
Multimedia Systems 7: 184–198 (1999) Multimedia Systems
c© Springer-Verlag 1999

NeTra: A toolbox for navigating large image databases

Wei-Ying Ma 1, B. S. Manjunath2

1 Hewlett-Packard Laboratories, Palo Alto, CA 94304-1126, USA; e-mail: wei@hpl.hp.com
2 Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA; e-mail: manj@ece.ucsb.edu

Abstract. We present here an implementation of NeTra, a
prototype image retrieval system that uses color, texture,
shape and spatial location information in segmented im-
age regions to search and retrieve similar regions from the
database. A distinguishing aspect of this system is its in-
corporation of a robust automated image segmentation al-
gorithm that allows object- or region-based search. Image
segmentation significantly improves the quality of image re-
trieval when images contain multiple complex objects. Im-
ages are segmented into homogeneous regions at the time of
ingest into the database, and image attributes that represent
each of these regions are computed. In addition to image
segmentation, other important components of the system in-
clude an efficient color representation, and indexing of color,
texture, and shape features for fast search and retrieval. This
representation allows the user to compose interesting queries
such as “retrieve all images that contain regions that have
the color of object A, texture of object B, shape of object
C, and lie in the upper of the image”, where the individ-
ual objects could be regions belonging to different images.
A Java-based web implementation of NeTra is available at
http://vivaldi.ece.ucsb.edu/Netra.

Key words: Color – Texture – Shape – Query by spatial
location – Content-based image retrieval – Image databases
– Image segmentation

1 Introduction

Rapid advances in computers and communication technol-
ogy is pushing the existing information-processing tools to
their limits. The past few years have seen an overwhelm-
ing accumulation of media-rich digital data such as images,
video, and audio. The internet is an excellent example of a
distributed database containing several millions of images.
Other examples of large image databases include satellite
and medical imagery, where often it is hard to describe or
annotate the image contents. Even if it is possible for a user

Correspondence to: W.-Y. Ma

to describe the contents in an unambiguous way, the large
amount of data that need to be processed in applications
such as medicine or geographic information systems makes
it necessary that robust image analysis tools be developed
for automated image annotation.

In this paper, we present NeTra, a toolbox for navigat-
ing large image collections. NeTra is implemented on the
World Wide Web (http://vivaldi.ece.ucsb.edu/Netra) using
the platform-independent Java language. NeTra uses color,
texture, and shape information to organize and search the
database. One of the distinguishing aspects of this system
is that it automatically segments and uses localized region
information in indexing images in the database. This is in
contrast to global image attributes that many of the existing
content-based retrieval systems use.

Several systems have been developed recently to search
through image databases using color, texture, and shape at-
tributes. These include QBIC [13], Photobook [19], Virage
[3], and VisualSEEk [28]. The initial version of QBIC pro-
vided querying of the entire image and manually extracted
regions. Its most recent versions have incorporated an auto-
mated foreground/background segmentation scheme [2, 11]
to improve the retrieval performance. The Photobook shares
many similar features to QBIC, but utilizes a more sophis-
ticated texture and shape feature representation in addition
to image segmentation. Its recent emphasis has focused on
interactive learning to incorporate the user’s feedback to ad-
just classification and segmentation parameters based on a
variety of feature representation models [19]. The Virage
system [3] uses features such as color, texture, composition,
and structure to search images. However, its most recent
version has used several new techniques to include spatial
information in the image representations. The VisualSEEk
[28] proposed a feature back-projection scheme to extract
salient image regions and, therefore, the system is able to
provide joint content-based and spatial search capability.

1.1 Use of color, texture, and shape features
for image query

Using color to index and search images dates back to some
of the early work by Swain and Ballard [30] on color his-

185

Fig. 1. Various components in the image retrieval
system NeTra

tograms. Since then many variants of the histogram indexing
have been proposed. The basic idea is to reduce the space
of all possible colors such that the features can be efficiently
organized for future search. Very often there is a transfor-
mation from the traditional RGB color space to some other
space where the similarities between colors are better pre-
served while computing the Euclidean distances. Since color
is one visual primitive that humans can easily relate to, it has
received considerable attention within the image database
community [4, 10, 22, 26, 31].

While texture analysis has a very rich history in image
processing and vision, image databases are perhaps the first
large-scale applications demonstrating the use of texture. The
texture search component of the UCSB’s Alexandria Digital
Library (ADL) project is a very good example [15, 18, 29].
The ADL collections include aerial photographs and satel-
lite imagery besides other geospatially referenced data such
as the Gazetteer. The ADL testbed can be accessed on the
web athttp://alexandria.sdc.ucsb.eduand the users can, by
various means, retrieve spatially referenced data. For the air-
photos in the database, the users can also use texture as one
of the attributes. Texture in these pictures has turned out to
be a surprisingly powerful representation, as one can search
and retrieve patterns, such as those consisting of parking lots,
orchards, runways, and airplanes by using the corresponding
texture features.

Shape is another low-level attribute that can be used to
represent local image information. However, it is not as
widespread as color and texture, as it involves extraction
of region/object boundaries, a hard problem by itself. Most
of the current work on using shape is for single simple to
segment objects in the scene [13, 20].

Automated image segmentation is clearly a bottleneck
for enhancing the retrieval performance. Although some of
the existing systems have demonstrated a certain capabil-
ity in extracting image regions and providing a region-based
search [5], the performance of their segmentation algorithms
in terms of processing large and diverse collections of image

data has not been clearly demonstrated. Lack of robust seg-
mentation algorithms is one of the reasons why shape and
other local image features have not been extensively used in
image queries.

