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Abstract

We describe a data hiding technique which uses noise-
resilient channel codes based on multidimensional lattices.
A trade-off between the quantity of hidden data and the
quality of the watermarked image is achieved by varying
the number of quantization levels for the signature and a
scale factor for data embedding. Experimental results
show that the watermarked image is transparent to embed-
ding for large amounts of hidden data, and the quality of
the extracted signature is high even when the watermarked
image is subjected to up to 75% Wavelet compression and
85% JPEG lossy compression. These results can be com-
bined with a private key-based scheme to make unautho-
rized retrieval practically impossible, even with the
knowledge of the algorithm.

Keywords: digital watermarking, data hiding, copyright
protection, multidimensional lattice quantizer

1 Introduction

Motivated by the overwhelming urge for Internet data
security, digital watermarking has recently emerged as an
important area of research in multimedia data processing.
Most multimedia data sources are readily accessible to, and
downloadable by, all users of the internet. In such a sce-
nario, a mechanism for data security or copyright protec-
tion is essential. Digital watermaking is a technology being
developed to ensure security and protection of multimedia
data. The purpose of digital watermarking is not to restrict
use of multimedia resources, but to resist attack from unau-
thorized users. A digitally watermarked image is obtained
by invisibly hiding a signature information into the host
image. The signature is recovered using an appropriate
decoding process. The challenge is to simultancously
ensure that the watermarked image be perceptually indis-
tinguishable from the original, and that the signature be
recoverable even when the watermarked image has been
compressed or transformed by standard image processing
operations.

Research on digital watermarking can be categorized
into two broad classes depending on the data embedding
domain. While one is based on embedding data in the spa-
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tial domain [1], the other is based on injection in the fre-
quency or transform domain [2,3,4,5,6]. Most of the recent
research on watermarking emphasize the transform domain
approach. Cox, et. al [2] proposed the spread spectrum
coding method for digital watermarking, and used the DCT
transform coefficients for data embedding. Their method is
very robust to image transformations because they embed-
ded small amounts of information in widely spread fre-
quency bands. Other researchers too have used the
transform domain approach, for example, DCT [2,3,4] or
the wavelet transform [5,6].

While most of the contemporary research on water-
marking concentrates on copyright protection in internet
data distribution [7,8], a different kind of watermarking,
commonly known as data hiding, is at present receiving
considerable attention. Data hiding is intended to hide
larger amounts of data into a host source, rather than just to
check for authenticity and copyright information [3,6]. In
fact, the problem of watermarking or copyright protection
is a special case of the generic problem of data hiding,
where a small signature is embedded with greater robust-
ness to noise.

This paper proposes a robust data hiding technique
using channel codes derived from a finite subset of general
n-dimensional lattices [9,10,11,12]. In particular we use
the D, lattice, which consists of all integer n-tuples with
an even sum. As the quantity of embedded data increases,
higher order shells of the lattice are included in the channel
code to accommodate them. In the proposed approach, a
gray-scale image of as much as half the size of the host
image is embedded by perturbing the host wavelet coeffi-
cients.

The embedding and extracting of the digital watermak-
ing system are similar to the encoder and decoder of the
digital communication system. Similar to the communica-
tion channel noise, the watermarked image might undergo
undesirable transformations: for example, intentional
manipulations to remove or degrade the quality of the
watermarking: or typical signal processing operations such
as compression that may affect the watermark. In this
paper, we use an wavelet-based compression scheme [13],
and the JPEG compression scheme [14] for the manipula-
tion of the watermarked image before attempting retrieval.
As own experimental results indicate, there are no visible
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FIGURE 1: Basic embedding methdology. (a) Possible B-ary perturbations of the host vector. (b) Possible noisy vector posi-
tions of original perturbed vector s; after transformation. (all points shown above are in n-dimensional space)

distortions in the watermarked image, and the recovered
signature is similar to the original signature even after 75%
wavelet compression and 85% JPEG lossy compression.

In the next section we discuss the methodology of mul-
tidimensional lattice channel codes. The proposed algo-
rithm using n-dimensional lattices is discussed in Section
3. Experimental results are presented in Section 4 with
concluding remarks in Section 5.

