AN EFFICIENT TOP-DOWN APPROACH FOR THE DESIGN OF TREE-STRUCTURED
ORTHONORMAL FILTER BANKS*

Rajeev Gandhi and Sanjit K. Mitra

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106
rajeev@iplab.ece.ucsb.edu, mitra@ece.ucsb.edu

ABSTRACT

Wavelet and tree-structured filter bank based coding schemes
find applications in a number of image coding algorithms.

The efficiency of such coding schemes can be enhanced fur-

ther by adapting the parameters of the coder to the statis-

tics of the signal being compressed. In this paper, we pro-

pose an algorithm to determine the coefficients of the fil-

ter bank matched to the signal statistics, at every node of
a tree-structured filter bank. In the proposed algorithm, we

visit each node in a top-down fashion and determine the bit-

allocation and the coefficients of the filters used to carry out

the decomposition. An estimate of the coding gain provided
by the later stages is used to account for the interaction be-

tween the filter bank at the current node and the filter banks
at the later nodes.

1. INTRODUCTION

Uniform and non-uniform tree-structured filter banks are
used in a number of image and audio compression algo-
rithms. The efficiency of the compression algorithm can be
improved by adapting the parameters of the tree-structured
filter bank to the statistics of the input signal. The prob-
lem of designing tree-structured filter banks involves — de-
termining the non-uniform/uniform decomposition, the co-
efficients of the filter bank at each decomposition and the
bit allocation amongst the various nodes. The objective of
the design procedure is to chose these parameters such that
the mean square error (MSE) between the input and the re-
constructed signal is minimized subject to a constraint on
the total number of bits used to code the signal. While there
exist techniques [1], which determine the bit-allocation and
the non-uniform decomposition to obtain the optimal rate-
distortion (R/D) performance, the problem of incorporating
[10], [11] the optimization of the filter bank coefficients into
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this R/D criterion seems to be of intractable complexity. To
reduce the complexity of the design algorithm, typically the
coefficients of the filter banks are obtained by maximizing
the coding gain provided by the filter bank. Under a high
bit-rate assumption, maximizing the coding gain of the fil-
ter bank is equivalent to minimizing the MSE between the
input and the reconstructed output sequence. For the rest
of the paper, we use the term “node” to refer to a particular
subband and “splitting a node” to refer to a two-band de-
composition of the subband. For simplicity, we assume that
a two-channel filter bank is used to carry out the subband de-
composition. The algorithm can be easily generalized when
an M -channel filter bank is used instead. We also assume
that orthonormal filter banks are used at every node so that
minimizing the mean square error (MSE) between the input
and the output is equivalent to minimizing the MSE between
the original subband coefficients and their quantized coun-
terparts.

Most of the previous work [2]-[4] in the design of tree-
structured filter banks have focussed on determining the fil-
ter coefficients such that the coding gain provided by the
filter bank at that particular node is maximized. The algo-
rithm developed in (10] computes the decomposition and
bit-allocation using the R/D optimal approach while the cri-
terion of coding gain maximization is used to determine the
filter banks at every node. The techniques for the filter bank
design in [2)-[4], [10) suffer from the fact that no attempt is
made to take into account the interaction between the filter
bank at a parent node and the filter banks at its child nodes.
An interaction exists between them, since the filter banks at
the child nodes depend upon the psd of the input at these
nodes, which in turn depends upon the filter bank used at
the parent node.

In this paper, we develop an efficient algorithm to deter-
mine the coefficients of the filter banks that maximize the
overall coding gain of the tree structure. A top-down design
approach is proposed to determine the coefficients of the fil-
ter bank. However, unlike previous techniques, we use an
estimate of the coding gain provided by the filter banks at
the child nodes to account for the above mentioned interac-



tion between various stages. For the sake of completeness,
a computationally simple scheme to allocate bits amongst
the various nodes and to decide on whether to split a node
is also proposed. However, the algorithm to determine the
filter bank coefficients can be used in conjunction with any
other technique to determine the bit-allocation and the non-
uniform decomposition. The main objective of our work is
to systematically formulate the design of tree-structured fil-
ter banks that includes the interaction between the different
stages of the tree structure.