In contrast, NeTra builds on a robust segmentation al-
gorithm [16]. Figure 1 shows a schematic of NeTra. The
system advances the current technology in many ways: (a)
it incorporates a very robust image segmentation scheme that
partitions the image into homogeneous regions. Segmenta-
tion enables searching based on regions/objects in the image,
as well as facilitating specifying spatial relationships in the
query language. (b) A color representation and indexing for
segmented regions is described that facilitates fast search.
(c) Texture and shape attributes, together with spatial in-
formation, further help the user to compose queries more
accurately, improving retrieval performance.

The entire system is implemented on the web using the
Java programming language. An initial prototype of this sys-
tem has been implemented in the UCSB ADL project [29],
where it is used to search through large collections of aerial
images using image texture [14, 18].

1.2 Overview

Figure 1 shows the main components of NeTra. At the time
of data ingest, images are analyzed to extract texture and
color information. Texture and color are used to partition
the image into non-overlapping homogeneous segments. The
region boundaries/shape, together with the region color, tex-
ture, and its spatial location, are used in representing the
region within the database. Vector quantization techniques
[8] are used to cluster each of the features to create a visual
thesaurus [14].

One of the outstanding issues in database retrieval is that
of similarity matching in the feature space. While the con-
cept of a visual thesaurus addresses this problem to some
extent, interactive learning and iterative query refinement

186

are needed to further improve retrieval results. These com-
ponents are not yet part of the current version of NeTra.
For details of the image thesaurus construction and learning
similarity measures, we refer to our previous work [14, 15,
18].

The organization of the paper is as follows: the next sec-
tion (Sect. 2) describes a color feature representation that is
quite compact and well suited to represent color in homoge-
neous regions. An efficient color-indexing scheme which in-
volves only boolean operations is presented. Section 3 briefly
reviews the shape and texture features used in NeTra. Sec-
tion 4 summarizes a new image segmentation scheme. Sec-
tion 5 discusses query specification and retrieval and Sect. 6
provides experimental results. Section 7 concludes with dis-
cussions.

2 Color features

Color histogram is a popular color representation scheme
that has been used in many image retrieval applications [13,
27, 30]. It works quite well in quantifying global color con-
tent in images. Several algorithms have been developed for
matching color histograms efficiently. However, within ho-
mogeneous regions, the color content is much more sparsely
distributed in the color space than the color of the whole
image. Fewer colors (typically 5–15 per region) can thus be
used to represent region color without affecting the percep-
tual quality. For example, a field of yellow poppy flowers has
typically two dominant colors, yellow and green. The image
itself may contain more than just this flower bed, such as a
river or skyline or other objects, and may require a signifi-
cantly wider spectrum of colors to adequately represent the
global content.

In NeTra, each image region is represented by a sub-
set of colors from a color codebook. The color codebook
itself could be context dependent, and a different codebook
can exist for different applications. From a training dataset
of image samples, the codebook is constructed using the
generalized Lloyd Algorithm (GLA) [8] to vector quantize
colors in the RGB color space. The codebook construction is
discussed in the Appendix. The codebook in our prototype
contains a total of 256 colors.

In order to represent the color within each homogeneous
region, we again use the GLA to cluster the local colors. One
of the objectives is to represent the region with as few colors
as possible. Starting with one color, the number of clusters is
progressively increased until either of the following stopping
criteria is met.

1. The number of color clusters has reached the maximum
number of colors allowed (20 in our experiments).

2. The mean squared error of the color clustering is below
a pre-defined threshold.

Note that the color descriptor can be of varying length,
depending upon the color complexity of the homogeneous
region. The resulting number of color clusters in the experi-
ments is in the range 5–15. The color feature is then defined
as

fc =


(Ij , Pj)|Ij ∈ {1, 2, . . . , 256}, 0 ≤ Pj ≤ 1 ,

∑
1≤j≤N

Pj = 1 , and 1≤ j ≤ N


 , (1)

whereIj is the index into the color codebookC, Pj is the
corresponding percentage, andN is the total number of col-
ors in the region.

This color feature representation can be considered as a
quantized version of the color histogram. This representa-
tion scheme has several advantages. First, it best represents
the original color content in terms of minimizing the mean
square error using a small number of colors. Second, this
color feature is very compact. By taking advantage of the
fact that human eyes cannot distinguish close colors very
well and that most segmented image regions contain only
a very small set of colors, this method extracts the most
prominent and distinctive colors from the region. It greatly
reduces the amount of feature data for storage and index-
ing. Furthermore, this representation facilitates queries such
as “Find me all image regions that have 50% red and 30%
green.”

2.1 A color dissimilarity measure

Given two image regions and , suppose their color features
are {(Ia, Pa)|1 ≤ a ≤ Na} and {(Ib, Pb)|1 ≤ b ≤ Nb},
respectively, whereNa and Nb denote the corresponding
number of colors in their color features. Now let us first
define

W (Ia, Ib) = ‖CIa
− CIb

‖
=

√
(rIa

− rIb
)2 + (gIa

− gIb
)2 + (bIa

− bIb
)2 , (2)

which is the Euclidean distance between any given two col-
ors from the color codebookC. It can be pre-computed and
stored as a table. Now identify the best matched colork
from the regionB which has the minimum distance to the
color Ia:

k = arg min1≤b≤Nb
W (Ia, Ib) . (3)

Use this to compute

D[(Ia, Pa), B] = |Pa − Pk| · W (Ia, Ik) , (4)

where D[(Ia, Pb), B] is a distance measure between the
given color element (Ia, Pa) and the set of color elements
{(Ib, Pb)|1 ≤ b ≤ Nb} in region B. D[(Ib, Pb), A] can be
computed in a similar manner. Thus, for each color inA,
the closest color inB is found and the distance is calculated.
Using the color percentages as weighting factors, a cumu-
lative distance over all colors inA is calculated. The same
process is also performed for each color inB. The distance
between the regionsA andB is then defined as follows:

d(A, B) =
∑

1≤a≤Na

D[(Ia, Pb), B]

+
∑

1≤b≤Nb

D[(Ib, Pb), A] . (5)

187

Fig. 2. An example of efficient color indexing. The table contains
256×N elements with 1 representing the existence of color in the
region and 0 for non-existence. The final set of matches is obtained
from the intersection (AND operation) of the two candidate lists
according to the dominant colors of the query image

Note thatd(A, B) = d(B, A). However,d(.) is not a distance
metric, as the triangular inequality does not hold.