2 Multidimensional Lattice Channel Code

2.1 Methodology

If the original host image is available, the operations of
data injection and retrieval are, in fact, very similar to the
channel coding and decoding operations in a typical digital
communication system. Channel coding refers to the
gamut of signal processing done before transmission of
data over a noisy channel. In watermarking in the trans-
form domain, the original host data is transformed, and the
transformed coefficients are perturbed by a small amount
in one of several possible ways in order to represent the
signature data. When the watermarked image is com-
pressed or modified by other image processing operations,
noise is added to the already perturbed coefficients. The
retrieval operation subtracts the received coefficients from
the original ones to obtain the noisy perturbations. The true
perturbations that represent the injected data are then esti-
mated from the noisy data as best as possible.

In this work, we adopt a vector-based approach to hid-
den data injection [9,10,11,12],. We group N transform
coefficients to form an N-dimensional vector, and modify
it by codes that represent the data to be embedded. The
motivation for using vector perturbations as opposed to
scalar perturbations follows from the realization that
higher dimensional constellations usually result in lower
probability of error for the same rate of data injection and
the same noise statistics. In the Figure 1, ‘X’ represents a
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host vector in an N-dimensional space. To embed data
from an B-ary source with symbols {s;, s,, ..., sg}, we per-
turb the original vector so that the perturbation coincides
with one of § corresponding channel codes. The perturbed
vector is denoted by one of the ‘0’s in the Figure 1 depend-
ing on the particular source symbol it represents. After the
watermarked image has undergone compression or other
transformations, a perturbed vector representing, for exam-
ple symbol s; in the diagram, may be received as a noisy
vector “*’ in Figure 1 (b). It is then an estimation problem
to extract the transmitted symbol from the vector received.
Assuming an additive Gaussian noise model, the received
vector is decoded as representing the symbol whose chan-
nel code it is closest to in Euclidean distance.

Codes derived as subsets of multidimensional lattices
have been shown to be very efficient for channel coding. In
the following, we describe the general concept of lattices,
and in particular, the D, lattice that was used in our data
embedding algorithm.

2.2 Lattice Structures

The Voronoi regions of various n-dimensional lattices
can be used to construct n-dimensional quantizer cells for
uniformly distributed inputs. It has been shown by Conway
and Sloane [9,12] that some of these lattices produce very
good channel codes, and yield high values of nominal cod-
ing gain. That is, for the same power constraint on the
channel, the channel codes are maximally separated from
each other so that they are most robust to noise. The lat-
tices considered here are the root lattices and their duals,
namely A, A*, D, D*, Es Eg,etc.Ifay, .., a,aren
linearly independent vectors in an m-dimensional Euclid-
ean space with m 2 n, the set of all vectors

X = wapt.tua, ¢
where u,, ...,u, are arbitrary integers, constitute an n-
dimensional root lattice A,,[9,10,12]. Further, if A is alat-

tice in R , the dual lattice A* [12], consists of all points x



in the span of A suchthat x-ye Z forall ye A. Some
common lattices and definitions are presented below.

For n21, A, is the n-dimensional lattice consiting of
the points (xg, x), ..., x,) in Z" ! with in =0.

For n22, D, consists of the points (x},x,, ...,x,) in
Z" with Y x, even. In other words, if we color the integer
lattice points alternately red and blue in a checkerboard
coloring, D, consists of the red points. In 4 dimensions the
D, lattice is known to yield the best coding gain.

E4, Eg, and A lattices give very good channel coding
gains in 6, 8, and 16 dimensions respectively. E; is derived
from the Dy lattice, and is defined as the union of Dg and
the coset

In other words E; consists of the points (xj, ..., xg) with
x;€ Z and in even, together with the points (y;, ..., yg)
with y,e Z+1/2 and Zyi even. E, is a subspace of
dimension 6 in [Eg, consiting of the points
(up, uy, ..., u,) € Eg withug = uy=- ug.

For a n-dimensional lattice A, the Voronoi region
around any lattice point is the set of points in R" closest to
the lattice point. Therefore, the Voronoi region V(0) around
the origin is given as:

V(0) = {xe EK"‘HxII <lx-ul| (forall nonzero ue A)} (2)

2.3 Description of the D, Lattice

It has been shown in [9] that some lattices produce very
good spherical codes for channel coding. That is, for the
same constraint on deviation from the true coefficient val-
ues, the channel codes are maximally separated from each
other so that they are most robust to noise.

