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Abstract

In this work, we present an original technique for un-
supervised segmentation of color images which is based on
an extension, for an use in the u'v' chromaticity diagram, of
the well-known k-means algorithm, widely adopted in clus-
ter analysis. We suggest exploiting the separability of color
information which, represented in a suitable 3D space, may
be “projected” onto a 2D chromatic subspace and onto a
ID luminance subspace. One can first compute the chro-
maticity coordinates (u',v') of colors and find representa-
tive clusters in such a 2D space, by using a 2D k-means al-
gorithm, and then associate these clusters with appropria-
te luminance values, by using a 1D k-means algorithm, a
simple dimensionally reduced version of the previous one.
Experimental evidence of the effectiveness of our technique
is reported.

1. Introduction

Cluster analysis represents one of the classical themes of
statistical pattern recognition and it has found numerous ap-
plications in several fields of image processing; in particu-
lar, it has long been used for image segmentation [1, 2]. The
early contributions, back to the 70’s, mostly dealt with gray-
level images and developed many different algorithms to
cluster sets of features derived from the intensity informa-
tion. In more recent times, such techniques have provided a
solid basis for multispectral clustering as well; among them,
the k-means algorithm, originally devised by McQueen [3],
is one of the most famous. This algorithm has also been
widely used in the fields of vector quantization, where it is
known as the generalized Lloyd algorithm for VQ design
[4], and of data compression, where it is known as the LBG
algorithm after [5].

The clustering-based techniques for color image seg-
mentation normally choose the RG B space as the feature
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space (e.g., see [6]-[9] and references therein). A few meth-
ods use color spaces other than the RG B; for instance, the
CIE L*a*b* color space is preferred in [10]. At any rate,
color clustering is generally performed by working in 3D
feature spaces, with a few exceptions in which 2D feature
spaces are employed [11, 12].

We propose a new procedure that first finds clusters in
the 2D plane containing the chromatic information of color
and successively associates them with appropriate clusters
in the 1D space in which luminance (or brightness) can be
represented. An ad hoc k-means algorithm can be used,
apart from a change of dimensionality, for both these tasks.
For the 2D clustering in the u'v’ chromaticity plane, we
suggest a criterion to adaptively estimate the algorithmic
parameters that best suit the data: we show that the dis-
tance between each pair of chromaticity coordinates and a
baricentric point may be statistically well described by a
Rayleigh probability density function providing in this way
a means for estimating the data spreading. Another feature
of our algorithm is that it handles color images in a palet-
tized format; this allows for a very low computational time
making our unsupervised segmentation technique suited for
real-time applications. The effectiveness of our technique
was experimentally tested on several images and here we
report on some results.

The organization of the paper is as follows. Section 2
details each step of the algorithm and provides some expe-
rimental results. Section 3 draws the conclusions.

2. Segmentation algorithm
2.1. Color representation

For purposes of storage and display, color images are
usually represented and handled in the RGB format ac-
cording to which an image 7 may be defined as 7
{R,G, B}, i.e., as a set of three matrices respectively con-
taining the red, green and blue components of Z. In a
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Figure 1. A color image 7 and its color palette

P s With L = 256 colors.

palettized format, the image Z is instead represented! as
T = {Q,Prar}, where Q € NYIV is a matrix of point-
ers to a look-up-table of colors Pres € R}, being L
the number of possible combinations of the entries of the
three color matrices R, G, B € Ri; 1" . The color palette
P res may be structured as Prgs = [R G B], where R, G,
B € Ry, ,, are, respectively, the vectors containing the red,
green and blue coordinates of the possible combinations of
colors within the image Z. As an example, Fig. 1 shows a
color image 7 and its color palette Prgp with L = 256
colors. We will also use palette representations in different
color spaces; in particular, we represent the palette P zgp in
the XY Z color space as Pxy, = [X Y Z] € Ry through
an affine change of coordinates [13].

It is well-known that important color attributes are re-
lated to the relative magnitudes of the tristimulus values
X,Y and Z (or, equivalently, R, G and B): these quan-
tities are referred to as chromaticities. In order to have at
disposal an (almost) uniform chromaticity space and eas-
ily assess perceptual differences among colors, we have
adopted the u'v’ diagram in which we represent, in vec-
tor form, the chromaticity coordinates of colors as u’ =
4X/(X + 15Y + 3Z) and v/ 9Y /(X + 15Y + 3Z),
dim(v’) = dim(v') = L x 1, (W{),v'(})) € 1,1 =
1,..., L, where quotients between matrices are to be in-
tended as element-wise operations and the symbol T C R2
denotes the convex set of the u'v’ plane encompassed by
the spectral locus [13]. Hence, the palette Py, can
also be represented, in an equivalent and complete way, as
Py = [0 VY]

In the w'v’ diagram, one may define two attributes
related to hue and saturation of color respectively
as h,, arctan ((v' — vy )/(u' —u})) and s,,

IThroughout the text, the notation A € Sf‘: ’;f’ indicates that each

element a;; of the matrix A € SM*¥ takes values in the set [a, 8] C S.
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Figure 2. Chromaticity diagram «'v' (dots) re-
lative to the colors of the image of Fig. 1 and
set of cluster seeds K = {x,}n=1,... vy N = 11,
(asterisks).