2.2 Efficient color indexing

We now describe an efficient search algorithm to identify
similar colors in the database. Towards this objective, we
first construct anM × N binary color tableT (i, j), where
M = 256 is the number of colors in the color table andN
is the number of image regions in the database. Figure 2
shows an example.T (i, j) = 1 if the ith color is present in
the jth region, otherwise it is set to zero. One bit is used to
represent each element in the table.

A query object color information is represented using a
feature vector similar to the one described in the previous
section. TheK color elements in the query color feature
vectorfq = {(I (q)

j , P (q)
j)|1 ≤ j ≤ K} are sorted such that the

first color is the most dominant color (in terms of the per-
centage of pixels belonging to that color in the region), the
second index representing the second most dominant color
and so on, i.e.,P (q)

a ≥ P (q)
b if a ≤ b.

The search for images with similar colors as the query is
then conducted in two phases. In the first phase, the binary
color table is used to significantly prune the search space.
This is described in greater detail in the following. For those
image regions that survive the first phase, the more expen-
sive dissimilarity measure (Eq. 5) is computed.

Note that the elements in binary tableT (.) indicate either
the presence or absence of a color. However, one needs to
allow for “similar” colors close to the colors in the query
image as well for browsing applications. This is done by
specifying a similarity color tableS(i, j), where an entry
S(i, j) represents thejth most similar color index to the
color Ci. Consider a colorCi that belongs to the query
image. A vectorA(i) is now constructed as

A(i) = T (i, 1 : N) | T (S(i, 1), 1 : N) . . .

| T (S(i, p), 1 : N) , (6)

where| means the element-by-element OR operation, andp
is the number of similar colors considered. The similarity
is determined based on the Euclidean distance in the RGB
color space. The binary vectorA(i) is now used to select a
subset of image regions for further search as follows.

1. Begin with a 1× N binary vectorL = [1 1 . . . 1] (with
all elements as 1). Setk = 1.

2. SetL&A(I (q)
k) → L where the operator & represents the

element-by-element AND operation.
3. Count the number of 1s inL. If it is smaller than a given

threshold, or ifk = K, then go to step 4. Otherwise set
k + 1 → k and go to step 2.

4. Compute the color distance measure with the image re-
gions whose corresponding index in the vectorL is 1.
Show the sorted results to the user.

Figure 2 shows an example withp = 1 and the top two
dominant query image colors are used to reduce the search
space.

Because the computations required in color indexing are
mostly simple boolean operations such as bit-to-bit AND
and OR, they can be implemented efficiently. Besides, the
storage space required for these tables is very small. When
new data is entered into the database, one can simply update
the table by adding a new column vector at the end.

3 Shape and texture features

3.1 Shape features

The shape of objects or of regions of interest is another
important image feature for content-based image retrieval.
Over the past few decades many approaches to the charac-
terization of shape and shape similarity have been proposed
in the literature. An important class of shape analysis algo-
rithms is based on the representation of the outer boundaries
of objects [32]. We have adapted some of the existing well-
known shape representations with some minor modifications.
For the sake of completeness, we briefly describe the actual
implementation used in NeTra.

3.1.1 Contour representation

The contour of a 2D object is considered as a closed se-
quence of successive boundary pixel coordinates (xs, ys),
where 0≤ s ≤ N − 1 andN is the total number of pix-
els on the boundary. An example of this coordinate chain
is shown in Fig. 3. In our experiments, three types of con-
tour representations are derived from these boundary coor-
dinates, which includecurvaturefunction,centroid distance,
andcomplex coordinatefunctions.

188

Fig. 3a,b.The object boundary is represented as a discrete coordinate chain.
a A segmented flower image.b A small portion of the outer boundary of
flower

The curvature at any point along the contour is defined
as the rate of change in tangent direction of a contour, as a
function of arc length. Let us denote the curvature function
asK(s), which can be expressed as

K(s) =
d

ds
θ(s) , (7)

whereθ(s) is the tangent angle function of the contour and
is defined as

θ(s) = atan

(
ẏs

ẋs

)
,

(
ẏs =

dys

ds
andẋs =

dxs

ds

)
. (8)

When implementing the above formula in a digital im-
age where the contour is represented as a discrete coordinate
chain (as shown in Fig. 3b), we can use the following equa-
tion to compute the curvature:

K(s) = atan

(
ys − ys−w

xs − xs−w

)
− atan

(
ys−1 − ys−1−w

xs−1 − ys−1−w

)
, (9)

wherew > 1 is used to reduce the effect of contour noise in
computing the differentiation. Also note thatyt = yt+N and
xt = xt+N , because the boundary representation is a closed
chain.

The centroid distance function is the second contour rep-
resentation which will be used in extracting the shape fea-
tures. It is defined to be the distance of boundary pixels from
the centroid (xc, yc) of the object (see Fig. 4):

R(s) =
√

(xs − xc)2 + (ys − yc)2 . (10)

The third contour representation is the complex coordi-
nate function, which can be obtained by simply representing
the coordinates of the boundary pixels as complex numbers:

Z(s) = (xs − xc) + j(ys − yc) , (11)

where j =
√−1. Note that an object-centered coordinate

system is used here to make the representation translation
invariant.

3.1.2 Fourier-based shape description

In the area of shape analysis and classification, several shape
feature representation schemes based on autoregressive (AR)

models [7, 25] and Fourier descriptors [1, 21, 35] of contours
have been proposed. Recently, an experimental comparison
of shape classification methods based on these two principles
has been carried out in [12], which indicates that Fourier-
based methods provide better performance than AR-based
approaches, especially for noisy images. For this reason, we
use the Fourier-based shape descriptions in our image re-
trieval system.