In general the D, root lattice produces the best channel
code in 4 dimensions. It has been shown that for small
noise, this lattice gives a nominal channel coding gain of
1.414 over binary encoding [9]. As mentioned earlier, the

D, lattice consists of the points (x, ..., x,) having integer
coordinates with an even sum.

As in all lattices, the lattice points of the D, lattice fall
on concentric shells of increasing distance from the all zero
vector. For example, the 24 lattice points given by all per-
mutations of (£1, 1, 0, 0) lie on the first shell of the lat-
tice at a distance ﬁ from the center. The second shell at
distance 2 from the center contains 24 lattice points again,
8 of which are of type (32, 0, 0, 0), and 16 are of type
(1, 1, 1, £1). Table 1 shows the shell number, the
squared norm, the lattice point types, and the number of
lattice points for the first few shells of the D, lattice. The
superscript ‘p’ after the points in the table denote ‘all per-
mutations of’ the elements constituting it. By choosing
appropriate subsets of points from the lattice the rate for
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TABLE 1: Code types and structure of the D, lattices

Shell | Squared Source codes Number
No. Norm of codes
1 2 (%1 ,%£1,0,0)P 24
2 4 (£2,0,0,0)P, 24
(+1,x1,+1,+1)P
3 6 (£2 ,%£1,+1 0P 96
4 8 (£2,%2,0,0)P 24
5 10 (2,42 41 ,+£1)P, 144
(£3,%£1,0,0P

data embedding can be varied.
3 Data Hiding in Images

3.1 Embedding Procedure

It is well known that embedding in the low-frequency
bands is more robust to manipulations such as enhance-
ment and image compression. However, changes made to
the low frequency components may result in visible arti-
facts. Modifying the data in a multiresolution framework,
such as a wavelet transform [15], appears quite promising
for obtaining good quality embedding with little perceptual
distortion.

Figure 2 shows a schematic of our watermarking proce-
dure. The coefficient vectors perturbed in our implementa-
tions are of dimension 4, and the channel code used to
embed the data is a subset of the D, lattice. As the quantity
of embedded data increases, higher order shells of the
embedding lattice are included in the channel code to
accommodate them. In this algorithm, a gray-scale image
of as much as half the size of the host image is hidden by
vector based perturbations.

A single level of the discrete wavelet transform (DWT)
decomposition of both the host and the signature image is
made before data embedding. A schematic of the encoder
block is shown in Figure 3. Each coefficient of the signa-
ture image is quantized into P levels. In order to embed the
quantized coefficient information, a set of n coefficients
(n=4 in the case of D lattice embedding) in the host image
is grouped to form an n-dimensional vector, and the vector
is then perturbed according to a S-ary channel code con-
sisting of a subset of an n-dimensional lattice scaled by a
factor co. If v represents a vector of host DWT coefficients
after grouping, and the index of the qua_gltized signature
coefficient is , then the perturbed vector w is given by:
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FIGURE 3: Encoder in the Embedding Procedure

> > 2

R w=v+a-C(s) 3)
where C(s;) represents the channel code (subset of the n-
dimensional lattice) corresponding to the symbol s; where
i=1..,p

Each subband of the signature image is embedded into
the corresponding subband of the host [6]. That is, each
coefficient in the LL band of the signature image is hidden
in four coefficients in the LL band of the host, and so on.
The scale factor chosen for embedding in the higher bands
is less than the scale factor chosen for the LL band, by
some constant factors. However, in the rest of the paper we
will loosely refer to the scale factor chosen for the LL band
as o.

Various subsets of the 4-dimensional Dy lattice chosen
for various values of source quantization levels J, that
were used in the experiments, is shown in Table 2. A high
value of 8 quantizes the signature finely, but o must now
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TABLE 2: Quantizer level (D, lattice)

%ﬁ:ll%r Lattice points in channel code
2 0,0,1,1),(,0,-1,-1)
24 Shell;
32 Shelly, (£2,0,0,0)P
48 Shelly, Shell,
144 Shell;, Shell,, Shell;
168 Shell;, Shell,, Shell;, Shelly

be higher too so that the probability of error is sufficiently
low. This in turn degrades the transparency of the water-
marked image. The choice of the parameters o« and 3 deter-
mines the trade-off between the transparency and the
quality of the hidden data.

For security in copyright protection, we can select spe-
cial regions in the transform domain to embed data, or ran-
domly group the coefficients to form a vector using a
private key. Noise-like pseudo-random sequences can be
used for random grouping. It is to be noted, however, that
in general, the less the quantity of data hidden, the more
secure it can be made.

