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ABSTRACT

In this paper, we propose a new technique for the de-
sign of two-channel perfect reconstruction filter banks
(PRFBs). The proposed design approach is generic,
and can be applied to the design of both orthogonal as
well as linear phase biorthogonal PRFBs. Unlike pre-
vious design techniques where the perfect reconsiruc-
tion (PR) property was structurally imposed, our design
starts with trivial filters that yield perfect reconstruc-
tion. The length of the filters is subsequently increased
to improve their magnitude reponse without sacrificing
either the linear phase/orthogonality or the perfect re-
construction property.

1. INTRODUCTION

Subband coding has been used for the compression of
speech, audio and images. The input signal is split
into different subbands using a set of bandpass filters.
These subband signals are then downsampled and quan-
tized. The quantized coefficients are transmitted to the
decoder, where they are upsampled and combined ap-
propriately using the synthesis filters. In the absence
of quantization of the subband components, the filter
bank introduces two kinds of errors — aliasing distortion
and magnitude or phase distortion. By choosing the
analysis and synthesis filters appropriately these errors
can be eliminated resulting in a perfect reconstruction
filter bank (PRFB). In addition, certain applications
also require that the individual filters in a PRFB have
linear phase.

One approach to the design of two-channel PRFBs is
based on spectral factorization of half-band filters [1].
Another approach involves the lattice factorization of
paraunitary matrices [2], where the perfect reconstruc-
tion (PR) property was imposed structurally on the
filter bank. Lattice-type structures [3] have been pro-
posed to structurally enforce both the PR and the lin-
ear phase properties simultaneously. In all of these
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methods, since perfect reconstruction is ensured based
on the structure of the filter bank, different design tech-
niques may result for structurally different types (or-
thogonal, biorthogonal) of filter banks. There is also
no clear way of transforming the design procedure for
one type of PRFB to that for another.

In this paper, the PR property is not tied to the struc-
ture of the filter banks and thus, any PRFB can be
designed using the same procedure. Qur design starts
with trivial filters that satisfy the PR property. The
lengths of the filters are gradually increased so that fil-
ters with improved frequency responses are obtained
while retaining the PR property.
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Figure 1: A two-channel filter bank and its equivalent
polyphase decomposition

2. TWO-CHANNEL PERFECT
RECONSTRUCTION FILTER BANKS

For the typical two-channel filter bank shown in Figure
1, the conditions to be satisfied by the analysis and
the synthesis filters to eliminate aliasing and to achieve
perfect reconstruction are

Hy(—z)Go(2) + Hi(—2)G1(2)

o (1)

and

Ho()Go(2) + Hi(2)Ca(2) = az™.  (2)
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By applying a polyphase decomposition to the filters,
a sufficient condition to achieve PR is given by [4]

R(z)E(z) Bz~"°1. (3)

A necessary and sufficient condition [4], to satisfy Eq.
(8), using FIR filters is

det E(z)

az_K,

(4)
where « is a non-zero constant and K is an integer. If
an E(z) that satisfying Eq. (4) can be found, then the
corresponding R(z) is given by R(z) = Bz~™ E~1(z).
There exist a number of solutions to Eq. (4), and it
is not difficult to find an E(z) that satisfies Eq. (4).
The difficulty in the design of a PRFB lies in finding a
E(z) that satisfies Eq. (4) and minimizes a certain cost
function (typically based on the magnitude response of
the filters).

We pose the problem of the design of PRFB as (i)
choosing an initial solution to Eq. (4), and (ii) subse-
quently designing an efficient method to proceed from
one solution to others, thereby eventually arriving at
the optimal solution. We also show that for the spe-
cial cases of orthogonal and linear phase biorthogonal
filter banks, all possible solutions to Eq. (4) can be
generated using this approach. For the initial solution,

we choose filters whose polyphase matrix E(z) is of the

form

Bo=|p ol )

The initial filters are of length 2, and thus do not
have good magnitude responses. To obtain filters with
good magnitude responses, we need to increase the
lengths of Ho(z) and Hi(z), or equivalently, those of
Eoo(2), E01(2), Ero(z) and E11(z), where Ejj(z) rep-
resents the (i + 1,7 + 1) element of E(2). In the first
step, the lengths of Ego(z) and Eg1(2) are increased
by adding the polynomials a(z) and B(z) respectively.
The lengths of a(z) and B(z) could be greater than
those of Egg(2) and Eo1(z), respectively. The polyno-
mials a(z) and 8(z) should be chosen such that the new
polyphase components satisfy Eq. (4), thereby leading
to

a(z) = P(2)Ey9(z) and B(z) = P(z)E11(2). (6)