In order to ensure that the resulting shape features of
all image objects in the database have the same length, the
boundary function ((xs, ys), 0 ≤ s ≤ N − 1) of each object
is re-sampled toM samples before performing the Fourier
transform. In our experiments, we chooseM = 26 = 64 so
that the transformation can be conducted efficiently using
FFT.

Fourier transform of a contour representation generates
a set of complex coefficients. These coefficients represent
the shape of an object in the frequency domain, with lower
frequency describing the general shape property and higher
frequency denoting the shape details. The shape feature can
be extracted from these transform coefficients. In order to
achieve rotation invariance, we only use the amplitude infor-
mation of the coefficients and discard the phase component.
This allows the encoding of the contour to begin at any point
along the contour. Scale invariance is achieved by dividing
the amplitude of the coefficients by the amplitude of the DC
component or the first non-zero frequency coefficient [12].
Note that translation invariance is obtained directly from the
contour representation.

Three Fourier-based shape feature representations are
now computed. For curvature and centroid distance func-
tions, we only need to consider the positive frequency axes,
because these functions are real and, therefore, their Fourier
transforms exhibit symmetry, i.e.,|F−i| = |Fi|. The shape
feature for the curvature is
⇀

f K = [|F1|, |F2|, . . . , |FM/2|] , (12)

where Fi denotes theith component of Fourier transform
coefficients. Similarly, The shape feature for the centroid
distance is
⇀

f R =

[|F1|
|F0| ,

|F2|
|F0| , . . . ,

|FM/2|
|F0|

]
. (13)

For a complex coordinate function, we use both negative
and positive frequency components. The DC coefficient is
dependent on the position of shape and, therefore, is dis-
carded. The first non-zero frequency component is used to
normalize the other transform coefficients. The shape feature
for complex coordinate representation is
⇀

f Z =

[|F−(M/2−1)|
|F1| , . . . ,

|F−1|
|F1| ,

|F2|
|F1| , . . . ,

|FM/2|
|F1|

]
. (14)

In the prototype system, any of the three features from
Eqs. (12, 13, and 14) can be specified by the user for comput-
ing shape similarity. A Euclidean metric is used to compute
the distance between two shape feature vectors.

3.2 Texture features

In [17], we presented a texture feature representation scheme
based on a Gabor decomposition. A comprehensive evalua-

189

Fig. 4. An example of the centroid distance function

Fig. 5a,b. A comparison of the edge flow model with the conventional approach to detecting edges.a Traditional method of edge detection.b Edge flow
model

tion and comparison with other multiresolution texture fea-
tures using the Brodatz texture database was also provided.
The conclusion was that these Gabor features provide ex-
cellent pattern retrieval performance. A brief review of the
texture feature extraction from [19] is given below. First
consider a prototype Gabor filter:

h(x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
· exp[2πjWx] . (15)

A bank of Gabor filters can be generated by dilating and
rotating the above function:

hi,j(x, y) = a−ih(x′, y′) , i, j = integer (16)

x′ = a−i(x cosθ + y sinθ) , y′ = a−i(−x sinθ + y cosθ) ,

whereθ = jπ/K andK is the total number of orientations.
The scale factora−i is meant to ensure the equal energy
among different filters. These Gabor filters can be consid-
ered as orientation- and scale-tunable edge and line (bar)
detectors. The statistics of the detected features can be used

to characterize the underlying texture information. Given an
imageI(x, y), a Gabor decomposition can be obtained by

Oi,j(x, y) =
∫

I(x, y)h∗
i,j(x − x1, y − y1)dx1dy1 , (17)

where * indicates the complex conjugate. A simple texture
feature representation can be constructed using the mean and
standard deviation of the amplitude information:

µij =
∫ ∫

|Oi,j(x, y)| dxdy

σij =

√∫ ∫ (|Oi,j(x, y)| − µij

)2
dxdy , (18)

ft =
[
µ00 σ00 µ01 . . . µ(S−1)(K−1) σ(S−1)(K−1)

]
. (19)

Four different scales,S = 4, and six orientations,K = 6, are
used in the following experiments. This results in a feature
vector of length 48. The normalized Euclidean distance is
used to measure the distance between two texture features.
For more details on this representation, we refer the reader
to [17].

190

4 Image segmentation and grouping

One of the distinguishing features of NeTra is the automated
image segmentation algorithm. Images are segmented and
local region features are computed and stored at data ingest
time. Segmentation is based on an edge flow model that we
recently developed [16]. The basic ideas of the edge flow
algorithm are outlined here and for details we refer to [16].

The usefulness of the segmentation scheme lies in the
fact that very little parameter tuning is needed. The only
free parameters controlling segmentation that the user needs
to provide are:

1. Image features to be used (gray/color, texture, or both).
2. The preferred scale to localize the desired image bound-

aries.
3. The approximate number of image regions for the region-

merging algorithm.

Discontinuities in natural images can occur in texture,
color, or both. A segmentation algorithm should consider
these different image attributes together in computing a par-
tition of the image. Towards this, a general framework for
boundary detection called “edge flow” is proposed in [16].
This framework utilizes a predictive coding model to identify
and integrate the direction of change in color, texture, and
filtered phase discontinuities at each image location. From
this, an edge flow vector which points to the closest image
boundary is constructed. This edge flow is iteratively prop-
agated to its neighbor if the edge flow of the corresponding
neighbor points in a similar direction. The edge flow stops
propagating if the corresponding neighbor has an opposite
direction of edge flow. In this case, the two image locations
have their edge flows pointing at each other indicating the
presence of a boundary between the two pixels. After the
flow propagation reaches a stable state, all the local edge
energies will be accumulated at the nearest image bound-
aries. The boundary energy is then defined as the sum of
the flow energies from either side of the boundary. Figure 5
provides a comparison of the edge flow model with the con-
ventional approaches to detecting edges using a 1D edge as
an example.

