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ABSTRACT

It is well known that mean square error (MSE) is not pre-
served under non-orthogonal transformations. This poses
a significant challenge to quantize the subband signals in
coders that involve non-orthogonal filter banks, since near-
est neighbor (NN) encoding rule can no longer be applied
to quantize the coefficients. In this paper, we develop tech-
niques for optimal quantization of the subband coefficients
in non-orthogonal subband coders. An exhaustive-search
based quantization approach is proposed. The complexity
of this approach is shown to increase exponentially with the
length of the signal. Next, a reduced complexity solution
in the form of a trellis-based search is proposed. Simulation
results indicate appreciable SNR gains over standard coding
techniques for non-orthogonal filter banks.

1. INTRODUCTION

Subband or wavelet based compression techniques are be-
ing extensively used in various image compression algo-
rithms. A typical image compression scheme involves a
subband decomposition of the image followed by quanti-
zation' and entropy coding of the subband signals. In order
to simplify the quantization of subband signals, it is desired
that the-analysis and synthesis filter banks are orthogonal.
The orthogonality of the filter banks ensures that the mean
square error (MSE) between the original and the quantized
subband signals is preserved at the output, and hence near-
est neighbor encoding rule [1] can be used for quantization
of the subband signals. For image compression, an equally
desirable characteristic [2] of the analysis and synthesis fil-
ter banks is that the filters should be symmetric (or equiva-
lently, they possess the linear-phase property). When two-
channel filter banks are used, the two requirements of or-
thogonality and linear-phase of the analysis and synthesis
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filters are mututally exclusive [3], [4]. As a result, a num-
ber of wavelet based image compression schemes give up
the requirement of using orthogonal filter banks and use lin-
ear phase (non-orthogonal) filter banks instead. The ability
of non-orthogonal filter bank to provide symmetric analysis
and synthesis filters is not the only motivation behind their
use in subband coding. Recent results [5], [6] have shown
that potentiaily larger coding gains can be achieved by using
non-orthogonal (biorthogonal) filter banks. The potential of
non-orthogonal filter banks to provide larger coding gains
and their inherent flexibility (less constraints) makes them
attractive for use in subband coding.

The use of non-orthogonal filter banks, however, compli-
cates the quantization of subband signals. The aim of quan-
tization is no longer to minimize the MSE between the orig-
inal and quantized subband signal but to minimize the MSE
between the input and the reconstructed output signal. This
implies that the quantizers used for coding the subband sig-
nals need not satisfy the nearest neighbour encoding rule. A
number of approaches have been proposed to remedy this
problem. Most of the approaches involve making the analy-
sis and the synthesis filters to be as close to orthogonal 8] as
possible while satisfying some desirable property (e.g. lin-
ear phase). The “quasi-orthogonality” of such filter banks
makes nearest neighbor encoding of subband signals, ap-
proximately optimal. Another approach is to use a relax-
ation based quantization procedure (7] which attempts to
minimize the MSE between the input and the reconstructed
output. However, the relaxation-based quantization proce-
dure, as developed in [7], applies only to the case where a
logarithmic division of the frequency axis is used. Another
disadvantage of the relaxation-based quantization procedure
is that the quantization technique is not necessarily optimal.
In this paper, we present techniques for the optimal quanti-
zation of the subband signals when a non-orthogonal filter
bank or even a Minimum Mean Square Error (MMSE) filter
bank [9] is used to do the subband decomposition. Two pro-
cedures for optimal quantization in non-orthogonal subband
coders are proposed. The complexity of the first scheme is
shown to grow exponentially with the length of the input
signal while that of the second is shown to increase linearly
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Figure 1: An M-channel subband coder

with the signal length. The structure of the optimal non-
orthogonal subband coder is shown to be markedly differ-
ent from traditional subband coders. It is shown that unlike
the latter case, analysis filtering and quantization operations
are done jointly, by a non-linear encoder, in optimal non-
orthogonal subband coders.

2. OPTIMAL QUANTIZATION OF SUBBAND
- SIGNALS

Consider a typical subband coding scheme as shown in Fig-
ure 1. For the sake of conceptual simplicity, we consider
an equivalent structure which is obtained by applying the
polyphase decomposition to the analysis and synthesis fil-
ter bank as shown in Figure 2. In this polyphase struc-
ture, the input z(n) is first converted to vectors v(n) =
[x(Mn),z(Mn—1),...,z2(Mn—~ M +1)]T which are fil-
tered by the block filter E(z). The subband vectors u(n)
are then quantized either using a scalar quantizer along its
various components or by using a vector quantizer (VQ) of
dimension M. It is also possible to use intra-band VQ, how-
ever such schemes will not be considered here. Without
loss of generality, we will consider the case when the vector
u(n) is-vector quantized (scalar quantization along individ-
ual components can be thought of a VQ whose codebook
1s obtained as the cross product of the codebooks associ-
ated with every scalar quantizer). The subband vector u(n)
is quantized to obtain G(n), which is then filtered through
the synthesis block filter R(2) to produce the output vec-
tor ¥(n). The mean square error (MSE) between the input
z(n) and the output £(n) is equal to the MSE between the
vectors v(n) and V(n). However, unless R(z) is orthogo-
nal, the MSE between u(n) and @(n) may not be equal to
the MSE between v(n) and ¥(n). For the sake of simplic-
ity, we assume that the length of the input signal, z(n), is
a multiple of M ie. L = KM, where L is the length of
the input signal. This implies that there are K vectors u{n)
(each of dimension M) in the sequence.
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Figure 2: Polyphase Decomposition of the M-channel subband
coder