13/(u' — ufy)2 + (v' — v4)2, where uly, v}, are the val-
ues of u', v' for a suitably chosen reference white [13].
Fig. 2 shows the u'v’ chromaticity diagram (dots) associa-
ted with the colors of the image of Fig. 1, along with the
spectral locus (solid line) and the reference white (circle),
selected as the standard illuminant Dgs; (u), = 0.1978 and
vh, = 0.4683).

2.2. 2D k-means clustering in the u'v’ chromaticity
plane

Our goal is to find the most representative clusters in
the chromaticity diagram, since they contain the great part
of the information associated with the main color families
within an image. Hunt in [14] observes that hue and satura-
tion are the color attributes which turn out to be the most
invariant to changes due to surface curvature of colored
objects and lighting conditions. Therefore, to single out
the main homogeneous color regions within an image, we
search for clusters of hue and saturation by working in the
Cartesian coordinates (u’,v’). These clusters can be easily
found by means of an ad hoc extension of the k-means algo-
rithm [1]; a sketch of our implementation of this algorithm
is reported in Fig. 3.

This algorithm lends itself to the following comments.
First of all, it requires only one iteration; the number of
clusters changes during the clustering process and we do
not know a priori the number of clusters we will end up
with. When a point must be associated with a cluster or two
cluster seeds must be merged together, a center of gravity
law is adopted; in this way, the outcoming seed is closer



> from @, compute the normalized distribution vector w € Qf; ,;, || w ||= 1, containing the number of pixels per each
entry in the color palette P,y ;

> compute the baricenter of the data in the u'v’ plane as vg = (up,v3) € T, with uz = wTu’ and vj = w™V';

> sort the vector w in descending order and define the vector p € Nj; ;, containing such ordering;

> set vg as the initial seed for clustering in the »'v’ space, associate it with a weight wg = 0, and initialize with them,
respectively, two ordered sets K C Y and Wx C Qyp,;; whose elements are dinamically ordered according to their

insertion or extraction order;
forl=1tol=1L

> define (1) = (u' (p(1)), v'(p(1))) € T
> compute the minimum distance d(i) between v(l) and the cluster seeds in the set K as d(i) = mehﬁ o) -«
let k(i) € K denote the closest seed;
ifd(@) >n
then
> add v(l) to the set K as a new seed and its associated weight w(p(!)) to the set W ;
else
> v(l) belongs to the cluster defined by «(%); this induces the shifting of the seed x(:) whose new position and
associated weight are respectively updated as
we (1)K (2) + w(p(l))v(l) . .
- and we (i) := we(?) + w(p(l));
> compute the minimum distance d(j) between k(3) and the other seeds in K as d(j) = melﬁ | k() — & |;
r#Er(i)

k(i) ==

ifd(j) < 72
then

b define m = min(s, ) and M = max(i, j);
> update

o the clusters associated with the seeds x(i) and «(j) must be merged together and the position and weight
of the new resulting cluster are computed according to the following procedure:

we (D) (7) + we ()K(j)

K(m) :=

end
end
end

we (i) + we(j)
> remove the seed x(») from K and its weight w,. (a) from Wy ;

and  we{m) = we(?) + we(j);

Figure 3. Algorithm for 2D k-means clustering in the «'v' chromaticity plane.

to the “heaviest” of the two points, that is, to the point
which, in the chromaticity plane, represents the color enter-
ing the highest percentage of pixels. Moreover, our proce-
dure spans the points from the “heaviest” to the “lightest” so
that, after the first iterations, the seeds do not move signifi-
cantly, since the early formed seeds are rather “heavy”. The
fact that we choose only one initial seed instead of many
does not affect the performance of the algorithm [1]. On
the contrary, the two parameters which significantly affect
the clustering process are the threshold parameters 7, and
T (see Fig. 3), and they are to be carefully selected since
they determine to a broad extent the final number of colors
(phases) in the segmented image.

The parameter 7, determines the average distance among
clusters whereas the parameter 7, is related to the average
radius of the clusters, regarding them as circles. In order to
get an estimate of 7,, we need to have an idea of the spread-
ing of the data in the u'v’ plane. In fact, different images
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can give rise to very different constellations of points in the
chromaticity plane, and consequently to very different av-
erage inter-cluster distances. Thus it is not possible to set a
value of 7, good for any image which is a data-dependent
parameter to be retailed on the specific image; however, an
estimate of 7, may be readily derived as follows. Let us con-
sider the probability function F(z) = P[|| v — vz ||< 7],
v,vg € T, x > 0, which describes the distribution of the
distance between each point v and the baricenter vz of the
data (see Fig. 3); it is well-known that, if these points were
Gaussian distributed around wvg, the probability density
function f(z) = dF(z)/dx would be the Rayleigh density
function f(z) = (w/az)e_zz/z”zh(w), where h(z) is the
unit-step function [15]. Although real imagery usually does
not generate Gaussian distributed points in the chromatic-
ity plane, we could experimentally ascertain that a Rayleigh
density function may describe fairly well the statistical dis-
tribution of the data. In practice, we compute the (discrete)
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Figure 4. Frequency histogram #(d(l))
(dashed bars) and fitting function g(z) (solid
line).