The edge flow model results in a “dynamic” boundary
detection scheme. The flow direction gives the direction with
the most information change in feature space. Since any of
the image attributes such as color, texture, or their com-
bination can be used to define the edge flow, this scheme
provides an easy framework for integrating different types
of image information for boundary detection. This whole
process including image smoothing, feature extraction, and
prediction for identifying the flow direction is designed in a
way that it can be controlled by a single scale parameter.

After boundary detection, disjoint boundaries are con-
nected to form closed contours, thus partitioning the image
into a number of regions. This is followed by a region-
merging algorithm. Region merging utilizes dissimilarity in
color and texture of the neighboring regions, as well as the
length of the original boundary (before boundary connec-
tion) between those regions. One of the stopping criteria
for region merging is the user-provided preferred number
of segments in the image. The user’s preference may not be

strictly enforced if it requires merging two largely dissimilar
regions.

Figure 6 illustrates the various stages of the image seg-
mentation algorithm. This algorithm has been applied to over
2,500 images from a Corel photo gallery. This is one of few
instances where a segmentation algorithm has been demon-
strated to give good results on a wide class of images. The
system also provides an optional tool for the user to further
merge some of the regions if necessary. However, no addi-
tional boundaries apart from the ones given by the algorithm
are created and the user-assisted region merging can be per-
formed extremely fast. Figure 7 shows some of the image
segmentation results.

A note regarding performance evaluation: Since no
ground truth is available for the color images, no quanti-
tative performance evaluation can be provided at this time.
However, our experiments with some of the synthetic texture
mosaics have given results better than most of the algorithms
that we are currently aware of in the segmentation literature.
A visual inspection of the results indicate that the segmen-
tation is of acceptable quality, particularly for applications
such as image browsing.

5 Query processing

Summarizing the discussions so far, a given image is first
segmented into a number of homogeneous regions. Each re-
gion is represented using color, texture, and shape attributes
as described in Sects. 2 and 3. For color features. a color
existence table is generated/updated for fast indexing.

The texture and shape features are represented using a
data structure similar to the SS-tree [33]. To construct the
tree data structure, a modified k-means clustering algorithm
is used. The modification is mainly to balance the tree, so
that browsing can be supported efficiently. The balancing of
the tree is achieved by imposing a constraint on the mini-
mum number of nodes in each cluster. If the clustering in
any iteration results in clusters with fewer than the mini-
mum, such clusters are deleted and their members are as-
signed to other needy clusters. The cluster centers are then
re-computed and used as the initial condition for the next
iteration. The process is repeated until no cluster is smaller
than the specified threshold or if the number of iterations
exceed a given number.

Color, texture, and shape of each of the regions in the
database are indexed separately. For a query consisting of
more than one of these image features, the intersection of the
results of search using individual features can be computed
and then sorted based on a weighted similarity measure. The
current implementation of NeTra uses an implicit ordering
of the image features to prune the search space. The first
feature that the user specifies is used to narrow down the
space, within which a more detailed search is performed to
similarity-order the retrieval results.

5.1 Spatial queries

In addition to the above-mentioned image features, NeTra
allows users to specify spatial location to further disam-
biguate the retrievals. For example, consider a search for

191

Fig. 6a–e.Various stages of the edge-flow based image segmentation.a Input image,b results of boundary detection based on edge flow, andc after
boundary connection and region merging,d shows a tool (optional) where the user can further reduce the number of segments by deleting boundaries, and
e is the final segmentation result

snow-covered-mountain pictures using color and texture. A
spatially unconstrained search often finds regions of ocean
surf, as such regions also have similar texture and color. A
search constrained to look for solutions only in the upper
half of the image would eliminate or reduce such retrieval
instances.

In order to facilitate spatial constraints, NeTra organizes
each region location information as part of its metadata.
The spatial location of each image region in the database
is represented by two sets of parameters: the region cen-
troid (xc, yc), and the coordinates of its minimum bounding
rectangle (xl, xr, yt, yb). The minimum bounding rectangle
is the smallest vertically aligned box which contains the re-
gion completely as shown in Fig. 8.

There are several approaches to constructing a spatial
query. One can directly specify the centroid of image re-

gion or use a rectangle window to find the image regions
that overlap with it spatially. The quad-tree [24] has been
widely used to provide a fast access to 2D data points and,
therefore, can be employed to index the region centroids.
The R-trees [9] can be utilized to efficiently search the im-
age regions whose minimum bounding rectangles overlap
with a specified area. However, in our experiments, we no-
ticed that the range or area of image region is more intuitive
and effective for forming a spatial query than the region cen-
troid. For example, a blue sky is a common feature in many
scenery pictures, and it is usually located in the upper half
of image. In order to search such images, one might want
to impose a spatial constraint on the blue area to enhance
the retrieval performance. The region centroid might not be
sufficient to convey a message for “upper half.”

192

Fig. 7. Examples of the image segmentation results

Fig. 8. The spatial location of image region is represented by its region
centroid and its minimum bounding rectangle (xl, xr, yt, yb)

In order to provide an effective tool to query the spatial
location, we propose the use of two query rectangle win-
dows to define the area of interest for image search. The
first window, the inner rectangle, is used to find the image
regions whose bounding boxes have at least some overlap
with it. The second window, the outer rectangle, is used to
retain only those regions whose bounding boxes are com-

pletely contained inside of this rectangle.These inner and
outer rectangles are represented by their corresponding co-
ordinates (x(i)

l , x(i)
r , y(i)

t , y(i)
b) and (x(o)

l , x(o)
r , y(o)

t , y(o)
b), respec-

tively (see Fig. 9).
The query for spatial location is performed using four

image region lists which are sorted according to the top left
and bottom right coordinates of their minimum bounding
rectangles, and four additional tables which provide indices
into these image region lists. Let us consider the list of bot-
tom positions,{yb}, denoted asLb, and its associated index
tableTb as an example.Lb contains the index to all the im-
age regions in the database with theiryb sorted, and thus its
length is equal to the total number of image regionsN . Tb

then stores the pointers to the listLb so that it knows which
portion of the list should be accessed if the range ofyb is
specified. Note that the length ofTb is equal to the image
height.

