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ABSTRACT

Two new methods for computationally efficient design
of two-channel quadrature mirror filter (QMF) banks
based on the frequency sampling approach are intro-
duced. In the proposed approach, the number of param-
eters to be optimized are reduced significantly, thereby

leading to a faster design of the two-channel QMF banks.

The characteristics of the filters obtained are compa-
rable to those of some of the existing QMF banks, in
terms of the overall amplitude distortion and the min-
imum stopband attenuation.

1. INTRODUCTION

One-dimensional quadrature mirror filter (QMF) banks
have been used extensively in the subband coding of
speech and images [1, 2]. A typical two-band filter
bank is shown in Figure 1. In a two-band QMF bank
the analysis filters are related as Hy(z) = Ho(—z2). To
ensure aliasing cancelation, the synthesis filters satisfy
the constraint Go(z) = Ho(z) and G1(z) = —Hp(-2).
If Hy(z) is designed to have linear phase, then, the re-
sulting distortion function, given by T'(z) = %(H 2(2) -
H2(—2)) has linear phase, thereby eliminating phase
distortion. The residual amplitude distortion can be
minimized by an appropriate design of Hy(z).

Although there exist methods for the design of two-
band perfect reconstruction filter banks, the associated
analysis and synthesis filters (FIR) may not have as
good a magnitude response as that of filters in a QMF
bank. Analysis and synthesis filters with good magni-
tude response are required to remove out-of-band quan-
tization noise and correlation between the two chan-
nels. Moreover, due to the linear phase property as
well as the constraint H{(z) = Ho(—2), the QMF banks

have low implementation complexity in terms of the
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Figure 1: A two-band filter bank

number of multipliers required. As a result, QMF banks
are attractive for use in certain applications.

2. DESIGN OF TWO-CHANNEL QMF
BANKS

A general objective function for the total cost in the
design of a two-channel QMF bank can be formulated
as [3]

¢=akb+ (1 - )k, H

where

w
B :/ | Ho(e'¥) |? dw, and

w/2 . . 2
E, :/ (1= 1 Hoe*) [ = | Ho(@ =) ) dos
0

The above cost function can be interpreted as a mini-
mization of the residual amplitude distortion, as given
by E, and the stopband attenuation of the filter Ho(z),
as given by E;. The cost function ¢ can be minimized
by optimizing on the impulse response coefficients [3].
The difficulty associated with such a technique is that
optimization has to be performed over a large number
of parameters, which may be as many as half the num-
ber of impulse response coefficients. As a result, the
design complexity for such a method is very high. This
is undesirable in applications where the characteristics
of the filters (e.o. transition region) have to be changed
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frequently. Furthermore, if the optimization is per-
formed directly over the impulse response coefficients,
it is difficult to find reasonable initial values for these
coefficients. In order to reduce the design complexity,
we propose, in this paper, two methods for the design
of two-band QMF banks based on frequency sampling
approach. The primary advantage of these techniques
is that they yield results comparable to those in [3]
without requiring optimization over a large number of
parameters. Earlier work [4, 5] on reducing the design
complexity of QMF banks have focussed on converting
the cost function given by Eq. (1) to a quadratic form.

3. FREQUENCY SAMPLING DESIGN OF
TWO-BAND QMF BANKS

3.1. First Method

In order to determine the impulse response coefficients
of Ho(z), we determine the magnitude of samples of
Ho(e?*) at w = 27k/L, where L is the length of the
filter. An inverse DFT of the frequency samples then
yields the desired impulse response coefficients [6]. The
constraints on the magnitude response |Ho(e/)| of the
lowpass analysis filter are as follows: it should be ap-
proximately 1 in the passband, close to 0 in the stop-
band and should also satisfy the power complementary
relation

| Ho(e) | + | Ho(¢/"™)) PP= 1. (2)

If |[Ho(e?“)| is equal to 1 in the passband and equal to 0
in the stopband, then Eq.(2) is satisfied in both regions.
This can be approximately achieved by fixing the mag-
nitude of the samples, m[k] of Ho(e/), equal to one
in the passband and zero in the stopband respectively.
Now Ho(e?*) can be written as [6]

e=iw(=1)/2 20 F (k)i Lsin(wI,/2)

Ho(e™™) = =7 £ sin(w/2 — 7k/L)
where
k] (k) k=0,...L/2—1,
HE)y={ 0 k=L1/2
{ mlL —k)¢t(L —k) k=L/2+1,. ,L—1.

and ¢ (k) = e(-ImR(L-1/L),
Let

mfo] m[1] ... m[L-1]1",  (3)

m =

and let f(w) be a column vector of length L whose kth
element is given by

sin(wL/2)

comlin D . wb /TN

flkl =

Then, the amplitude distortion and the stopband en-
ergy of Ho(el%)) can be written in terms of m and f(w)
as .

