAG) is the data structure commonly adopted in the
merging phase [8, 12]. In many algorithms, smoothness and
continuity of color regions are enforced with the adoption of
a Markov Random Field (MRF) (41, 42] which basically is a
stochastic process characterized by the following property:
the conditional probability of a particular pixel taking in a
certain value is only a function of the neighboring pixels, not
of the entire image. Besides, the Harnunersiey-Clifford the-
orem [42] establishes the equivalence between MRF's and
Gibbs distributions. -
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Panjwani and Healey [59] model color texture in RG B
componenis by means of a Gaussian Markov Random Field
{(GMRF) which embeds the spatial interaction within each
of the three color planes as well as the interaction between
different celor planes. In the splitting phase, the image is re-
cursively partitioned into square regions uniif each of them
cantains a single texture described by a color GMRF model.
This phase is followed by an agglomerative clustering phase
which consists of a conscrvative merging and of a siepwise
optimal merging process. Liv and Yang [60] define instcad
an MRF on the quadiree structure representing a color im-
age and use the above mentioned equivalence with a Gibbs
distribution. With a relaxation process | 5] they control both
splitting and merging of blocks in order to minimize the en-
ergy in the Gibbs distribution; this is shown to converge to a
MAF estimate of the sepmentation, Numerous are the vari-
ations in the split-and-merge strategies. In {61] a k-means
algorithm is used for both classtfying pixels in the spliiting
phase and grouping pattern classes in the merging phase. In
[62] the splitting is initially performed by segmenting the
luminance and then refined by checking the chrominance
homogeneity of the regions obtained; the merging is based
on an ad hoc cost function, In [63]) the splitting is oper-
ated with the watershed transform [48] of the gradient image
of the luminance component simplified by a merphological
grayscale opening {8, 9, 10]; the merging step is realized
with a Kohonen's self-organizing map (§OM) [12]. Sha-
farenko et af, |64} apply instead the watershed transform
to the L*u"v* gradient of images and merge the patches of
the watershed mosuic according to their ¢color contrast until
a termination criterion is met. A similar splitting approach
is adopted in [65] whereas the merging phase is performed
by iteratively processing the RAG constructed upon the re-
solting oversegmented regions. Barni ef al. {70] implicitly
implement 4 split-and-merge strategy with a fuzzy expert
system. Gevers et al. [66, 67] believe that split-and-merge
algorithms based on a quadtree structure are not able to ad-
Just their tessellation to the underlying stracture of the image
data because of the rigid rectilinear nature of the quadtree
structure; therefore, they suggest replacing it with an incre-
mental Delaunay triangulation [12]. A further aliernative
possibility is to use Voronoi diagrams [12] as proposed by
Schettini et al, (68] and by [toh and Maisuda [69].

Broadly spezking, we can fit to the class of split-and-
merge technigues also some algorithms based upon differen-
tial equations and pyramidal data structures, At first glance,
they do not appear to belong to this category since the strate-
gies they adopt to achieve segmentation are rather different
from those reviewed so far; but a more careful look into
them will bring to light an underlying split-and-merge idea.

Pollak et al. [71] and Gao ef al. [72] apply stabilized
inverse diffusion equations (SIDE's) (73] to segmentation
of vector-valued images. The finest possible segmentation
is initially assumed; each pixel represents a separate re-
gion. During an evolution process driven by diffusion equa-
tions, two neighboring regions are merged whenever a cer-
tain color difference equals zero.

The usefuiness of pyramidal representation of images for
segmettation was pointed out by Burt et. al (74} about two
decades ago and ever since a number of methods to segment
images by working with pyramids have appeared. It is well-
known that pyramids are data structures in which images
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can be represented at diffevent resolutions (fine-to-coarse)
hy means of tapering layers recursively obtained by aver-
aging and downsampling their respective underlying layers
(the finest layer at the bottom of a pyramid is the image it-
self) [8]. Thus father-son relationships can be natucally in-
lroduced between adjacent layers of pyramicls; segmentation
can be achieved with a pyramid-Iinking process [74] based
on 4 tree structure where the values of the fathers at a cor-
tain high layer arc propagatcd down to the sons of the low-
est level, The construction of a pyramid can be regarded as
a splitting phase while the subsequent linking process can
be seen as a merging phase. Recently, Lozano and Laget
{75] have suggested fraetional pyramids for segmentation
of color images and Ziliani and Jensen [76] have proposed a
modified version of the linking approach of [74].