Given the positions of two query rectangles, the top of
inner rectangley(i)

t will be used to eliminate those image re-
gions which haveyb > y(i)

t . This can be done by first looking
at the pointerTb(y(i)

t), then deleting the upper portion of the

193

Fig. 9. Indexing scheme for query spatial location. Two rect-
angle windows are used to define the area of interest. Four sets
of sorted image region lists and the corresponding index ta-
bles based on each side of the region bounding rectangle (top,
bottom, left, and right) are used to perform a quick search

Fig. 10. aWindow for browsing the images in the database and displaying the search results,b tool for constructing the queries

list Lb. On the other hand, the bottom of outer rectangley(o)
b

will be used to delete those regions which haveyb < y(o)
b .

This is done by using the pointerTb(y(o)
b) to remove the

lower portion of the listLb. Therefore, the resulting set of
candidate matches is

Ab = Lb

(
Tb(y(i)

t) : Tb(y(o)
b)

)
. (20)

Similar operations are performed on the other three sides
using the corresponding lists and tables, and thus computing
three sets of candidate image regions, which are

At = Lt

(
Tt(y

(o)
t) : Tt(y

(i)
b)

)
,

Al = Ll

(
Tl(x

(o)
l) : Tl(x(i)

r)
)

,

Ar = Lr(Tr(x(i)
l) : Tr(x(o)

r))

(21)

whereLt, Ll, andLr are the lists for the top, left, and right
position of region-bounding rectangle, andTt, Tl, andTrare
their corresponding index tables. The final candidate matches
should satisfy all the previous requirements and, therefore,
are the result ofAt ∩ Ab ∩ Al ∩ Ar. Figure 9 illustrates this
search mechanism. Based on a similar strategy, the region

194

Fig. 11a,b. Image retrieval using color and
shape features. The image in the upper left
window is the query image, and the selected
query region is outlined. The top 6 best
matched image regions are displayed on the
right. a uses the color feature, andb is based
on the shape attribute

centroid can also be integrated into the search process to
eliminate image regions whose centroids fall outside of the
inner rectangle.

6 Experimental results

The current implementation of NeTra utilizes color, texture,
shape, and location information for region search and re-
trieval. The system is developed in JAVA language to pro-
vide client platform independence and accessibility on the
web. Currently, our database contains 2,500 color images
from a Corel photo gallery. The collection is organized into
25 different categories with 100 images per category.

Image segmentation and region feature extraction are
done off-line. The parameters for controlling the segmenta-
tion algorithm are specified on a category-by-category base.
For those images with uniform color and no texture, we spec-
ify the type of processing to “color only” and use a smaller

scale parameter to obtain more precise object boundaries.
For those images with textures such as gardens and moun-
tains, we use both color and texture to perform image seg-
mentation and use a larger scale parameter. The number of
preferable regions is set to 6–12 for each image, and the
total number of segmented regions in our database is about
26,000. In other words, each image is partitioned into 10
regions on the average. Following the segmentation process,
the image region map (or logical map) is used to guide lo-
cal region color, texture, and shape feature extraction. Re-
gions which contain more than 30% of image borders are
not considered for shape-based retrievals. The resulting re-
gion features and their spatial locations are stored as part of
the image metadata.

Orange colored flower beds.A snapshot of the user inter-
face of NeTra is shown in Fig. 10. The users can choose
color, texture, shape, spatial location, or any combination of
them to form their queries in the query window as shown

195

Fig. 12. a Image retrieval based on the
color information only.b Combining with
shape information improves retrieval per-
formance

in Fig. 10b. In this example, we illustrate the case when
a user is interested in finding images containing orange-
colored flower beds. An example of a large orange flower is
used to specify the color of interest. Since a flower bed has
texture associated with it, the user further uses an example of
such a “flowers” pattern to specify the texture of interest. In
addition, these orange flowers are more likely to be located
in the lower portion of an image and, therefore, the spatial
location is also included to favor those regions. Figure 10a
shows the search results based on these three requirements.
This example demonstrates how one can use low-level image
attributes such as color, texture, shape, and spatial location
to form a complete query so that image regions of interest
can be retrieved.

Snow-covered peaks.Figure 11a shows an example which
uses the color to retrieve several similar snow covered peaks,
and Fig. 11b shows an example of using the shape informa-
tion for image retrieval. Integrating shape and color enhances
retrieval performance as shown in Fig. 12.

Blue sky.Figure 13 shows another example where the user is
interested in retrieving images of blue sky. The user chooses
the color table (256 colors from the codebook) to specify
the blue colors and includes the spatial location to help the
search. The top 24 retrievals are shown. As can be seen,
except for matches #20 and #23, the other retrieved images
all contain blue sky.

Figure 14 provides two more retrieval examples based
on the joint color and texture similarity. As can be seen
from these examples, the system successfully retrieves im-
ages with perceptually similar regions. These and other ex-
amples shown emphasize the need for segmentation to index
image regions and not whole images. It should be noted that
global image attributes would have mixed background infor-
mation with desired local region attributes. Image segmenta-
tion distinctly helps in developing a better representation for
region-based search and indexing, and significantly improves
retrieval results compared to using whole-image attributes.