2. DESIGN PROCEDURE

Consider first the problem of determining whether to split
the node n; or not. The approach proposed in [1} could
be used to make the node-split decisions, however its com-
plexity increases exponentially with the depth of the tree to
be searched. A number of heuristic approaches have been
proposed to remedy this problem. Coding gain of the fil-
ter bank has been proposed as a criterion [3], (4] to deter-
mine whether to split a node or not. If the coding gain of
the filter bank at that node is greater than 1 + ¢, for a pre-
deterfnined € << 1, then the node is split. The problem
with this approach is that ~ such split decisions are local in
nature and there exist situations where it might be useful to
split a particular node even when the coding gain provided
by the filter bank at that node is just one. It is possible that
the later splits will result in an overall coding gain greater
than one. In order to illustrate this, consider that the input
to a node in the tree has a psd of the form shown in Figure
1. Assume that ideal brick-wall filters can be used to carry
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Figure 1: Power Spectral density of the input to one of the
nodes in the tree

out the subband decomposition. The maximum coding gain
provided by any two-channel orthonormal filter bank, for
the input psd of Figure 1, is one. Thus in a conventional
top-down approach the node will not be split any further.
However, if were to split this node and then split each of
the child nodes with ideal brick-wall filters, then an over-
all coding gain of 0.5(y/c + %) is obtained. This example
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illustrates the “sub-optimal” nature of the conventional top-
down techniques. The reason for this sub-optimality lies in
the fact that the approach does not consider the interaction
between the different stages of the tree. To overcome this
difficulty, we make use of the “spectral flatness” [5] mea-
sure for the input psd at a given node. The value of the
spectral flatness measure is given by

n Cdw
Yz = ewp(/ loge Szz(e’*) 27)/03, (1)

-

In the proposed approach, if 1/, is greater than 1 + ¢, then
the node is split. The rationale behind the use of spectral
flatness measure is that if 1/v, is equal to one, then the
spectrum is flat and there is no gain in splitting the node
any further. However, if the value of 1/, is greater than
one, then we can potentially obtain higher coding gains by
splitting the node even if the immediate split provides a cod-
ing gain of only one (it is possible that splitting one of the
child nodes obtained by the split of the node could provide
a large coding gain). Using the inverse of spectral flatness
measure to decide whether to split a node or not, is equiva-
lent to using the coding gain provided by an infinite channel
filter bank at the node. If the coding gain provided by the
infinte channel filter bank is not greater than one, then there
is no gain in splitting the node any further. The use of spec-
tral flatness measure to determine the node-split decisions
assumes that there is no limit on the depth upto which a tree
can be grown. However, if the maximum number of levels
upto which a tree can be grown is constrained to L.z, then
some modifications are required to determine the split deci-
sions. Consider the case when the current node is at a depth
of n levels from the root node. In this case, we compute
the maximum coding gain provided by a 2Zma=~"_channel
filter bank at the current node. If the maximum coding pro-
vided by a 2Lma=—"_channel orthonormal filter bank at this
node is greater than 1 + ¢, then we split the node. The ap-
proach outlined in [8)] is used to determine the maximum
coding gain that can be provided by any arbitrary channel
orthonormal filter bank. As stated earlier the use of theo-
retical coding gain as a criterion to determine the node-split
decision is biased, since splitting a node can only increase
the coding gain of the overall tree. The coding gain of the
tree can only increase by splitting a particular node. The
use of coding gain to make the node-split decisions could
be used as a technique to prune out the tree struture before
applying the R/D approach to determine the node-split de-
cisions.