Hence the new polyphase components Egy(z) and Eg, (2)
are given by

Eoo(2) = Eoo(2) + P(2)Exol(2)
En(z) = Eo(z)+PEEnG). (1)
In the next step, the length of Hy(2) is increased simi-
larly, resulting in
Eyo(z) = Eo(z)+ Q(x)Eool2)
; Ero(2)(1+ P(2)Q(2)) + Q(2) Eoo(2), (8)
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and

Ey(2)

En(2) + Q(2) Egy(2)
En(2)(1+ P(2)Q(2)) + Q(2) Eo1(2). (9)

This method of constructing Ho(z) and H;(z) ensures
perfect reconstruction regardless of the actual values of
P(z), Q(z), ko, k1, k2 and k3. The design problem for
two-channel PRFBs can be reformulated as: choosing
P(z), Q(z), ko, k1, k2 and k3 to minimize the cost
function given by

¢= /Ow'(l— | Ho(e?) |)?dw +

/ | Ho(ei™) ? do

™ w,

+ [Tam 1m0 Do+ [ 1H ) P o (10

wp g

Note that ko, k1, k2 and k3 should be chosen such that
koks # kiks. If such a situation arises one could modify
any of the k;’s by adding a small constant §. Differ-
ent types of PRFBs may place different constraints on
P(z2), Q(z), ko, k1, k2 and ks. However, the proce-
dure outlined above is generic and is thus applicable
to the design of two-channel PRFBs of any type. In
this paper, we apply this procedure to the design of
orthogonal PRFBs and linear phase PRFBs.

3. LINEAR PHASE PERFECT
RECONSTRUCTION FILTER BANKS

First, consider the case of analysis filters having equal
lengths. It can be shown that in this case the lowpass
and the highpass analysis filters are of even length and
while the lowpass filter is symmetric, the highpass fil-
ter is anti-symmetric [3]. The various polyphase com-
ponents are related by

Eoi(z) = 2z E1Eg(z™h), (11)

and

En(2) —z"EH Ero(27h), (12)

where the length of the filters Ho(2) and Hi(z) is 2L.
To design the PRFB, we choose Ho(z) = ko(1 + 271)
and Hi(z) = k1(1 — z~!) as the initial solution. The
polyphase matrix is then given by

o=k 5]

Assume now that we have designed a linear phase PRFB
of length 2I. The lengths of Ho(z) and H;(z) are now
increased by 2, while ensuring that Eq. (4) remains
valid. This is done by adding polynomials a(z) and
B(z), respectively, of length 21+ 2, resulting in the new
filters Hy(z) and H,(z). For Hy(z) to be symmetric,
and H,(z) to be antisymmetric, the conditions to be
satisfied are as follows:

(13)



e a(z) is symmetric and $(z) is anti-symmetric,

e The initial solutions Ho(z) and Hi(z) are “cen-
tered”, i.e., Ho(z) and H(z) are multiplied by
271, resulting in

Ho(2) = 27" Ho(2) + a(2),
Hy(2) = 27 Hi(2) + B(2).

I“, terms of the polyphase components of H(I,(z) and
H(z), we obtain

Ez,o(z) = z—lEm(z) + aoz),

Egy(2) Eoo(2) + o1 (2),

E;o(z) = 27 E(2) + Bo(z),

Eu(z) = Ew(2)+Al2), (14)

where a(z) = ao(2?) + 27 au(2?) and B(z) = Bo(2?) +
z7181(2?). The new value of det E (2) is given by

det E'(2) = —z~'det B(2) + ao(2)E10(2)
+Z—1E01(Z)ﬂ1(2) + ao(z)/jl(z) - ﬂo(Z)Eoo(z)
—271E11(2) e (2) — a1(2)Bo(2). (15)

Due to the symmetry of a(z) and the anti-symmetry of
B(z), we require that o1(z) = 2 'ag(27!) and B;(2) =
-—z"ﬁo(z‘ll). If ao(z) = k1 Ego(2) and Bo(2) = kiE1o(2),
then det E'(z) = (k¥ — 1)z~ 'det E(z). This implies
that the perfect reconstruction condition is satisfied but
for a scaling factor and an additional delay. The lengths
of Ho(z) and H,(z) can thus be recursively increased in
this way, starting with filters of length 2, while main-
taining the PR property. The parameters {k;}’s can be
chosen to minimize the cost function given in Eq. (10).
The resulting structure of the polyphase matrix is simi-
lar to that reported in [3], where it was been shown that
the structure generated “almost” every PRFB where
the analysis filters are equal length, linear phase filters.
Furthermore, the lattice-type structures are specific to
the design of linear phase PRFBs, while our method
can be used to design any type of PRFB.

