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ABSTRACT
A computationally efficient algorithm is proposed

to remove noise impulses from speech and audio sig-
nals while retaining its features and tonal quality. The
proposed method is based on the SD-ROM (Signal De-
pendent Rank Order Mean) algorithm. This technique
has successfully been used to remove impulse noise from
images. It has the advantage of being relatively fast,
simple and robust. The algorithm estimates the like-
lihood the sample under inspection is corrupt relative
to the neighboring samples and replaces a sample de-
tected as corrupted by a value based on the neighboring
samples. This algorithm also has the advantage of be-
ing ‘configurable’ to the type of noise impulses in the
sample, as the thresholds used to detect noise impulses
can be varied to suit the signal.

1. INTRODUCTION

Standard global filtering techniques like lowpass fil-
tering do not differentiate between impulse corrupted
samples and uncorrupted samples. Median filters and
other order static filters that operate on a localized
area typically modify uncorrupted samples as the fil-
tering is applied uniformly over the whole signal. The
median filter is a highly robust estimator of the sig-
nal value in the presence of impulse noise. However,
a median filter will eliminate changes in the input sig-
nal with a duration less than half the size of the filter
window. When the signal is heavily corrupted with
impulse noise, a large median window is needed and
this leads to more uncorrupted samples being replaced
by the median value within the window and more high
frequency components being removed by the filter. As
a result, conventional techniques for impulse noise re-
moval perform poorly for an acceptable level of feature
and tonal quality.
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The ideal objective would be to replace only the
noisy samples, leaving uncorrupted samples unchanged.
The technique presented in this paper attempts to do
this using a detection-estimation approach. Each im-
pulse is first detected in the sample stream and then is
replaced by an estimate based on neighboring samples.
We assume that the noise impulses can take any ar-

bitrary value within the dynamic range with some error
probability. Let s(n) denote the uncorrupted 1-D se-
quence and x(n) denote its corrupted version contain-
ing some impulse corrupted samples. Then, at time
instant n, for an impulse noise model with an error
probability pe, we have

x(n) =
{

s(n), with probability 1− pe

η(n), with probability pe
(1)

where η(n) is an identically distributed, independent
random process with an arbitrary underlying probabil-
ity density function.

2. THE SD-ROM ALGORITHM

The SD-ROM algorithm proposed here is a variant of
the original algorithm used for filtering images [1]. In
image restoration, a 2-D sample window of size 3 by 3
was used. Here we use a 1-D sliding window of size five
as shown in Figure 1.
Consider a sample vector x(n) of size five centered

at n. Define w(n) as the vector of size four that ex-
cludes x(n), the center sample under inspection.

w(n) = [w1(n), w2(n), w3(n), w4(n)]
= [x(n − 2), x(n − 1), x(n+ 1), x(n+ 2)]

(2)

Xn−2 Xn−1 Xn Xn+1 Xn+2

Figure 1: Filter window.



The observation samples from w(n) are sorted,

r(n) = [r1(n), r2(n), r3(n), r4(n)] (3)

where the elements in r(n) are ordered by rank i.e.
r1(n) ≤ r2(n) ≤ r3(n) ≤ r4(n), so that the elements
are arranged in ascending order.
Finally, the rank-ordered differences di(n) are de-

fined as

di(n) =
{

ri(n)− x(n), if x(n) ≤ µ(n)
x(n)− r4−i(n), if x(n) > µ(n) (4)

where µ(n) = [r2(n) + r3(n)]/2 and is called the rank-
ordered mean (ROM). For a window of size five, i =
1, 2.
The algorithm decides x(n) is a noise impulse if any

of the following conditions hold

di(n) > Ti, for i = 1, 2 (5)

where T1 and T2 are two appropriately chosen threshold
values. In our trials these were typically T1 = 4, T2 =
12 for 8-bit PCM (dynamic range between 0-255).
Every detected impulse is replaced by the ROM,

µ(n).
The algorithm can also be applied in a recursive

fashion, where previously filtered impulses are consid-
ered. So in the case of a size five sliding window (sam-
ple No. 3 under consideration) the first two samples
(sample No. 1, 2) are not samples from the input sig-
nal, but are ones that have already passed through the
SD-ROM filter. This recursive approach improves the
performance of the algorithm for highly corrupted sam-
ples as the number of impulses in the first half of the
sliding window will be reduced or eliminated. It should
be noted that the recursive approach can decrease per-
formance for lightly corrupted samples.

