oy

EURASIP

ECMCS'99
EURASIP Conference
DSP for Multimedia Communications and Services
Krakow, 24-26 June

VECTOR SD-ROM FILTER FOR REMOVAL OF
IMPULSE NOISE FROM COLOR IMAGES

Michael S. Moore', Moncef Gabbous®, and Sanjit K. Mitra*
'ECE Department, University of California, Santa Barbara, CA 93106,
e-mail: msmoore@iplab.ece.ucsb.edu
2Tampere International Center for Signal Processing
Tampere University of Technology, FIN-33 101 Tampere, Finland
e-mail: moncef@cs.tut.fi

ABSTRACT

One well-studied image processing task is the removal
of impulse noise from images. Impulse noise can be in-
troduced during image capture, during transmission, or
during storage. The signal-dependent rank order mean
(SD-ROM) filter has been shown to be effective at re-
moving impulses from 2-D scalar-valued signals while pre-
serving many details and other features. The algorithm
is based on a state-estimation approach where first the
state of each sample is determined and then an appro-
priate replacement is calculated, if required. Excellent
results have been obtained for both two-state and multi-
state versions of the filter. However, many images are
not scalar-valued, but rather vector-valued. For example,
color images have three values associated with each sam-
ple location. The scalar SD-ROM algorithm uses sorted
window values to estimate the state of a sample. There
are many ways to sort vectors. In this paper, we de-
scribe the strengths of the scalar SD-ROM algorithm and
the challenges inherent in developing a vector SD-ROM
algorithm. We will also present simulation results ob-
tained using corrupted color images for a proposed vector
impulse-removing algorithm.

1 INTRODUCTION

One of the most common image processing tasks involves
the removal of noise from images. Noise can be intro-
duced during image capture, during transmission, or dur-
ing storage. However, most images share characteristics
with noise sources to a greater or lesser degree. There-
fore, at its core, this task requires a balance between the
improvement gained by a particular filter as noise is re-
moved from an image and the degradation introduced by
a particular filter as the noise-like components of the orig-
inal image are also removed.

As aresult, many different types of filters have been de-
veloped to handle different kinds of noise sources[2]. One
common noise model corrupts a signal by introducing im-
pulse noise. In this case, most of the original samples
are unaltered, but the few samples that are changed can
vary drastically. One group of filters, collectively called
decision-based filters[2, 3] or state-conditioned filters[4],
estimates the state of the sample in question. If the sam-
ple is determined to be uncorrupted, it is passed through
the filter unchanged. If the sample is corrupted, an ap-
propriate estimate is chosen to replace it.

The signal-dependent rank order mean (SD-ROM) fil-
ter has been shown to be effective at removing impulses
from 2-D scalar-valued signals[4]. Excellent results were
presented for both a two-state and a multi-state version
of the filter. However, the proposed algorithms were only
applied to grayscale images. Most images available today
are in color. If you consider each pixel in a color image
as a vector with three components, grayscale detection
techniques can no longer be directly applied.

In this paper, we discuss several algorithms that at-
tempt to extend the grayscale SD-ROM algorithm into a
vector-valued environment. In the next section, we de-
scribe the strengths of the SD-ROM detection scheme
that we would like to preserve in a vector algorithm. We
also discuss the challenges inherent in working in a vector-
valued domain. In the third section, we describe an SD-
ROM-like vector algorithms. The fourth section presents
some simulation results for the various algorithms. Fi-
nally, the last section sums up our conclusions.

2 BACKGROUND

This section introduces the grayscale SD-ROM algorithm
and discusses some of the considerations involved in using
the algorithm in color images.

2.1 Grayscale SD-ROM

The SD-ROM algorithm was originally proposed as an al-
ternative to the median filter. The filter has been applied
in several applications, such as removing impulses[4],
streaks[5], and scratches from images and impulse noise
from audio signals[6]. The detection algorithm is fully
described in many of these papers[4, 5, 6]. For brevity,
we will just summarize the major steps in the two-state
algorithm here:

1. A three-by-three window centered around the pixel-

of-interest is extracted.
2. The surrounding eight pixels values are sorted.
3. Signed differences are calculated between the center

pixel and the sorted values. The differences are cal-
culated differently for the smaller four values and the

larger four values.
4. The signed differences are compared to positive

thresholds. Four thresholds are applied with mirror
symmetry to the four smallest differences and the

four highest differences.
5. If any threshold was exceeded, the center pixel is

replaced. If no thresholds were exceeded, the center
pixel is passed unchanged.