Next, consider the case of analysis filters having differ-
ent but even lengths. In this case, it can be shown that
the lengths of Hq(z) and Ho(z) differ by an even mul-
tiple of two [3]. Assume that the lengths of H;(z) and
Hy(z) are 2L and 2L + 4K, respectively. By applying
the above procedure to filters of length 2, H;(z) and
Hy(z) are constructed till their lengths equal 2L, while
ensuring that the PR property continues to be satis-
fied. Then, the length of Hg(z) alone is increased by
“centering” Hg(z), and then adding a symmetric poly-
nomial a(z) of length 2L 4+ 4K. The new polyphase
components are now given by

Ego(2) 2~ Egu(2) + ao(2),

z_KEm(z) + a1 (2),
EIO(‘Z))

E('n(z)
E;O(z)

and
En(z) = En(2),

where a(z) = ao(2?) + 27 a;(2?) and

(16)

ay(z) = 2~ EH2E Doz,

For perfect reconstruction, ag(z) and a(z) should sat-
isfy

Olo(’z) - Elo(z)
Otl(Z) Eu(z)'

One solution is given by aq(2) = P(z)Ey0(z) and a;(2)
= P(z)E1(z), where P(z) is a polynomial of length
2K+1. The requirement Eq,(z) = z~(E+2K-1) g7 (;=1) .
enforces the relation P(z) = ~z~2X P(z~1). Finally,
{ki}’s and P(z) are jointly optimized to minimize the
cost function given in Eq. (10).

4. ORTHOGONAL FILTER BANKS

(7)

. The design procedure outlined in Section 2 can be mod-

ified for the design of orthogonal (or paraunitary)
PRFB. For achieving perfect reconstruction, the condi-
tions on the two polyphase components can be shown
to be

Eo(2)Eo(z™1) + E1(2)E1 (27 1Y) = const (18)
The initial solution is chosen as
T ke K

E(z) = [ ky ko ] . (19)

" To increase the lengths of filters, the polyphase com-
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ponents are updated as

Bge(2)
Bpe(z)

27" Eo(2) + a(2),
Z—pEl(Z) +ﬂ(z),

fl

(20)

where the polynomials a(z) and 3(z) are chosen such
that (18) is satisfied by EF¢¥(2) and E7¥(z). If a(z)
and f(z) are chosen such that

a(z) = kz"PE1(z) and B(z) = —kz""Eo(2), (21)
where k is a free parameter, then, E}*(z) and E7¢"(2)
satisfy (18). In our design procedure, (20) and (21) are
recursively applied to obtain filters of increasing length
(starting from the initial solution in (19) of length 2).
For every recursive step, the length of the filters in-
creases by max(2r,2p) and one additional free param-
eter becomes available.



To obtain filters with good magnitude response, we
need as many free parameters as permitted by the struc-
ture of the filter bank. Thus, if max(r,p) = 1 at every
step of the recursion, the length of the filters increases
by 2 at each step, and we obtain the maximum num-
ber of free parameters at the end of the recursion. In
particular, if we choose r = 0 and p = 1, then,

B0 =15 e ]

which is equivalent to the lattice structure developed
for the factorization of paraunitary matrices [2}. Fur-
thermore, it has been established that all paraunitary
matrices can be generated using this lattice structure.
Since a necessary and sufficient condition for a filter
bank to be orthogonal is that its polyphase matrix be
paraunitary, it follows that all possible orthogonal filter
banks can be generated by our approach.

Epe(z)
Epew(z)

Eo(z)
El(z)

5. RESULTS

The above procedure has been applied to the design of
a PR filter bank where the analysis filters are of length
32 each. Two cases are illustrated here. In the first
case, the analysis filters in the filter bank have linear
phase while in the second case, the analysis filters are
such that the overall filter bank is orthogonal.

Figure 2 shows the magnitude responses of the low-
pass and the highpass analysis filters when the analy-
sis filters are constrained to have linear phase. Figure
3 shows the magnitude response of the analysis filters
of length 32 each in an orthogonal PRFB. These re-
sults indicate that the filters designed by our methods
are equivalent to those designed using alternative tech-
niques.

Figure 2: Magnitude response of linear phase analy-
sis filters of length 32 in a perfect reconstruction filter
bank.

408

6. CONCLUDING REMARKS

In this paper, we present a new approach to the design
of two-channel PRFBs. The key notion introduced is
a procedure for the design of any type of PRFB, start-
ing with trivial filters satisfying the PR property. Re-
sults for different types (orthogonal and linear phase
biorthogonal) PRFBs indicate that the proposed tech-
nique can be applied to design filters with good mag-
nitude response.

08

Figure 3: Magnitude response of the analysis filters of
length 32 in an orthogonal perfect reconstruction filter
bank.
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