3.2 Extracting Data

3.2.1 Determining the Closest Point

A watermarked image may be subject to lossy compres-
sion or other simple image processing operations such as
enhancement. Under the assumption that the resulting per-
turbatious in the wavelet transform domain can be modeled
by additive Gaussian noise, a nearest-neighbor search with
the Euclidean distance measure is needed to recover the
embedded symbols. The Decoder block in Figure 2(b) is
blown up in Figure 4 to show the details of symbol recov-
ery and signature extraction.

Recovering the hidden data starts with the same DWT
of the received watermarked image that was used to embed
the data. The true host image coefficients (known to the
retriever) are then subtracted from the coefficients of the
received image to obtain the noisy perturbations. Note that
these perturbations recovered can be “noisy”, because of
various possible transformations of the watemarked data.

These coefficients are now grouped into groups of # in
the same manner as they were grouped during encoding
(possibly using the private key) to obtain a vector ¢, and
then scaled by the factor 1/a . The resulting vector 1/¢ - ¢
is then nearest-neighbor encoded to find the index i of the
channel code nearest to it in Euclidean distance. In particu-
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where the C(s;)’s refer to the § codevectors in the channel
codebook. For lattice based channel codes, this is equiva-
lent to finding the lattice point in whose Voronoi region
(see (2)) the vector 1/0. - ¢ lies. From the index i, the quan-
tized DWT coefficient can be obtained.

To present an example, by means of the diagram in Fig-
ure 5, let us say that a perturbed vector corresponding to a
channel code s5; was received as a noisy vector r; **’. As
long as it is inside the decision boundary of the original
perturbed vector s;, we can receive the data perfectly. How-
ever, after the general image compression schemes, for
example, wavelet-based compression or JPEG coding, or
other transformations like enhancement, if the embedded
vector is strongly manipulated, to say, noisy vector r, ‘*'°,
located outside of the decision boundary, the symbol
detected will not be the original perturbed value s;. To
reduce the incidence of erroneous detection, the algorithm
can expand the decision boundary by using a larger scale
factor.
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FIGURE 5: Decision boundary within each shell perturbed
lattice points.

Although the recovered signature image is limited in
quality by the quantization before embedding, a similarity
measure § defined below can be used to distinguish
between watermarked and unwatermarked images [2].

Y s*(m, n)s(m, n)
S - n,n (5)
3 (s*(m, n))*
m,n
Here s(m, n) stands for the quantized signature coeffi-
cients, and s*(m, n) stands for the recovered signature
coefficients after lossy compression.

3.2.2 Fast Algorithm

One of the motivations for using lattice based channel
codes in our implementations is the existence of fast
encoding and decoding algorithms. We present a fast
encoding algorithm for the D, lattice that is used to extract
the hidden symbols from the noisy vectors received, if the
number of channel symbols B is sufficiently large.

The algorithm for finding the closest point of the lattice
to an arb)itrary scaled noisy perturbation received
x=(1/a)ee R", is particularly simple. Note that all
points of D, are included in the n-dimensional cubic inte-
ger lattice I". For a real scalar number x e X", let f{x) =
closest integer to x. We define f{x) and the function w(x)
which assigns the wrong direction as follows:

Ifx=0, then f(x) = 0, else w(x) = 1
then f(x) = m,

else w(x) = m+1

If0<meSm+%,

If0<m+%<x<m+l, then f(x) = m+1,
else w(x) = m
then f(x) = ~m,
else w(x) = —m—1

If—m—%ﬂxs—-m<0,

then f(x) = ~m-1,

else w(x) = -m

1
—m—1<x<—m—--
If-m-1<x<-m 5+

We can also write x = f(x) +3(x), so that |8(x)|<1/2
is the distance from x to the nearest integer. Then, if
x = {x},x,...,x,}, vector f{x) is defined by

fx) = ) flxg)s - flxgds oo flx,)} (6)
and g(x) is defined by
g(x) = (flx)), flxy), s wlxg), -, fx,)) 5 M

where k is the component with the largest error distance.
The nearest point to x in the D, lattice structure is chosen
as whichever of f{x) and g(x) has an even sum of compo-
nents. If x is equi-distant from two or more points of the
lattice, we choose the nearest point as the one having the
smallest norm.
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FIGURE 6: Test images (a) Host lena image, (b) hat-girl
and tiger signature images.