2.1. Exhaustive Search-Based Technique

As the name suggests, this technique involves an exhaustive
search through all the possible output sequences that can
be produced, and then choosing the one which results in
the minimum MSE with the input signal. Assume that the
number of code vectors availble for representing the quan-
tized signal, @(n) is N. Then, irrespective of the output
of the analysis filters, input to the synthesis filter bank con-
sists of onc of the IV possible vectors. A simple technique
to quantize the subband vectors is as follows — given that
the length of the vector sequence u(n) is K, we construct
all the possible NX reconstructed sequences f1(n). Next,
each of these sequence is filtered through the synthesis fil-
ter bank R(z) to produce the ouput of the filter bank. The
output corresponding to each of the N¥ sequence is com-
pared to the input and the particular sequence G(n) which
produces minimum MSE is then transmitted to the decoder.
A block diagram of the encoder in the proposed scheme is
as shown in Figure 3. The decoder is same as that used
in traditional subband coders and consists of filtering the
quantized sequence through R(z) and converting ¥(n) into
scalars. This exhaustive search-based quantization proce-
dure requires NX filtering and comparison operations. In
other words, the complexity of the exhaustive search-based
quantization procedure grows exponentially with the length
of the input signal. Thus, while this quantization scheme
is optimal and conceptually simple, the prohibitvely high
complexity renders it unattractive for coding signals of even
small lengths.

Although the exhaustive search-based quantization technique
is impractical, it illustrates a few salient features of the op-
timal non-orthogonal subband coder. The first feature of
this scheme is that, once the codebook of the VQ is fixed,
the analysis filters have virtually no role to play in optimal
subband coding. This is apparent since the encoding opera-
tion involves filtering each of the possible reconstructed se-
quence through the synthesis filter bank and then choosing
the sequence which produces an output sequence with the
lowest MSE when compared to the input vector sequence.
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Figure 3: Block diagram of the encoder in an optimal non-

orthogonal subband coder

The encoding operation does not make any use of the se-
quence of vectors u(n) which are obtained after filtering the
input through the analysis filter bank. The second feature
of this optimal subband coding scheme is the nonlinear na-
ture of the encoding operation although the synthesis filter
bank is linear. Furthermore, the complexity of the scheme
is asymmetric in the sense that while the encoder has enor-
mous complexity, only a filtering operation and additions
are performed in the decoder. It should be mentioned that
the exhaustive search-based technique proposed in this pa-
per is very similar to the analysis-by-synthesis techniques,
used frequently in speech coding.

2.2. Trellis-Based Search Technique

The exponential complexity of the exhaustive search-based
quantization scheme is the main motivation to develop com-
putationally efficient techniques for quantization in non or-
thogonal subband coders without any loss in optimality. The
key observation that results in a lower complexity quantiza-
tion scheme is the similarity of the synthesis filter bank to
a finite state machine. To illustrate this similarity, let us as-
sume that the order of the block filter R(z) is P i.e.

P
R(z) =) Ruz7%, 0]
k=0

where Ry are M x M matrices. Now the input to the syn-
thests filter bank, G(n), is a quantized version of the sub-
band signal u(n), and must hence belong to one of the N
possible codevectors. We define the “state” of the synthesis
filter bank at any instant of time n as the indices of the past
P codevectors, Gi(n — 1), 0(n — 2), ..., G(n — P). Clearly,
at any instant, the number of possible states that can be as-
sociated with the synthesis filter bank are N¥. The output
of the synthesis filter bank, ¥(n) = Y"f_, Reii(n — k), can
be rewritten as

¥(n) = ¥,(n) + Vc(n), ()
where

P
V() =Y Riii(n—i). (3)

i=1

Vv.(n) = Roiai(n) and
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Figure 4: State transitions of a trellis corresponding to a second-
order R(z) with two reconstruction codevectors in the VQ code-
book. The states of the trellis are labeled by the indices of the
coodevectors in the synthesis filter bank memory. The numbers in
the parenthesis on the branches indicate the index of the current
reconstruction vector