3.2 Region growing techniques

An homogencous region of an image may be obmmc(l
through a growth process which, %lmlmg from & preselected
sced, progressively agglomcrntes points around it satisfying
a certain homogencity critetjon; the growth process stops
when no more points can be added to the region. The re-
gion grewing techniques are mainly aimed at processing sin-
gle regions; ievertheless, by combining different and sul-
sequent growth processes, one may agglomerate in regions
all the points of an image, abtaining this way 2 segmenta-
tion of it. Aller a region growing procedure, there might
exisl some very small regions or there could be two er more
neighboring regions grown at different times cxhibiting sim-
ilar attributes, A common post-processing provision con-
sisls therefore in a merging phase that climinates such in-
stances by generating broader regions. The region growing
can be considered a sequential clustering or classification
process [5]; thus the dependence of the results on the order
according to which the image points are processed has to be
accounted for. The main advantage offered by this kind of
techniques is that the regions abtained are cerlainly spatially
connected and rather compact, As for the clusiering tech-
niques of Section 2,1, where a similar problem arises in the
feature space, also for the region growing techniques one is
faced with the problém of choosing suitable seed points and
an adequate homogeneity criferion,

As far as gray-level image segmentation is concerned,
several region growing strategics can be found in the litera-
ture [4, 5, 6]. Tor color images some new interesting strate-
giex for region growing-based segmentation have been re-
cently proposad. Tremean and Borel {77] suggest several
different homogencity criteria operating in RG'B coordi-
nates. In a first phase, they genecrale a cerfain number of
connected regions with a growing process and, in a second
phase, they merge all the regions having similar color dis-
tributions; after the second phase, the regions are theretore
coloricatly similar but they may be disconnected. Kanpi [78]
develops a scgmentation algorithm which resorls (0 both
color and intensity information. The markers (seeds) are
extracted from inlensity via morphological open-close op-
erations und from color through quantization of the HSV
space; joint markers ave defined as the scts comprising both
kinds of markers, A region growing process based on a
watershed algorithm starts rom these joint markers. A ve-
gion merging process eventually reduces the number of scg-
mented regions, In [79], the initul sceds are generated by re-
taining the significant local minima of the magnitude of the
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color image gradient; however, with this algorithm the (wo
following situations might arise: 1) there i3 more than one
seed per region; 2) small objecls do nat have any sced, The
authors devise a procedurs for obtaining markers baving a
ono-to-one correspondence with the image reglons. The re-
gion growing is performed with a watershed-like algerithm
proposed by the authors and working on the original color
image instead of on a gradient image, Deng er ol [80]
determine 2 limited munber of color classes within an im-
age through color guantization and propose a criterion for
“good” segmentation based on them. The application of this
eriterion within local windows and at multiple scales gener-
ates J-images in which high and low values respectively cor-
tespond to possible region boundarics and to region conters.
A region growing method is adopted where the sceds are the
valleys of the J-images; the resulting oversegmentation is fi-
nally removed with a merging phase. Rehrmann and Priese
[81] suggest using a special hexagonal topology in o hierar-
chical region growing algorithm which results indipendent
of the starting point and of the order of processing. Ikone-
makis er al. [82] develep an algorithm to segment both gray-
scale and videophone-type color images; the procedure is o
standard region growing process fellowed by region merg-
ing, Color homogeneity is tested willy measurements in the
HST gpace.

If one define a ciuster as a *“‘collection of touching pixcls
that have almost the same color while the change in color is
gradual,” the fuzzy nature of the segmentation problem can
be emphasized, Moghaddamzadeh and Bourbakis [83, 84]
have adopted this vision of the problem and advanced two
algorithms working in G coordinztes to implement a re-
gion growing strategy for both fine and coarse segmenta-
tion of celor images. A fuzzy approach for region grow-
ing scgmentation is adopted also m [85] whosce algorithm
is based upon several linguistic rules defining relationships
among hue, chroma, and intensity, Colantoni and Laget [86]
compare the results of four different algorithms obtained by
the various combinations of region growing and watershecl
transform in a prescgmentation step and in the segmentation
algorithm. Tmages are represented in L*e*b* coordinates
and handled by means of RAG's and contour graphs.

3.3 Edge-hased techniques

Segmentation can also be obtained by detecting the edges
among regicns. The literature of edge-based segmentation
for gray-level images is rich of techniques [4, 5, 71 and sev-
cral are alsc the algorithms proposed (or detection of dis-
continuities within coler images. Itis well-known that edges
can be found in gray-level images by resorting to functions
approximating pradients or Luplacians of images, which are
of course scalar functions. Gradient functions for color im-
ages may be basically defined in two ways: 1) by embedding
in a single measure the variations of all three color channels
or 2) by computing the gradients of the single channels and
by combining them according to certain criteria.

