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ABSTRACT

We develop a new approach for the design of two-channel
perfect reconstruction (PR) filter banks that yield low

system delay. The proposed design procedure is based

on the idea of starting with trivial initial filters that

yield low delay and satisfy the PR property. The lengths

of the filters are subsequently increased in order to 0b-

tain filters with good magnitude response without sac-

rificing the low-delay or the PR properties of the filter

bank. This is accomplished by increasing the length of
the filters such that an appropriate cost function is min-

imized. We also develop an optimization technique to

find a local minimum of the cost function.

1. INTRODUCTION

The problem of designing perfect reconstruction (PR)
filter banks has been the focus of considerable research
[1-4]. In all of the proposed solutions, though, the sys-
tem delay has been largely ignored. However, the issue
of delay is significant in the processing of temporal sig-
nals, especially for tree-structured filter banks, where
stages located deep within the tree contribute exponen-
tially to the overall system delay. Although low-delay
filter banks were first investigated in [5], the filter banks
thus obtained did not satisfy the PR property exactly.
We develop a new approach to the design of PR fil-
ter banks. Our design procedure is based on the idea
of starting with trivial filters that achieve perfect re-
construction, and subsequently updating these trivial
filters to enable the design of filters of higher lengths
(and thus good magnitude response) without sacrific-
ing the perfect reconstruction property or the low-delay
property. While the design procedure is illustrated, in
this paper, for the case of two-channel filter banks, it
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Figure 1: M-channel maximally decimated analysis and
synthesis filter bank.

can be extended to the case of filter banks with an
arbitrary number of channels.

2. DESIGN PROCEDURE

For the typical M-channel filter bank shown in Figure 1,
the condition [3] to be satisfied by the analysis and syn-
thesis filters in order to achieve perfect reconstruction
is '

R(2)E(z) = z"™1, (1)

where R(z) and E(z) are the polyphase matrices of
the synthesis and analysis filter banks, respectively. A
necessary and sufficient condition to satisfy (1) using
FIR filters is

det E(z) = oz XK. (2)

There exist a number of solutions to (2), and the aim
of the design procedure is to choose the solution which
is optimal in some sense (typically, a criterion such as
good magnitude response of the filters is used). The
design procedure should also be capable of generating
all of the possible solutions to (2), as opposed to gen-
erating only a subset of the solutions. This is required
to ensure that the optimal solution, found from the set



of generated solutions, is indeed the true optimum.
We approach the problem of designing PR filter banks
by first specifying an initial solution to (2), and then
developing a method for proceeding from this solution
to the other solutions. Furthermore, we show that for
certain well defined special cases, every possible solu-
tion to (2) can be obtained by this technique. In our
proposed design procedure, we first choose an

koo ko, koa—1
kio ki ki1 :
E(z) = , (3)
kar—10 km-11 kp-1,m-1

as the initial solution to (2), where k;; are constants,
and are chosen such that det E(z) # 0. The follow-
ing proposition provides a way of proceeding from this
trivial solution (corresponding to filters of length M)
to other solutions (corresponding to filters of length
> M).

Proposition 1 Let e be the k** column of polyphase
matriz B(z) that satisfies det E(z) = az~%. If E'(2)
is obtained by replacing e with

el =z"Tep + Z

i=0,j#k

i(2)e; (2), (4)

where Pj(z) are arbitrary polynomials, while retain-

ing the remaining columns of BE(z), then, det E/(z) =
az ~-K- -r

Proof: ‘The multiplication of the k** column of E(z)

by z=" causes det E(z) to be multiplied by z77. In

addition, det E(z) remains unchanged if a linear com-

bination of all but the k*? column of E(z) is added to
z""e. This implies that det E'(z) = az= k7.

3. DESIGN OF TWO-CHANNEL
LOW-DELAY FILTER BANKS

In this section, we focus on the design of two-channel
PR filter banks with minimal delay although our tech-
nique can be easily extended to the case where specific
system delays are needed. To ensure both minimum de-
lay and PR, we need to find an E(z) such that det E(z)
1s a constant.

Step 1: We use the design procedure outlined in Sec-
tion 2, starting with the initial solution,

ko

ko )

ky

BG) = | )
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Step 2: We then update the first column of the polyphase
matrix. The new polyphase components are given by

Epo(z) = Eoo(z )+P(Z)Em(z)
Eyo(2) = E1o(2) + P(2) E11(2). (5)

Step 3: The second column is updated next and re-
sults in

Eqy(2) = Eoo(2) + Q(Z)Eoo(z)
Ey1(2) = Bn(2) + Q(2) Byo(2). (6)
The new polyphase matrix E’ (z) can be factored as
1 0 1 Q z
omsol 4y 2[4 ) o

where E(z) is the initial solution, and the first and
second matrices correspond to the first and second up-
dates, respectively.