3. EXPERIMENTAL RESULTS

As an initial implementation of the algorithm, a music
sample (8-bit PCM, sampled at 22.05 kHz) was cor-
rupted with 5% random height impulse noise, with the
range of the impulses comparable to the range of the
music sample. The results shown here are for the non-
recursive approach although the recursive application
should yield better results. Our trials with different
window sizes showed that while larger windows were
not necessarily better, increasing the window size can
improve the performance when there are more than two
noise impulses within the sample window. However,
increasing the window size required chosing additional
threshold values. Analysis on varying the window size
yielded the results summarized in Table 1.

Table 1: Results for varying window sizes.

Window Size SNR
5 35.781 dB
7 34.416 dB
9 32.771 dB

As Table 1 shows, a window of size five produced
the best signal-to-noise ratio. We set the threshold
values to T1 = 4, T2 = 12. Our trials with many com-
binations of thresholds and samples indicate that these
values should work well with most inputs, though the
algorithm can be ‘tuned’ by varying the window size
and weights to give better results for a particular sound
sample. Table 1 also shows the robustness of the SD-
ROM algorithm, as varying the window size does not
drastically reduce the performance of the filter as in the
case of median or weighted median filters. However, in-
creasing the window size does increase the complexity
of the design since a larger number of thresholds is re-
quired.
Figure 2 shows a section of the signal corrupted

with noise impulses. This section of the input signal
has a relatively low amplitude making the impulses ob-
vious. Figure 3 shows the results after filtering with a
median filter. Note that the output is modified in sev-
eral sections where no impulses were added. In most
cases, these additional changes are a result of clipping
off peaks or filling in valleys in the original signal.
Figure 4 shows the results after filtering with the

SDROM filter. The SDROM filter made two kinds
of errors. A detection error is an impulse that is not
detected or a sample that is erroneously detected as
an impulse. An estimation error is the substitution of
an incorrect value when an impulse is detected. Both
kinds of errors can be seen in the example. However,
these errors are both fewer and smaller than the errors
made by the median filter.

4. EVALUATION

Table 2 gives a comparison of some of the standard
techniques for filtering impulse noise. The table shows
the superior performance of SD-ROM (the weights for
the window of size seven were T1 = 6, T2 = 8, T3 = 14).
There are other methods for removing noise from

corrupted music samples such as techniques using local
trigonometric bases and wavelet packets [3] that pro-
duce superior results at restoring old recordings. But,
these techniques address all forms of noise and are com-
putationally more complex.



Table 2: Performance comparisons.

Filter Type SNR
Median (Win. Size 5) [2] 32.240 dB
Median (Win. Size 7) [2] 28.639 dB
Wt. Median (Win. Size 5) [4] 32.322 dB
Wt. Median (Win. Size 7) [4] 28.639 dB
SD-ROM (Win. Size 5) 35.781 dB
SD-ROM (Win. Size 7) 34.410 dB

5. FINAL REMARKS

Many applications can be foreseen for this technique.
One of the original motivations for this research was
to restore old gramophone discs. Scratches and static
on these discs are essentially modeled as impulse noise,
which are detected and removed by our technique. Other
applications of this technique could be in telecommu-
nications, where noise both in regular and cellular tele-
phones and could be reduced without sacrificing tonal
quality with a fast hardware implementation of the al-
gorithm.
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Figure 2: A section of the original and noisy sequences.
The third plot is the difference between the sequences
and shows the location of the corrupted impulses.
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Figure 3: A section of the original and median filtered
sequences. The third plot is the difference between the
sequences.

16 16.05 16.1 16.15 16.2 16.25 16.3 16.35 16.4 16.45 16.5
120

130

140

Sample n

A
m

pl
itu

de

Original

16 16.05 16.1 16.15 16.2 16.25 16.3 16.35 16.4 16.45 16.5
120

130

140

Sample n

A
m

pl
itu

de

SDROM

16 16.05 16.1 16.15 16.2 16.25 16.3 16.35 16.4 16.45 16.5
−4

−2

0

2

4

Sample n

A
m

pl
itu

de

Difference

Figure 4: A section of the original and SDROM filtered
sequences. The third plot is the difference between the
sequences.