The SD-ROM algorithm is tailored for impulse re-
moval. Impulse noise, as modeled, corrupts a subset of
pixels in an image completely. This is in contrast to Gaus-
sian noise sources which corrupt all pixels slightly. There-
fore, the algorithm tries to determine whether a pixel is
corrupted or not before applying correction. The decision
is based on a comparison between the pixel-of-interest and
the distribution of surrounding values, some of which may
also be corrupted. The challenge for impulse detection
algorithms is to distinguish between impulses and image
features with wide distributions. In the SD-ROM algo-
rithm, the thresholds allow the response to both impulses
and impulse-like image features to be tuned.

Many existing impulse-removal filters rely on a sorted
window of surrounding values. However, few use the
difference between the center pixel and its local neigh-
borhood. The signed differences represent the degree to
which the center pixel is an outlier compared to the other
pixels. If the center value is outside either the smallest
or largest surrounding values, it is probably an impulse.
Therefore, a small threshold is applied to these differ-
ences. If the center value is inside the extremes, there is
a smaller chance that it is an impulse. Thus, the thresh-
olds increase for the differences closer to the middle of the
sorted neighborhood. Figure 1 demonstrates this proce-
dure graphically for one example.

2.2 Color Issues

Color images are much more common than grayscale im-
ages and can be just as susceptible to impulse noise. Our
goal is to design an algorithm similar to SD-ROM for
color images. Ideally, the algorithm would have the fol-
lowing characteristics:

Figure 1. Graphical SD-ROM example. From left to
right, you see the original window, the sorted values, the
differences with thresholds, and the result. The second
threshold was exceeded, so the center pixel was replaced.

1. An order-based detection/estimation approach to
impulse noise removal.

2. A method for tuning the algorithm performance so
that original image features can be preserved to a
greater or lesser degree.

3. An output equal to one of the inputs.

The first two characteristics contain the strengths of
the original SD-ROM algorithm. The third item is nec-
essary to avoid the generation of false colors in the filter
output.

If the colors associated with each pixel are considered
to be the elements of a vector, then the algorithm will
have to sort vector-valued elements. There are many
ways to sort vectors. Several algorithms have been pro-
posed for removing impulses from color images. These al-
gorithms take various approaches to sorting the vectors.
Some common design choices are:

1. Distance versus direction. To order vectors, you need
to characterize each vector in terms of a single num-
ber. The numbers can then be sorted. Various al-
gorithms use the Euclidean distance between vectors
[7], the angle between vectors [8], or both [9].

2. Minimum total distance versus reference vectors.
Both the distance and direction measures are ap-
plied to just two vectors. You still need some method
of choosing which pairs of vectors to compare. One
method is to sum the measure for every possible pair
of vectors. The totals are then used to sort the vec-
tors [7]. Another approach is to choose a reference
vector and compute the measures for the other vec-
tors relative to the reference.

3. Color space transformations. Most color images are
transmitted in a red-green-blue (RGB) format. Al-
though convenient for capture, transmission, and dis-
play, this format does not reflect the ability of the
human visual system to distinguish colors. Some
methods use a nonlinear transformation, such as the
CIE-LUV color space conversion, to work in a space
that is more uniform with respect to human color
perception.

3 VECTOR SD-ROM

In our initial implementation of a vector SD-ROM algo-
rithm, we chose to use the total distance between vectors
for sorting and we left the vectors in the RGB color space.
Specifically, the algorithm:

1. Calculates the distance between all possible pairs of
the eight surrounding pixel vectors in a three-by-
three window.

2. Sorts the vectors using the sum of the distances to
all the other vectors. The pixel with the smallest
total distance is the vector median of the surrounding
pixels.

3. Compares the distances between the center pixel and
the four smallest of the sorted vectors to a set of four
increasing thresholds.

4. If any of the thresholds was exceeded, the output
of the filter is the vector median of the surrounding
values. If no threshold was exceeded, the center pixel
is passed unchanged.

This algorithm satisfies all of the requirements in sec-
tion 2.2. With small thresholds, the filter response is
similar to that of a vector median filter. However, the
vector median filter removes many small details from a
color image. By increasing the thresholds, more detail
may be preserved. Because the vector median of the sur-
rounding values is used as the replacement value, no false
colors are generated by the algorithm.

4 SIMULATION RESULTS

The proposed algorithm was tested using images with ar-
tificially injected impulse noise. All of the original images
were 24-bit, RGB color images. A fixed probability of an
impulse was assumed for every byte in the image. If a
byte was replaced by an impulse, the impulse could take
any value in the range [0,255] with uniform probability.
Because each byte was considered independently, a given
pixel color vector could contain between zero and three
impulses. Figure 2 shows an original image. Figure 3(a)
is the image corrupted with impulse noise.