(| Ho(¢7) | + | Ho(e ")) | —=1)* =
(Tf(w))* + (mTf(r - w))* — 1)* =
(" Q(w)m —1)?, (4)

and
| Ho(e*) = mTE(w)E (w)m,

where Q(w) = f(W)fT(w) + f(r — W)fT (7 — w). To
design the QMF bank, we need to find m such that
the cost function given by Eq. (1) is minimized. Since
all the components of m that occur in the passband
and stopband have already been set to 1 and 0, respec-
tively, we are left to find values of only those compo-
nents which occur in the transition band. This can be
done by choosing their values, such that an appropri-
ate cost function is minimized. Thus, the optimization
problem can be reformulated as follows: determine the
unknown components of m such that

w/2
¢ = a/o (mTQ(w)m — 1)%dw +

m”f(w)f7 (w)mdw (5)

Ws

(1-a)

is minimized. This optimization is performed only over
the transition band samples, which are usually small
in number as compared to the filter length. Thus, the
optimization complexity is not very high. Once the
frequency samples are obtained in this way, an inverse
DFT yields the impulse response coefficients of Hy(z).
The only unspecified quantity is the width of the tran-
sition band, which could be one of the input parame-
ters to the algorithm. The width of the transition band
controls the number of samples which occur in the tran-
sition band, and thereby controls the complexity of the
optimization. ‘

The key step in this design procedure is fixing the mag-
nitudes of samples in the passband to be equal to one,
and fixing the magnitudes of the samples in the stop-
band to be equal to zero. While these may not be the
optimal values of the frequency samples, they are very
close to the optimal values for filters with good mag-
nitude response. Simulation results show that loss in
optimality is not very sighificant by fixing these sam-
ples. However, a significant advantage of not using
these samples for optimization is that it leads to a con-
siderable reduction in the complexity of the design pro-
cednre.
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3.2. Second Method

The complexity of the iterative optimization is reduced
in the first method by setting the magnitude of the fre-
quency samples that occur in the passband and stop-
band to be equal to 1 and 0, respectively. If the magni-
tude of the samples falling in the transition band can be
specified in a similar way, then, no optimization would
be required. In this context, consider an analytical
function for the magnitude response of Ho(e/*):

. 1 if0<w<w,
Ho(e?¥)y=«¢ Hy(w) ifwp<w<w, (6)
0 fw, <w< .

The transition region magnitude function Hy(w) should
satisfy the following properties in order that Ho(e!*)
possesses a continuous magnitude response :

Ht(w)z{ 1 atw=uwp

0 atw=w;s.

In addition, to minimize the amplitude distortion, Hy(w)
should also satisfy

HY ) + B (r —w) = 1. (7)

There exist an infinte number of functions which satisy
Eq. (7). However, in this paper, we will consider only
those functions that can be expressed as polynomials
in w. In order to have a smooth transition region it is
desired that the derivatives of the function Hi(w) be
equal to zero at w = wp, and w,. It can be established
that the general form of such polynomials which have
the first m derivatives equal to zero at w = wp and w;,
and also satisfy Eq. (7), is given by

1
2z

Hiw) = (m“Z(’"*“(l—)), ®)

ws —w

where z = ).

This completely characterizes the magnitude response
of the two-band QMF bank. This magnitude response
is uniformly sampled at the specified number of points,
and then an inverse DFT is performed on these sam-
ple values to obtain the impulse response coefficients.
Although the frequency sampling technique only guar-
antees that Eqgs. (6) and (7) are satisfied exactly at
the sampling frequencies, the deviation from the de-
sired values is small throughout the frequency range.
This is due to the fact that the function to be approx-
imated is smooth. Since only an approximation to the
desired response can be obtained, the resulting QMF
hank exhihits amolitude distortion.

ws — Wp

4. RESULTS

The above methods have been used to design linear
phase analysis/synthesis filters of length 32. The only
other parameter required by the algorithm is the width
of the transition region. The value of « is chosen to be
equal to one, and a transition width of 0.187 is used
for both methods. The value of m in Eq. (8) is chosen
to be equal to 2 for the second method. The mag-
nitude response of the filters and the resulting ampli-
tude distortion for the first and second methods, as
well as those of Johnston’s 32D filters are plotted in
Figures 2 and 3, respectively. The results indicate that
the first method produces filters of good magnitude re-
sponse and low amplitude distortion (peak distortion
of 0.015dB). Thus, although some of the parameters
are set to fixed values, the effect of fixing them is small
on the magnitude response of the filters and the overall
distortion of the QMF bank.

The second method also leads to filters with lower am-
plitude distortion (peak value of 0.02 dB) than John-
ston’s QMF banks but with a slightly degraded magni-
tude response in terms of larger transition width. The
low amplitude distortion verifies the fact that the devi-
ation from the desired response is small throughout the
frequency range. The principal advantage of the sec-
ond method is that it does not require an optimization
procedure for the design of the QMF banks.

5. CONCLUDING REMARKS

In this paper, we have developed two approaches, based
on the frequency sampling technique, for the design of
two-band QMF banks. The main objective of both
approaches is to reduce the design complexity of two-
band QMF banks. The first method achieves this by
reducing the number of parameters involved in the op-
timization to about 2 to 3 (the typical number of sam-
ples occuring in the transition band), while the second
method eliminates the need for optimization in the de-
sign of filter banks. The second method achieves this
by formulating a smooth analytical expression for the
desired magnitude response of the filters, and then us-
ing a frequency sampling technique to approximate the
magnitude response. Since the design involves no opti-
mization, the procedure is extremely fast. The design
methods are not aimed at synthesizing filters to meet a
specified minimum stopband attenuation or have min-
imum amplitude distortion. The emphasis rather is to
develop fast design methods which result in filters with
characteristics comparable to some of the existing fil-
ters.
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Figure 2: (a) Magnitude response and (b) Residual am-
plitude distortion, for filters of length 32 designed using
the first method.
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plitude distortion, for filters of length 32 designed using
the second method.
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