To enable the generation of different solutions to (1),
steps 2 and 3 above have to be repeated several times. -
In order to ensure that our design procedure does not
exclude any solution to (2) we need to show that the
factorization given by (7) captures all solutions. A gen-
eral polynomial matrix with a constant determinant
might not be factored using (5) and (6) alone. How-
ever, for certain well-defined cases (where the order of
each element is same) it can be shown that all matri-
ces with a constant determinant can be reduced to the
factorization given in (7).

Proposition 2 If all the elements of a polynomial ma-
triz E(z), which satisfies the condition det E(z) = 1,
are of order L — 1, then, E(z) can always be factored
into the form

E(z) =
b elnls 2l 1] @
Here, py(2) = py, koks — kiky =1 and r < [L/2].

Proof. The condition det E(z) =1 implies that
Eoo(2)Er1(2) — (9)

or, equivalently, that the pair (Epo(z), Fp1(z)) is co-
prime. This fact can also be expressed by

Eol(Z)Elo(Z) = 1,

Ego(2) = (10)

From (9), it ¢can be concluded that the pair (E10(2),
E11(2)) is also coprime. Therefore,

prEgl(Z) + Coo(z).

Ei0(z) = I, E11(2) + €10(2), (11)



where the order of both €go(2) and €19(z) is less than
or equal L — 2. Then, (9) can be rewritten as

(XE()](Z)EH(Z)
+ (€00(2)E11(2) — €10(2) Eo1(2)) = 1, (12)

where & = p, — .. Both the terms on the left-hand
side of (12) are polynomials in z~!. However, the first
term is of order 2L — 2, while the order of the second
term is 2L — 3. Thus, by comparing the coeflicients of
2=(2L=2) on both sides of (12), we obtain o = 0, or
equivalently, p, = [.. This enables the factorization of
E(z) into the form

o= o w1 o

The determinant of the first matrix is one, which im-
plies that the pairs (€00(2), E01(2)) and (€10(2), E11(2))
are coprime. Therefore

Em(z)
Eu(z) =

H

gr(2)€00(2) + €01(2),
my(2)e10(z) + €11(2). (14)

Using a similar sequence of arguments, we can conclude
that ¢,(z) = m,(z). The remainder of the proof follows
by recursively performing these steps until the first ma-
trix in (13) is reduced to a constant matrix. The value
of r will attain its maximum value when the order of
the remainder polynomials at each stage is exactly one
less than that of the divisor polynomial. Hence the
maximum value of r is [L/2].

All minimal delay PR filter banks satisfying the as-
sumptions of Proposition 2 can be factorized in this
manner (thereby showing that our approach is capable
of generating all such filter banks). However, in order
to design optimal minimal delay filter banks, the order
as well as the coefficients of the polynomials p;(z) and
¢i(z) have to be determined. The problem can be for-
mally stated as : given the length of the filters to be
designed is 2L, find the optimal polynomials p;(z) and
¢i(#) in (8) that minimize the cost function

¢ = /owp(l—lHo(ef“) |2)2dw+/:lHo(e"W) ? dw

Ws A i .
+ [T P [Ca- ) EE) P
0 wp

One way to solve the problem of finding the optimal
assignment of orders for p;(z) and ¢;(z) is by exhaus-
tively trying all the possible orders of the polynomials
pi(z) and ¢;(z). Not every assignment of orders for
pi(z) and ¢;(z) is valid. From the proof of Proposition
2, two conditions have to be satisfied by the orders of
pi(2) and ¢;(z) for a particular assignment of order to
be valid

(i) The sum of the orders of all polynomials p;(2) and
¢i(2) should be L — 1.

(ii) If order of pr(z) # 0 (or gx(z) # 0) then the
orders of pi(z) # 0 (or q:(2) # 0) VI > k. Note
that p,(2) is a constant.

The first condition has to be satisified because the
length of the filters is 2L. The second condition has
to be satisfied since, after the first step in the proof of
Proposition 2, the order of the remainder polynomial
is at least 1 less than that of the divisor. Hence in
the subsequent step when the divisor is divided by the
remainder, the quotient is at least a first order polyno-
mial till the polyphase matrix is reduced to a constant
matrix.