(a) 0=10, =2 (b) =10, B=144

(©) =10, B=32 (d) 0:=20, p=32

FIGURE 7: Host lena with embedded hat-girl image for vari-
ous scale factors and quantization levels with no compres-
sion.

4 Experimental Results

Figure 6 shows a 256 x 256 gray scale lena image that is
used as the host, and two signature images - hat-girl and
tiger - both 128 x 128 gray scale. A 1-stage discrete Haar
wavelet transform is used for both the encoder and the
decoder in the following experiments.

Figure 7 shows the lena image digitally watermarked
with the hat-girl image, at various scale factors ¢, and vari-
ous quantization levels J§, without any compression. Note
that the scale factor & controls the relative weight of host
and signature image contributions to the fused image. As &
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(a) 0=10, 85%, B=2 (b 0.=10, 85%, B=144

(c) 0=10, 85%, P=32 (d) o =15, 85%, p=32

FIGURE 8: Embedded image using hat-girl for various
scale factors, quantization levels and JPEG compression
ratio.

increases, the quality of the watermarked image degrades.
For example, in Figure 7 (d), one can see artifacts in the
background for a a=20. =10 appears to be a reasonable
value in terms of the trade-off between quality of the
watermarked image and robustness to signature recovery
under image compression.

Figure 8 shows some examples of watermarked images
after a lossy JPEG compression. Recall that B refers to the
number of quantization levels in the signature image
before embedding.

Figure 9 shows the signature images recovered from the
watermarked image after 0%, 65%, 75% and 85% JPEG
compression. In general, most of the recovered signature
images are of very high quality for 85% JPEG compres-
sion, when the scale factor ¢ is in the range 10-15. The
quality of the recovered signature with a large scale factor
o is obviously much better than those with a smaller a.
The number of quantizer levels B, on the other hand,
determines the coarseness of quantization and therefore the
quality of the signature image hidden in the host.

" Figure 10 shows some results for the case of lossy
wavelet transform based compressions [13]. The recovered
images are of high quality for up to 75% compression.

Figure 11 shows some more examples. Figure 11 (a),(b)
are the watermarked images with =32, with 75% and 85%
JPEG compression, respectively. Figure 11 (c-e) show the
recovered image from 65%, 75% and 85% JPEG com-
pressed watermarked images.




() 0=15, 0%,3=2 (b) 0:=15, 75%, B=2

(¢) 0=15, 85%, B

(® 0=10, 75%, B=32

(d) a=10, 0%, =32 (e) 0=10, 65%, =32

(g) 0=15, 65%,3=32

(h) a=15, 75%, =32 (i) o=15, 85%, p=32

(j) 0=15, 0%,B=144

(k) o=15,75%, f=144 (1) 0=15, 85%, B=144

FIGURE 9: Extracted hat-girl signature images for different
scale factor, JPEG ratio, and quantizer factor.

Figure 12 shows the similarity between the original and
the recovered signature, when the hat-girl image is embed-
ded into the lena image. Note that good authentication is
possible for up to 85% JPEG lossy compression.

5 Discussions

We have presented a scheme for data embedding using
the Dy lattice in the DWT domain. The scheme presents a
framework for a more structured digital watermarking
scheme, aimed at embedding large amounts of data into a
host.

One can further improve the quality of the recovered
signature under significant image transformations by using
higher dimensional lattice structures like the Eg or the A ¢
lattice. Further, by proper indexing of the scalar codebook
used for the wavelet coefficients of the signature image,
the recovered signature quality can be substantially
improved for the same scale factor of embedding and for

325

(©) a=10, 65%,8=32 (d) a=10,72%,B=32  (e) 0=15, 75%, p=32
FIGURE 10: The results from the lossy wavelet transform
based compression: (a), (b), the watermarked images, (c)-

(e), the recovered signatures

(a) a=10, 75%, B=32 (b) 0=15, 85%, =32

(c) 0=10, 65%,$=32

(d) a=15,75%,B=32 (o) 0=15, 85%,3=32

FIGURE 11: Another example: (a),(b) Watermarked images
using tiger signature with JPEG compression, (c)-(e) The
recovered signature images from JPEG lossy compression,
at various scale factors.

the same number of levels for quantization. More sophisti-
cated schemes for error resilience, such as trellis-coded
modulation, can be used.
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