After the decision to split n; has been made, the next step is
to determine the coefficients of the filter bank at that node
and also the bit-allocation amongst the child nodes. Assume
that the input psd at the node is S;,z,(e’*) and the number
of available bits per sample are b;. Let b;x be the number
of bits per sample allocated to the kth child node, n;;, for



k = 1, 2 then the constraint on the bit allocation is

2

1

5 E bir = b;. 2)
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Moreover, the variance of the signal at n; is related to the
variance of the signals at its child nodes, n;x, through

2
aﬁi = z ai‘,k. 3)

This is due to the fact that the analysis filters in an two-
channel orthonormal filter bank satisfy the property

|Hia (7)) + | Hiz ()" = 1, O

where, H;i,(e3*) represents the frequency response of the
kth analysis filter. If the subband signals at the child nodes
were being quantized then the noise variance at each node
would have been given by

2 2 o—2b;
Og,, =C0,, 277, )

The presense of a tree structure at one or more child nodes,
say Tim, causes the variance of the quantization noise at
nim 1o be reduced by a factor equal to the coding gain pro-
vided by the tree structure at n;,,. Thus, the total distortion
due to quantization of subband signals at node n; is

where G, is the coding gain provided by the tree at node
n;m. The coding gain provided by the tree structure at n;pm,
cannot be determined until the filter bank and bit-aliocation
at the parent node n; is determined. However, an estimate
of the coding gain provided by the later stages can be used
instead of its true value. The conventional top-down ap-
proaches [10], [2}-[4] can be thought of as special cases of
this approach with G set to unity. However, using G
equal 10 one may not necessarily be the best estimate of the
coding gain provided by the later stages. In this algorithm,
we estimate the valuc of G at each node to be equal to the
value of the asymptotic coding gain G (given by 1/7;,,)
at that node. The justification for using G5 as an estimate
of the coding gain provided by the tree at node n;x is the
fact that the tree starting from this node will be grown till
the coding gain provided by the tree is closed to its asymp-
totic value. If there is a restriction on the number of levels
upto which a tree can be grown, then we estimate G to be
the maximum coding gain provided by a 2£ms==" channel
filter bank at the node, where n is depth of the node from
the root node. Let Gy be the estimate of the coding gain
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provided by the tree at the node n;; then D; can be written
as

The bit allocation amongst the various child nodes of n; is
done such that D; is minimized subject to the bit constraint
given in Eq. (2). The optimal bit allocation is given by

72/t ©)
(T3 02,/Gi)'/2 )

1
bir = b; + 5109-2 (

With the bit-allocation given in Eq.(6), the distortion at the
node n; is given by

9 1/2 '
¢ (H Uzik/éik> 272 )
k=1

The coefficients of the filter bank at n; are designed such
that the value of D; given in Eq. (7) is minimized subject to
the constraint that the resulting filter bank is orthonormal.
This can be done by using standard algorithms for the de-
sign of two-channel paraunitary [6] filter banks. Once the
coefficients of the filter bank at n; have been optimized, the
psd of the signals at the child nodes can be determined. The
number of bits allocated to each child node are given by the
bit-allocation result given in Eq. (6). A similar procedure is
recursively carried out at all the nodes in the tree.

It is also possible to use an iterative algorithm instead of us-
ing the asymptotic coding gain as an estimate of the coding
gain provided by the rest of the tree at a node. In the iter-
ative algorithm, we start with some initial filter coefficients
at every node. This facilitates computation of the coding
gain provided by the rest of the tree at every node (the value
of Gik). However, after each iteration, the coefficients of
the filter banks are updated and thus the estimates of G,
used to compute the filter bank coefficients are not equal to
the actual G, provided by the updated filter coefficients. In
the next iteration, the updated filter banks are used to esti-
mate the coding gain provided by the rest of the tree at every
node. The iterative procedure is carried out till the estimate
of the coding gain provided by the rest of the tree at every
node is approximately equal to the actual coding gain, af-
ter the coefficients of the filter banks at all the nodes are
updated (thereby implying that the true value of the cod-
ing gain provided by the rest of the tree at each node was
approximately equal to the assumed value). While the iter-
ative approach can provide a better estimate of Gix than the
value of the asymptotic coding gain, especially for filters of
small lengths, the disadvantage of this iterative procedure is
its enormous computational complexity.