Each test image was filtered using the algorithm de-
scribed in the last section. The algorithm requires the
selection of four thresholds. Two methods were used to
find the optimum thresholds for each image. The first
approach was to change the threshold manually using a
trial-and-error technique to find the best-looking result.
The second method was to use a search algorithm to find
the thresholds with the minimum mean-square-error be-
tween the filtered and original images.

Figure 3(b) shows the filter output using hand-tuned
thresholds for the Mandrill image with 20 percent cor-
ruption. The output of the vector median filter for the
same input is shown in figure 3(c). Table 1 summarizes
the results, in terms of PSNR, for several images at sev-
eral levels of corruption using the optimization program.
For comparison, the results using the vector median filter
are also included. The vector SD-ROM algorithm out-
performs the vector median algorithm, especially at low
levels of corruption.

| Image | % Corrupt || VMedian | VSD-ROM ‘
Mandrill | 5 22.65 27.38
10 22.43 25.66
20 21.84 23.70
30 21.05 22.15
40 19.85 20.46
Fighter 5 33.37 36.92
10 32.50 35.11
20 30.28 31.89
30 26.79 27.70
40 22.98 23.54
Tulips 5 34.70 39.06
10 33.39 36.44
20 30.23 31.95
30 26.17 27.14
40 22.09 22.72
Lena 5 33.43 39.26
10 32.91 37.15
20 31.62 34.28
30 29.32 30.67
40 26.12 26.71

Table 1. Optimization results in PSNR. The vector SD-
ROM results were calculated using the MSE optimized
thresholds for each example.

5 CONCLUSION

The proposed vector SD-ROM algorithm satisfies the re-
quirements we set for it. It is a vector median-like algo-
rithm, but with more freedom to pass some image details.
It incorporates a detection scheme strongly tuned to find
impulses in images.

As pointed out in section 2.2, there are several design
options that can be used to create variations on this basic
algorithm. However, these choices should be made with
a particular noise source and application in mind. In
future work, we plan to investigate the application of a
color SD-ROM algorithm to bad pixel removal in CMOS
sensor arrays with a color filter matrix.

ACKNOWLEDGMENTS

This work was supported in part by a University of Cal-
ifornia MICRO grant with matching support from Op-
tronix Engineering, Lucent Technologies, Xerox Corpo-
ration, and Tektronix Corporation. Part of this research
was also done as a visiting researcher in the Digital Me-
dia Institute at the Technical University of Tampere, in
Tampere, Finland.

REFERENCES

[1] A. Jain, Fundamentals of Digital Image Processing,
Prentice Hall, Englewood Cliffs, NJ, 1989.

Figure 2. Original Mandrill image.

2]

3]

J. Astola and P. Kuosmanen, Fundamentals of Non-
linear Digital Filtering, CRC Press, New York, 1997.

T. Sun and Y. Neuvo, “Detail-preserving median
based filter in image processing,” Pattern Recognition
Letters 15, pp. 341-347, April 1994.

E. Abreu, M. Lightstone, S. Mitra, and K. Arakawa,
“A new efficient approach for the removal of impulse
noise from highly corrupted images,” IEEE Trans. on
Image Processing 5, pp. 1012-1025, June 1996.

E. Abreu and S. Mitra, “A simple algorithm for
restoration of image corrupted by streaks,” in Pro-
ceedings of the IEEE Symposium on Circuits and Sys-
tems, vol. 2, pp. 730-733, 1996.

C. Chandra, M. Moore, and S. Mitra, “An efficient
method for the removal of impulses from speech and
audio signals,” in Proceedings of the IEEE Symposium
on Circuits and Systems, vol. 4, pp. 206-208, 1998.

J. Astola, P. Haavisto, and Y. Neuvo, “Vector me-
dian filters,” Proceedings of the IEEE 78, pp. 678-689,
April 1990.

P. Trahanias and A. Venetsanopoulos, “Vector direc-
tional filters - a new class of multichannel image pro-
cess filters,” IFEE Trans. on Image Processing 2(4),
pp. 528-534, 1993.

D. Karakos and P. Trahanias, “Combining vector me-
dian and vector directional filters: the directional-
distance filters,” in Proceedings of ICIP, vol. 1,
pp- 171-174, 1995.

Figure 3. Example images: (a) after 20%corruption, (b)
after vector SD-ROM filtering with the thresholds 93,
150, 226, and 234, and (c) after vector median filtering.