The first approach is based on the first fundamental form,
which in differential geometry constitutes the nwltidimen-
sional extension of the single-valued gradient [87}. Upon
this metric for vector-valued funtions are based the chro-
matic edge detectors of [88] and [89], both operating in
RGD coordinates. Examples of the second approach ate
given instead by [90] and [91], Carron and Lambert {90]
propose three different combinations of gradients of hue,
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saturation and intensity computed in H.57 coordinates, Tao
and Huang [91] find clusters in the RG'B space and com-
pute egdes as the transitions from one cluster to another; the
gradient information in each color channel is computed with
a Sobel operator.

A truly original algorithm for boundary detection is pro-
posed by Ma and Manjunath [92]: they use a kind of predic-
tive coding model to identify the direction of change in color
and texture at any point and at a given scale; this give rise to
an edge flow which, through propagation, converges to the
image boundaries. Perez and Koch [93] gather several argu-
ments in favor of hue as the most important color atiribute
for segmentation; in particular, they demonstrate that, if the
integrated white condition holds, hue is invariant to certain
kinds of highlights, shading, and shadows, Egde detection
is achieved by finding the zero crossings of the convolution
of the hue image with a suitable Laplacian function, Meural
networks in the form of Kohonen's SOM's [12] are used for
contour segmentation in |94] and [95].

In the context of the edge-based techniques we can fit
also the framework for object segmentation based on color
shakes. Snakes or active contours were criginally proposed
by Kass and Witkin {96] and have received great attention
ever since. The classical snakes approach consists in de-
forming an initial contour towards the boundary of an object
to be detected; the deformation is obtained by minimizing a
global energy designed in such a way that its local minimum
is attained in correspondence of the boundary of the object
[97]. The formulation of active contours for vector-valued
images (and thercfore for color images) is due to Sapiro
[97. 98] who defines a new Riemannian metric based on the
first fundamental form. Morcover, Sapiro shows the close
relationships existing bewcen the active contours for color
images, which he calls cofor snakes, and other alporithms
based an partial differentiul equations (PDE's), anisotropic
diffusion, and variational approaches for image segmeita-
tion [33]. Gevers er al. propose instead color invariant
snakes [99] that use color-invariant gradient information to
drive the deformation process; in this way the snakes return
region boundarics rather insensitive to disturbances due to
shadowing, shadows and highlights.

3.4 Neural network-based classification tech-
niques

A class per se is constituied by segmentation techniques
adopting classification techniques based on neural networks.
It is well-known that neural networks are structures made up
of large numbers of elementary processors (cefls) massively
interconnected and performing simple functions [10, 12].
Their design try to imitate the information processing of bi-
ological neural cells, Despite the complexity that in some
cases they require to be implemented, they offer two impor-
tant properties in pattern recognition tasks: high degree of
parallelism, which allows for very fast computational times
and makes them suitable for real time applications, and good
robustness to disturbances, which allows for reliable esti-
mates. Another interesting feature is that, in the case of
image segmentation, neural networks permit to account for
spatial information; on the other hand, one has to know be-~
forehand the final number of segments within an image and
to perform a preliminary /earning phase during which the
network is trained to recognize patterns, Usually the num-
ber of classes is derived with some a priori knowledge on
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the problem or in a preprocessing stage.

A number of algorithms have been proposed for seg-
menting gray-level images with neural networks [7]. We
will discuss next some of the neural network-based tech-
niques offered for color image segmentation. Campadelli
el al, [1(0] present two segmeniation algorithms based on
the idea of [ 101} of regarding the segmentation problem as
the problem of minimizing a suitable encrgy function for
a Hopfield network [12]. A similar approuch based on the
minimization of an energy function associated with a Hop-
field neurat network is undertaken in [102], where a pre-
classification algorithm spots out some regions of interests
{ROF's) in a biomedical 12G 1 image, and in {103], where
an active-region segmentation algorithm is presented, Okii
et al. [104] present an algorithm based on a three-layered
neural network for segmentation of medical stained images,
where three are the possible classes, nuclear cell, intersti-
tium, and background represented by three different colors.
In this regard, we point cut that the adoption of three layers
is very common in neural networks since this structure is ca-
pable of implementing arbitrarily complex decision surfaces
composed of intersecting hyperplanes in the pattern space
[10, 12]. Classical is also the learning phase adopted in
[£04] which is obtained with a hack-propagation algorithm
[L0, 12]. Similarly, Funakubo {105} uses two three-layered
neural networks with learning through back-propagation to
separate cells from backgreund in medical images. The aim
of [106] and [107] is slightly different from the usual one
of segmentation and it consists in determining the colors
of inks used to generate a multi-colored picture ereated by
printing dots of cyan, magenta, yelow, and black, Nine pos-
sible combinations arise which constitute the output of a hi-
erarchical modular neural newwork. Other examples of neu-
ral networks used for color segmentation are [ |O8)], where &
neural network is trained to identify the color of u desired
object for automated tracking purposes, and [109], where a
neural gas nerwork is employed.