3. ANALYTICAL EXPRESSIONS FOR THE
OPTIMAL FILTER BANKS

In this section we determine the optimal filter bank at n; that
minimizes Eq. (7), under the assumption that there is no
constraint on the length of the filters and asymptotic coding
gain is used as an estimate of the coding gain provided by
the rest of the tree at every node. We are interested in finding
the optimal filter bank that minimizes the distortion given in
Eq. (7). The expression for D; can be simplified as

. d ; )
; = cM exp Z/ lOge EirTin (ejw))E‘;_:)l/M2—2b.,

M
- CM exp( M / loge (H Szlkzlk e]“’)) )2—_Zbl

1
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where B(e?¥) = E(e/¥)S;,,, (e7*)E*(e7*), (A)kx denotes
the diagonal element of the matrix A, E(e/*) denotes the
polyphase matrix of the analysis filter bank, * is used to in-
dicate the transpose conjugate of a matrix and Sy, (e/*)
denotes the psd matrix [7], [9] of the signal at the input to
the analysis poplyphase matrix at n;. Minimizing D; in the
above equation is equivalent to finding the polyphase matrix
transfer function E(e/*) such that

x M

. A ) d
Ci= loge(H (E(er)Szizi(e]u))E*(eJW))kk)ﬁ.
- k=1
®

is minimized (since exponential is a monotonocally increas-
ing function). Now

M
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where, we have made use of the inequality, Hf‘il A; >
det(A), for a positive definite matrix with equality only
if A is a diagonal matrix. The positive definiteness of the
matrix E(e/*)S, ;. (e*)E* (e?*) follows from the fact that
Sz, (€7¥) is a spectral matrix [9] and is hence positive def-
inite. Thus the quantity C; in Eq. (8) is minimized when
the inequality becomes an equality. This happens when
E(ed“°) is chosen to be the eigenvector of the psd matrix
S:.z;(€7+°) for each value of wy € [0,27). Thus the op-
timal filter bank at n; that minimizes the distortion, D; in
Eq. (7), is given by the eigenvalue decomposition of the psd
matrix of the input at n;.

4. RESULTS

The proposed design algorithm was used to design the tree-
structured filter banks for an AR(1) process with p = 0.95
and an AR(2) process with poles at 0.98e*797/10_ The value
of the asymptotic coding gain for the AR(1) process was
computed to be 10.25 and that for the AR(2) process was
determined to be 134. The conventional top-down approach
was also implemented, to compare the results with our al-
gorithm. In the conventional top-down design, the product
filter approach [10], [12] was used to maximize the coding
gain of the filter bank at every node. The maximum depth of
the tree-structure was chosen to be 5 and the value of € was
set to 0.01. In the proposed algorithm, the asymptotic cod-
ing gain was used as an estimate of the coding gain provided
by the rest of the tree at every node. This ensured that the
complexity of the proposed design procedure is similar to
the complexity of the conventional top-down approach. One
of the problems with our design technique is the fact that the
resulting cost function is highly non-linear. A simple way
to deal with non-linear cost function is to initialize the op-
timization algorithm at a good starting point. We used the
output of the conventional top-down approach as the start-
ing point for our algorithm. This results in an increase in
the complexity of our algorithm by a factor of two. Figure
2 shows the coding gain of the overall tree-structured filter
bank for the AR(1) process for filters of different lengths
while Table 1 shows the results for the AR(2) process.

Length of | Conventional | Proposed
Filter bank Approach Approach
4 44.5 48.3
8 85.5 98.2
12 101.06 114.7
16 105 116.3

Table 1: Comparison of the overall coding gain achieved by
the conventional and proposed top-down approaches

5. CONCLUSIONS

In this paper, we developed an algorithm for the design of
tree structured filter banks. Unlike existing techniques, we
took into account the interaction between the filter banks at
a given node and those at its child nodes. An cstimate of the
coding gain provided by the tree at a particular node was
used to account for this interaction. The value of asymp-
totic coding gain at every node was used as an estimate of
the coding gain provided by the later stages. Simulation re-
sults indicate improvements of about 0.2 — 0.6 dB over the
conventional top-down techniques. The results could possi-
bly be improved further by using more efficient algorithms
to minimize non-linear cost functions.
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Figure 2: The coding gain of the tree-strucutred filter bank obtain
by the proposed approach versus the lengths of the filters used to
carry out the subband decomposition
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