Eq.(3) illustrates the fact that the output of the synthesis fil-
ter bank 1s composed of two terms — V,(n) which depends
entirely upon the state of the filter bank and V.(n) which
depends only upon the choice of the current reconstruction
vector. Furthermore, the choice of a particular reconstruc-
tion vector, i(n), determines the state of the synthesis filter
bank at time n + 1. There are NV possible state transitions
from a particular state at time n to the states at time n + 1.
These state transitions can be represented by means of a trel-
lis, a part of which is shown in Figure 4 for the case when
R(z) is a second-order block filter and when N = 2. The
state of the filter bank at time n uniquely identifies the in-
dices of the past P codevectors. Thus, the problem of find-
ing the sequence of optimal reconstruction vectors Gi(n) is
equivalent to finding the sequence of states in the trellis that
result in lowest distortion. Furthermore, the MSE after time
n+ 1 depends only upon the state of the synthesis filter bank
at n+1 and not upon the path used to reach the state at n+1.
This implies that the Viterbi Algorithm [11] can be used to
efficiently carry out the search for minimum distortion path.
The resulting algorithm for quantization of subband signals
is optimal and computationally efficient owing to the use of
Viterbi Algorithm. The use of Viterbi Algorithm allows us
to efficiently discard a large number of sequences (out of
the total N¥ sequences) which have been proved to have a
larger distortion than the optimal sequence, resulting in an
efficient quantization scheme.

As noted in the case of the exhaustive search-based quanti-
zation technique, the analysis filters play no role in a sub-
band coder that employs a trellis-based search to find the
optimal sequence of reconstruction codevectors. The pro-
cesses of filtering and quantization are done jointly by a
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Figure 5: Block diagram of the encoder in a trellis-based subband
coder

non-linear trellis encoder. Figure 5 shows the block diagram
of a subband coder which employs a trellis based search for
the optimum sequence of reconstruction vectors. The com-
plexity of the trellis-based quantization technique is propor-
tional to K x NF+1. The complexity of the quantization
algorithm is thus, exponential in the order of the synthesis
block filter but is only linear in the length of the signal. The
complexity of the trellis-based quantization procedure can
be reduced further by pre-computing the values of v4(n)
corresponding to each of the NP states and also the values
of ¥.(n) corresponding to each of the N codevectors. In
this case, the filtering operation involves just adding pre-
computed vectors. It is also possible to reduce the complex-
ity of the trellis-based approach, at the cost of optimality, by
using reduced state search [1] techniques.

3. RESULTS

The performance of the proposed trellis-based quantization
scheme was compared to that of conventional non-orthogonal
subband coders that employ nearest neighbor encoding rule
for quantization of the subband signals. For this purpose
1024 samples of an AR(1) source with p = 0.95 were en-
coded at 1.0 and 2.0 bits per sample by a two-channel sub-
band coder. The analysis and synthesis filters that were used
for comparisons included the 9/7 filters used in [10], the
9/3 filters used in:[7], the 11/5 filters used in [7] and the
3/5 filter in [4]. The reconstruction codevectors were gen-
erated by using the Generalized Lloyd Algorithm (GLA)
over a set of training vectors. The training vectors were
generated by filtering an AR(1) signal (different than the
test signal) through the analysis filter bank. Same codevec-
tors were used in both the trellis-based quantization scheme
and the conventional subband coding scheme. The results
are shown in Table 1 which compares the signal-to-noise
(SNR) at the output. of the subband coders in both cases.
Our results indicate that the optimal trellis-based quantiza-
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tion scheme out performs the sub-optimal nearest neighbor
encoding schemes by upto 2 dB for some non-orthogonal
filter banks. In the trellis based search we need to transmit
the state in which the decoder should start filtering. This re-
sults in an overhead of N P bits (V is the number of vectors
in the codebook and P is the order of the synthesis filter
bank filter). Typically, the overhead involved is small and
the percentage increase in bit-rate is marginal when the in-
put sequence is of large length. Alternatively, we can avoid
the overhead by constraining the trellis search to always be-
gin from a particular pre-determined state.

Note that it is possible to obtain better results for the trellis

Filter b = 1.0 bits/sample
Bank used
SNR!'indB | SNR?indB
9/7 7.42 7.45 (+0.03)
9/3 7.91 7.98 (+0.07)
11/5 9.18 9.65 (+0.47)
3/5 5.56 6.15 (+0.49)
b = 2.0 bits/sample
9/7 12.53 12.86 (+0.33)
9/3 12.7 13.15 (+0.45)
11/5 12.88 14.37 (+1.49)
3/5 10.53 12.9 (+2.37)

Table 1:  The column under SNR! shows the SNR in dB
at the output of the conventional non-orthogonal subband coders
whereas the column under SNR? shows the SNR in dB at the
output of the trellis based non-orthogonal subband coder for an
AR(1) process for different bit-rates. The numbers in the bracket
indicate the SNR gains in dB obtained by the optimal trellis based
subband coding scheme.

based quantization approach by designing the codebook tai-
lored to the algorithm. However, the main aim of the current
simulations were to demonstrate the gains obtained primar-
ily by the algorithm itself.

4. CONCLUSIONS

In this paper, we proposed two schemes for optimal quanti-
zation in subband coders when non-orthogonal filter banks



are used. The main difference between the two schemes is
the computational complexity associated with each scheme.
While the complexity of the exhaustive search-based quanti-
zation scheme grows exponentially with the length of the in-
put signal, the complexity of the trellis-based scheme grows
linearly. Both schemes involve a nonlinear encoder that
performs joint filtering and quantization of the input signal
unlike a traditional subband coder where the filtering and
quantization operation are performed separately.
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