4 Physics-based techniques

All the algorithms examined so far are certainly prone to
segmentation errors if the objects portrayed in the color im-
ages are affected by highlights, shadowing and shadows. All
these phenomena cause the appearance of color of uniformly
colored surfaces to change more or less drasticatly, whence
those algorithms are very likely to return oversegmented re-
gions, The only way to overcome this drawback is to anal-
yse how light interact with colored materials and to intro-
duce models of this phystcal interaction in the segmentation
algorithms. This motivated the name of physics-based tech-
niques given to them. The mathematical tools they use do
not significantly differ from those adopted by the algorithms
of the previous section; the major difference with respect to
those is the underlying physical model accounting for the
reflections properties of colored matter.

Colored materiats may be divided into three main cate-
garies: optically inhomogencous dielectrics, optically ho-
mogeneous dielectrics, and metals. A milestone in the field
of physics-based segmentation was laid by Shafer in [110]
where he introduces the dichromatic reflection model for in-
homogeneous dielecirics; it states that the total radiance of
the light reflected by an inhomogeneous dielectric may he
split into two contributions, one stemming from the object’s
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surtace, and the other from the underlying objeeCs bulk, Be-
sides, cach of these terms can he factored info a geometric
contribulion and a spectral power distribution. This model
may cifcelively explain some particular shapes of elusters in
color spaces. Based upon this, Klinker ef «f, [111] set up an
algorithm (using either a split or a region-growing stratcgy)
which makes some optical hypotheses relating objects’ col-
ors, shading and highlights and try to justify with them the
shapes of clpsters in the RG B space, ‘The main limilation
of this technique is that it can be applied only lo inhomo-
gencous dielectrics. Simplicity and effectiveness of repre-
sentation have made the dichromatic reflection model very
popular and many physics-bascd technigues for scginenta-
tian resort 1o 1 [[12]-[115]. Tsang and Tsang [116] use the
dichromatic reflection moclel in the HSV space to detect
cdges,

A very major conlribution related with the modet pro-
posed by Shafer {s represented by the work ol Bajesy ef al,
[117]. They propose a celor rellection model based on the
dichromatic reflection model for diclectric malerials and on
a particular color space, called § space, built upon (hree or-
thogonal hasis funetians. They prove that it is possible Lo
separate specular and diffuse interface reficctions and some
inter-reflections from body reflections since they produce
clusters with very peculiar shapes in the 8 space. The algo-
tithm suggested in [117] allows segmentation of uniformly
colored dieleetrie surfaces under singly colared scene illu-
mination,

Healey [L18] proposes the unichromatic reflection model
for metals by supporting it with extensive experimental re-
sults. This model states that metals give rise to a relleclance
function which stems only {rom their surfaces and which,
analogously to the dichromatic reflection model, can he sep-
arated into a geometric factor and a purely speclral compo-
nent. This independence of wavelength and geometry in the
reficelance function bints thal geometric effects in a scenc
can be factored out of color pixel values in an image (nor-
matized colors). In [LI8] and |119] Healey comes up with
two segmentation algorithms based on such a normalization
of color which can handle inhomogeneous dielectrics and
medals at the same time.

The methods discussed above are able to handle one or
two classes of materials (inhomogencous diclectrics and
metals) in the presence of a single illunination souwrce, A
maore general and more complicated algorithm which also
takes into account for muliple illuminalions is presented
by Maxwell and Shaler in [120). They introduce a gencral
framework for scgmentation of complex scenes which for-
mulates multiple physical hypotheses about image forma-
tion, These hypotheses define broad clusses for shape, il-
lumination, and material properties of simple image regions
obtained through an initial rough segimentzstion, A ranked set
of possible segmentations is gencrated by analyzing, merg-
ing, and filtering the hypotheses; the pruning of such set fi-
nally yiclds a resteicted number of plausible segmentations
(interpretations) of the scene.

5 Conclusions

In this paper we have presented an overvicw of algorithms
for color image scgmentation, which represents an {impor-
tant issue for many multimedia applications. A universal al-
gorithm for segmenting images certainly does not exist and,
on the contrary, most techniques ave fajlored on particular
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applications and may work only under certain hypothescs,
Some anthors {60, 121] have proposed heuristic measures
far gquantitative evaluation of segmeuntation results, How-
evel, the poodness of a segmentation result depends on 50
many factor such as homogeneity, spatial compactness, con-
tinuity, correspondence with psycho-visual perception [7],
etc., that a single measure is unlikely to capture all of them
in o meaningfnl way. Such goodness should be evatuated by
the uselulness that segmentation can (rovide in the particu-
lar application one is interested in,
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