distance function d(I) =|| v(l) —vg |l =1,...,L, and
we fit its frequency histogram H(d(l)) (50 bins) with the
continuous function g(z) = ¢f(z), where the coefficient ¢
accounts for the bias of the data; the fitting is performed via
a standard non-linear least square algorithm. Fig. 4 shows
the histogram #(d(l)) (dashed bars) and the function g(z)
(solid line). It can be seen that the fitting of the data is rather
good. The probability function f(z) allows us to estimate
the radius g, of the circle in which a certain percentage w
of the data (0 < w < 1) is contained; such radius is given
by 0, = 04/2In(1/(1 — w)); in our experimental setup,
we have chosen w = 0.95. Experimentally, we have found
out that setting 7, = g,,/4 and 7, = 9,,/8 gives excellent
segmentation result with a wide variety of color images; this
choice produces a limited number of segments (usually, less
than 20) which well represent the chromatic information of
images. Of course, one might decide to supervisedly reduce
(increase) the number of segments by increasing (reducing)
T, always as a fraction of g,,, since this parameter captures
the spreading of data in the chromaticity plane. The pa-
rameter 7, may be freely set with the only constraint that
T, < T, to prevent cluster overlapping.

2.3. 1D k-means clustering for the luminance Y

The previous step of the algorithm returns a set of cluster
seeds K = {Kp}n=1,.. n defining the main colors within
the image 7 only by means of their coordinates (u',v’).
In Fig. 2, the asterisks represent the cluster seed set K
(N = 11) found by the algorithm of Fig. 3. For a com-
plete characterization of colors, we need now to relate the
chromaticity coordinates with suitable values of luminance
Y. To this end, we consider the sets VY, = {Y(I) € R,y :

77

0 5

15

Figure 5. Segmented image Z° and its color
palette P}, with S = 14 colors after median
filtering.

I v(l) — kn |I€ 7,v(1) € X,1 =1,...,L,k, € K},
n = 1,..., N, which encompass the luminance values as-
sociated with the points v(!) contained in circles centered
at the cluster seeds K, and having radius 7,. To the sets
Yn,n=1,...,N, weapply a 1D k-means clustering algo-
rithm which consists in a simple dimensional reduction of
the 2D algorithm of Fig. 3. The thresholds 7; and 7, which
respectively play the 1D counterpart of 7; and 7, have been
experimentally chosen as 7 = 0.5 and 7, = 0.2. This
choice is motivated by the adopted normalization of the lu-
minance between 0 and 1. In fact, as 7, determines the inter-
cluster distance, it has been set equal to half the scale range
in order not to generate too many segments; 7, determines
instead the intra-cluster spreading and it has to satisfy the
constraint 7, < 73 to prevent cluster overlapping as in the
2D case. However, the selection of such 1D thresholds is
not so crucial as that of the 2D thresholds reported in Sec-
tion 2.2, since rather wide changes of 7, and 7, yield not
appreciably different segmentation results.

2.4. Palette color matching and post-processing

At the end of the 1D k-means algorithm applied to the
luminance Y, we obtain a certain number S of representa-
tive points in the u'v'Y" space; they are ordered into a color
palette according to increasing values of hue-angle. This
palette is converted into XY Z coordinates and successively
into RG B coordinates as Py, € Rf,}. The color match-
ing procedure of [16] in the L*u*v* space is then applied
to Pres and P, and, by rearranging the indexing of
Q with respect to the new color palette, we finally obtain
the segmented image Z° expressed in a palettized format
as I = {Q°,Pj.s} However, this operation usually
yields a number of very small regions which can be elimi-



Figure 6. Some other segmentation results.

nated with a scalar median filtering applied to Q°; the color
ordering of P}, hinders median filtering from introduc-
ing false colors. The resulting image is plotted in Fig. 5;
as expected, our algorithm returns rather homogeneous re-
gions even in the presence of changes of color appearance
caused by surface curvature of objects and by slight shad-
owing. Similar results were obtained with other color im-
ages as well (see Fig. 6). The algorithm turns out to be
deceived in correspondence of the surface patches affected
by highlighting, mutual reflections and dark shadows. In
order to prevent these artifacts though, one should resort
to physics-based segmentation algorithms which make use
of complicated hypotheses on the interaction between light
and objects in a scene.

3. Conclusions

We have presented a novel technique, based on cluster
analysis, for segmentation of color images. We have sug-
gested dividing the problem of color segmentation, intrinsi-
cally 3D, into two parts. In the first part, only the chromatic
information is segmented by using a 2D k-means algorithm
in the u'v’ plane; in the second part, the chromaticity clus-
ters are associated with appropriate intensity values through
the 1D version of the k-means algorithm used in the first
part. A statistical criterion to adaptively taylor the algorithm
on the data has been proposed too. Experimental evidence
of the effectiveness of our technique has been reported.
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