7 Discussion

We have described an implementation of NeTra, a toolbox
for organizing and searching image regions based on local
image properties. The system includes a robust image seg-
mentation scheme, and color, texture, and shape features rep-
resenting region information. The edge-flow-based segmen-
tation is used to process a large and diverse collection of im-
ages with very little parameter tuning. With the capability of
analyzing and representing individual image regions, the im-
age retrieval performance improves dramatically. However,
much work remains to be done in evaluating and quantifying
performance of such image retrieval systems.

NeTra uses a compact color feature representation ap-
propriate for segmented regions. In contrast with traditional
color histogram methods which use a fixed number of color
bins to characterize the color information, our approach se-
quentially increases the number of colors to cluster the colors
in the region until the mean squared error of the clustering
is below a pre-defined threshold. Since segmented regions
are quite homogeneous in color and/or texture, much fewer
colors, typically 5–15, are usually sufficient for representing
a region color.

An efficient color-indexing scheme based on the compact
color representation is also proposed. This indexing scheme
utilizes dominant colors in the query image to prune the
search space. This initial search involves only boolean oper-
ations such as AND and OR, and thus can be efficiently im-
plemented. Color quantization and similarity computations
are currently performed in the RGB space and, as the re-
sults indicate, do provide visually acceptable retrievals. In
color vision research it is shown that color spaces such as
the CIE L*a*b*, CIE L*u*v and Munsell color space [34]
correspond better to human color perception. However, Eu-
clidean distance metric for distance computations may not
be appropriate in these spaces and new quantization schemes
need to be developed. These issues are being investigated.

In addition to color, NeTra uses texture and shape of
the segmented regions in indexing them in the database.

196

Fig. 13a,b. Image search for “blue sky.”a The query formed by the user (colors/percentage)b The top 24 retrievals from the database. Except the match
20 and 23, the other retrieved images all contain blue sky

A fast algorithm for spatial queries which use the region
bounding box information is also developed. Some typical
retrieval results are provided, which illustrate that region-
based representation and querying images using local image
properties significantly enhance the perceptual quality of the
retrieved results.

Currently we are expanding the size of the database (to
about 12,500 images), and developing a search tool which
allows the user to form a query using multiple image regions
which include spatial relationships. Modifying the retrieval
results based on user feedback is another interesting direc-
tion that is being explored. This problem of incorporating

relevance feedback from users has recently become an im-
portant and active research area [6, 23].

Appendix
Color codebook construction using vector quantization

Let us denote this color codebook asC, whereC = {C1, C2,
. . . , C256} and each colorCi = (ri, gi, bi) is a 3D RGB color
vector. The 2,500 color images in our database (from the
Corel photo CDs) are used as the training data. The GLA
basically contains the following steps.

197

Fig. 14.Examples of region-based image
retrieval using the joint color and texture
information. Both of the query regions
and the best matched regions are outlined

1. Begin with an initial codebookC1. Set iteration number
m = 1.

2. Given a codebook,Cm = {Ci}, find the optimal partition
into quantization cells. That is,Si = {X|d(X, Ci) ≤
d(X, Cj); all j /= i}, whereSi is a collection of colors
belonging toCi.

3. Use the centroid of eachSi to form the new codebook
Cm+1.

4. Compute the average distortion forCm+1. If it has
changed by a small enough amount since the last it-
eration, stop. Otherwise, setm + 1 → m and go to step
2.

Acknowledgements.This research is supported in part by the Alexandria
Digital Library project at the University of California, Santa Barbara under
NSF grant number IRI-94-11330. We thank Yining Deng for his help in
the design and implementation of color image features.

References

1. Arbter K, Snyder WE, Burkhardt H, Hirzinger G (1990) Application of
affine-invariant Fourier descriptors to recognition of 3D objects. IEEE
Trans Pattern Anal Machine Intell 12: 640–647

2. Ashley J, Barber R, Flickner MD, Hafner JL, Lee D, Niblack W,
Petkovic D (1995) Automatic and semiautomatic methods for image
annotation and retrieval in QBIC. Proc SPIE (Storage and Retrieval
for Image and Video Databases III) 2420: 24–35

3. Bach JR, Fuller C, Gupta A, Hampapur A, Horowitz B, Humphrey R,
Jain RC, Shu C (1996) Virage image search engine: an open framework
for image management. Proc SPIE (Storage and Retrieval for Image
and Video Databases IV) 2670: 76–87

4. Carson C, Ogle VE (1996) Storage and retrieval of feature data for
a very large online image collection. IEEE Comput Soc Bull Techn
Comm Data Eng 19(4)

5. Carson C, Belongie S, Greenspan H, Malik J (1997) Region-based Im-
age Querying. In: IEEE Workshop on Content-Based Access of Image
and Video Libraries, June 1997, Puerto Rico, San Juan, pp. 42–49

6. Delanoy RL (1995) Toolkit for image mining: user-trainable search
tools. Lincoln Lab J 8(2): 145–160

198

7. Dubois SR, Glanz FH (1986) An autoregressive model approach to
two-dimensional shape classification. IEEE Trans Pattern Anal Mach
Intell 8: 55–66

8. Gersho A, Gray RM(1992) Vector Quantization and Signal Compres-
sion. Kluwer Academic, Dordrecht

9. Guttman A (1984) R-trees: a dynamic index structure for spatial search-
ing. ACM Proc. Int. Conf. Manag. Data, June 1984, pp 47–57

10. Hafner J, et al. (1995) Efficient color histogram indexing for quadratic
form distance functions. IEEE Trans Pattern Anal Mach Intell 17(7):
729–736

11. Huang Q et al. (1995) Foreground/background segmentation of color
images by integration of multiple cues. In: IEEE Int. Conf. on Image
Processing, Vol. 1, October 1995, Washington, DC, pp 246–249

12. Kauppinen H, Seppnäen T, Pietik̈ainen M (1995) An experimental
comparison of autoregressive and Fourier-based descriptors in 2D
shape classification. IEEE Trans Pattern Anal Mach Intell 17(2): 201–
207