As stated earlier, one way to determine the optimal
pi(z) and ¢;(2) is to try all possible orders which satisfy
conditions (i) and (ii). For a given assignment of orders,
we optimize over the coefficients of the polynomials to
minimize ¢. The particular assignment of orders where
the optimization of coefficients leads to the minimum
value of ¢ then determines the optimal minimal delay
filter bank. As the length of the filters is increased, the
exhaustive search through all the possible assignment
of orders becomes increasingly complex. One way of
reducing the complexity of the optimization is through
a suboptimal optimization procedure for finding the
polynomials. This suboptimal optimization algorithm
can be explained as follows

1. Start with some initial orders of p;(z) and ¢;(2)
that satisfy conditions (i) and (ii).

2. Optimize over the coefficients of the polynomials
to minimize the cost function ¢. Call this mini-
mum value ¢g.

3. Set ¢min = ¢0-

4. For every pair of polynomials (s(z),%(z)), where
s,t € {pi(2),4j(2)}, 1<d,j<rands#t

(a) Increase the order of one of the polynomials
by one and decrease the order of the other
by one.

(b) If the resulting assignment of orders is valid

e Optimize over the coefficients to mini-
mize ¢. Call the minimum value ¢,

o If 1 < ¢o then ¢o=¢1

otherwise undo step (a),
otherwise, if the resulting assignment of or-
ders is not valid, undo step (a).

- b If ¢o < Pmin go to step 3,
otherwise terminate the algorithm.
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Figure 2: Magnitude response of filters (length 8, delay
1 sample) designed using the proposed technique (solid)
and those designed using the technique described in [4]
(dotted)

4. RESULTS

We discuss the results obtained from the application
of our design procedure to two-channel low-delay PR
filter banks. For this purpose, the length of the filters
was chosen to be 8, and the filters were designed to
obtain an overall system delay of 1 sample (which is,
in fact, the minimal system delay that can be achieved
with causal filters). In order to obtain the filters, we
tried the exhaustive search as well as the suboptimal
optimization technique developed in the previous sec-
tion. In this particular case, it was found that both
techniques produced the same results. For a general
case, however, the suboptimal optimization will yield
a local minimum as compared to the global minimum
which can be found by the exhaustive search.

The magnitude response of the filters is shown in Fig-
ure 2. The figure also indicates the magnitude response
of the minimal delay filters designed in [5], where per-
fect reconstruction was only approximated. It happens,
in this case, that the magnitude response of filters de-
signed using both approaches is similar. Although the
quality of the filters obtained by both the approaches
is comparable, the filters designed using our technique
satisfy the perfect reconstruction property ezactly, and
not approximately. The impulse response coeflicients
of the two analysis filters designed using our approach
are indicated in Table 1.
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n hg(n) hl(n)

0 | 0.38747117903359 | 0.41245920113651
1| 0.61611327689259 | -0.60169737809984
2 | 0.13542939522761 | 0.10090503465235
3 | -0.19927909934796 | 0.15862327002939
4 1 0.00289364270665 | -0.00128280096971
5 1 0.06956104478971 | -0.03083759287392
6 | -0.01883219945646 | 0.00834863394468
7 | -0.00822350319445 | 0.00364561866882

Table 1: Impulse response coefficients,ho(n) and hy(n),

for filters of length 8 designed using our approach to
provide a system delay of 1 sample.

5. CONCLUSION

In this paper, we present a new technique for designing
perfect reconstruction filter banks. The idea behind
our approach is to start with perfect reconstruction
filters, of trivial length, that also possess the charac-
teristics of the desired class of filter bank. The length
of the filters is subsequently increased to improve the
magnitude response of the filters, while ensuring that
both the perfect reconstruction and the other initial
constraints continue to remain valid.

Tt is also shown that, for certain well-defined cases, the
design procedure is capable of generating all the possi-
ble solutions for minimal delay filter banks. We also de-
velop a suitable optimization technique that allows us
to find a solution which is the local minimum of a suit-
able cost function. The results that are presented show
that, while the magnitude response of the low-delay fil-
ter banks designed with our approach is similar to that
obtained using other techniques, the advantage with
our procedure is that it satsifies the perfect reconstruc-
tlon property exactly. Previous work [6] on the design
of perfect reconstruction low-delay filter banks did not
address the issue of completeness, whereas our research
encompasses these aspects. It must be mentioned that,
although the paper discusses the application of the de-
sign procedure to the case of two-channel filter banks,
the technique can be easily extended to the case of filter
banks with an arbitrary number of channels.
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