13. Niblack W, Barber R, Equitz W, Flickner M, et al. (1993) The QBIC
project: querying images by content using color, texture, and shape.
Proc SPIE (Storage and Retrieval for Image and Video Databases)
1908: 173–187

14. Ma WY, Manjunath BS (1996) A texture thesaurus for browsing large
aerial photographs. Journal of the American Society for Information
Science, vol. 49, no. 7, 1998, pp 633–648

15. Ma WY, Manjunath BS (1996) Texture features and learning similarity.
In: IEEE Int. Conf. on Computer Vision and Pattern Recognition, June
1996, San Francisco, Calif., pp 425–430

16. Ma WY, Manjunath BS (1997) Edge flow: a framework of boundary
detection and image segmentation. IEEE Int. Conf. on Computer Vision
and Pattern Recognition, pp 744–749, Puerto Rico, June 1997

17. Manjunath BS, Ma WY (1996) Texture features for browsing and re-
trieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):
837–842

18. Manjunath BS, Ma WY (1996) Browsing large satellite and aerial
photographs. IEEE Int. Conf. on Image Processing, Vol. 2, September
1996, Lausanne, Switzerland, pp 765–768

19. Minka TP, Picard RW (1995) Interactive learning using a society of
models. Technical Report No. 349, MIT Media Laboratory, Cambridge,
Mass.

20. Pentland A, Picard RW, Sclaroff S (1994) Photobook: tools for con-
tent based manipulation of image databases. Proc. SPIE (Storage and
Retrieval for Image and Video Databases II) 2185: 34–47

21. Persoon E, Fu K (1977) Shape discrimination using Fourier descriptors.
IEEE Trans Syst Man Cybern 7: 170–179

22. Rubner Y, Guibas LJ, Tomasi C (1997) The earth mover’s distance,
multi-dimensional scaling, and color-based image retrieval. In: Proc.
of the APRA Image Understanding Workshop, May 1997, pp 661–668

23. Rui Y, Huang TS, Mehrotra S, Ortega M (1997) A relevance feedback
architecture in content-based multimedia information retrieval systems.
In: IEEE Workshop on Content-Based Access of Image and Video
Libraries, June 1997, Puerto Rico, pp 82–89

24. Samet H (1984) The quadtree and related hierarchical data structures.
ACM Comput Surv 16(2): 187–260

25. Sekita I, Kurita T, Otsu N (1992) Complex autoregressive model for
shape recognition. IEEE Trans Pattern Anal Mach Intell 14: 489–496

26. Slater D, Healey G (1996) The illumination-invariant recognition of
3D objects using local color invariants. IEEE Trans Pattern Anal Mach
Intell 18(2): 206–210

27. Smith JR, Chang SF (1996) Local color and texture extraction and spa-
tial query. In: IEEE Int. Conf. on Image Processing, Vol. 3, September
1996, Lausanne, Switzerland, pp 1011–1014

28. Smith JR, Chang SF (1996) VisualSEEk: a fully automated content-
based image query system. ACM Multimedia, November 1996, Boston,
Mass.

29. Smith TR (1996) A digital library for geographically referenced mate-
rials. IEEE Computer Society Press, pp 54–60

30. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vision
7(1): 11–32

31. Stricker M, Orengo M (1995) Similarity of color images. Proc SPIE
(Conf. on Storage and Retrieval for Image and Video Databases III)
2420: 381–392

32. Van Otterloo PJ (1991) A Contour-Oriented Approach to Shape Anal-
ysis. Prentice Hall, Englewood Cliffs, N.J.

33. White DA, Jain R (1996) Similarity indexing with the SS-tree. In:
Proc. 12th IEEE Int. Conf. on Data Engineering, February 1996, New
Orleans, La., pp 516–523

34. Wyszecki G, Stiles WS (1982) Color Science. John Wiley & Sons,
New York

35. Zahn CT, Roskies RZ (1972) Fourier descriptors for plane closed
curves. IEEE Trans Comput 21(3): 269–281

Wei-Ying Ma received the B.S. de-
gree in electrical engineering from the
national Tsing-Hua University in Taiwan
in 1990, and the M.S. and Ph.D. de-
grees in electrical and computer engi-
neering from the University of Califor-
nia at Santa Barbara (UCSB) in 1994
and 1997, respectively. From 1994 to
1997 he was engaged in the Alexandria
Digital Library project in UCSB while
completing his Ph.D. In June 1997, he
joined the Hewlett-Packard Laboratories
at Palo Alto, where he is currently a
Staff Engineer in the Internet Systems
and Applications lab. His research inter-
ests include content-based image/video
retrieval, image processing, computer vi-
sion, and neural networks.

Manjunath BS received the B.E.
in Electronics (with distinction) from
the Bangalore University in 1985, M.E.
(with distinction) in Systems Science
and Automation from the Indian Institute
of Science in 1987, and the Ph.D. degree
in Electrical Engineering from the Uni-
versity of Southern California in 1991.
He joined the ECE department at UCSB
in 1991, where he is now an Associate
Professor. During the summer of 1990,
he worked at the IBM T.J. Watson Re-
search Center at Yorktown Heights, NY.
Dr. Manjunath was a recipient of the na-
tional merit scholarship (1978–85) and
was awarded the university gold medal

for the best graduating student in electronics engineering in 1985 from
Bangalore University. He has served on the program committees of many
international conferences and workshops and was on the organizing com-
mittee of the 1997 International Conference on Image Processing (ICIP’97).
His current research interests include computer vision, learning algorithms,
image/video databases and digital libraries. He is currently an Associate
Editor of the IEEE Transactions on Image Processing and is a guest editor
of a special issue on image and video processing for digital libraries to be
published in the IEEE Image Processing Transactions in 1999.

