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ABSTRACT

A block filter, in general, is a linear, periodic and time-
varying (LPTV) system. Under certain conditions sat-
1sfied by the transfer function mairiz of the filter, the
system has an alias free operation, 1.e., it behaves like
a linear time-invariant (LTI) system. In this paper,
we first develop a set of necessary and sufficient con-
ditions for the alias free operation of block filters based
on a time-domain analysis of the system. We then de-
velop conditions for the alias free operation of general
LPTYV systems.

1. INTRODUCTION

Multirate systems, in general, are time-varying sys-
tems. However, under certain conditions, a multirate
system behaves like an LTI system, i.e. has an alias
free operation. In this paper, we determine condi-
tions for the alias free operation of certain multirate
systems. Multirate systems have been well analyzed
in the frequency domain {1]. However, one associated
preblem with this approach has been that there are
different techniques for the design of different kinds of
filter banks like nonuniform filter banks, low delay fil-
ter banks, etc. To avoid this problem, a time-domain
based approach for the analysis and design of multirate
systems has been suggested [2].

We develop a set of necessary and sufficient conditions
for the alias free operation of block filters, maximally
decimated QMF banks, and periodically time varying
systems by a time-domain analysis of these systems.

2. BLOCK DIGITAL FILTERS

Block implementation of digital filters has been pro-
posed as a method of increasing the data throughput
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Figure 1: Block filter.

rate [3]. A multirate implementation of the block filter
is shown in Figure 1. Because of the presence of down-
samplers and up-samplers, the block filter of Figure 1
1s, in general, an LPTV system with a period M. Our
objective is to obtain restrictions on the transfer func-
tion matrix P(z) such that there is no aliasing com-
ponent present at the output, i.e., to make the block
filter of Figure 1 an LTI system. Now the output of
each down-sampler is given by

a;(n) = z(nM —i). (1)

Likewise, each output of the block filter can be written
as
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pij(n — k)z(kM —j).  (2)
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These are related to the output of the up-samplers by
di(n):{ci(n/M) n=IM 1=0,%14£2...

(3)

0 elsewhere.



The final output of the block digital filter is given by

M-1
#(n)= > di(n— M +1+1).

7=0

(4)

3. CONDITIONS FOR ALIAS FREE
OPERATION OF BLOCK FILTERS

Note that, at any instant of time, the final output can
be expressed as the output of just one up-sampler. To
this end, we write n = aM + M — 1 — /3, where « is
any integer and 0 < f# < M — 1. Then, we can rewrite
Eq. (4) as
M-1
gaM+M~1-58)= Z di(aM +i— ).

1=

(5)

The value of d;(eM + i — 8) in Eq. (5)will be nonzero
only if aM + ¢ — /3 1s divisible by M. It is easy to see
that this occurs only if ¢ = 8. The final output can
also be written as

#aM + M ~1—f) = ds(aM) = cg(a),

Let Zo(n) be the response of the system to an impulse
at £ = 0, and let &,(n) be the response of the system
to an impulse at k& = », then, for the system to be
time-invariant we require

(7)

The problem is that for the system to be time-invariant,
this condition has to be satisfied for all values of r.
However, the system shown in Figure 1 is an LPTV
system with a period M. This implies that &,y s (n) =
&s(n—~yM). We now show that, because of the period-
icity of the system, we need to satisfy Eq. (7) only
for r = 0,1,...,M — 1. For » > M we can write
r = s+vM, where v is any integer and 0 < s < M —1.
However, for LTI operation, Eq. (7) implies that

&r(n) = zo(n — 7).

Eo((n —yM) —5) = &.(n),
o — 8) = dn (1 +7M) = de_yar(0),
Zo(n — s) = &,(n).
This means that, if Eq. (7) is satisfied for r = 0,1,...,
M — 1, then, it is satisfied for all values of r. Assume
z(n) = 6(n); then, the output #o(n) is given by
Zo(aM + M —1— ) =pp,o(e)
Va,0 < < M —1.

(8)
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Similarly, for z(n) = 8(n—r), the output ,(n) is given
by

tr(aM+M—-1-8)=psgpm-r(a—1)
Yo, 0< 8, r <M ~1.

(9)

For the system to be an LTI system, we require that
530(71 — T’)
or

Er(aM+M-—1-0)

=&o(aM +M -1~ 8-7), (10)
Va, 0 < 8, r < M —1.
For g = 0, LTI operation implies that
i(aM A+ M—1)=zo(aM + M —1—7).  (11)
Using Eqs. (8) and (9), we deduce that
po,p—r(a— 1) = pro(a) (12)

0<r<M-1
Taking z-transforms of both sides, we obtain

(13)

This equation relates the first column of the transfer
function matrix P(z) to its first row.

For any valueof 3 =0,1,..., M —1, the LTI operation
of the system requires that Eq. (10) has to be satisfied.
Since we have

E oM+ M—-1-75) =pgpm—r(a—1),

2 pop—n(z) = pro(2).

and
EolaM+M—-1-08-7)

ZolaM +M —1—(8+71))
fr<M-1-p

go(la =DM+ M —1—(8+r—M))
fr>M-1-5
Priypo(a)
fr<M-1-¢

Prag-mola—1)
fr>M-1-7,

Eq. (10) leads to
pﬁ,M——r(a —-1)

pr+év0(a)
fr<M-1-5
Prig-mo(a —1)
fr>M-1-0.



Replacing M — r by r, and taking the z-transform of
both sides, we obtaln

Pp+M—r,0(2)
—~1 lfﬁ S r—1
r = — 14
Z Pp, (z) 2 lp@_r,o(Z) ( )
if8>r—1.

This relates the rth column of the transfer function
matrix P(z) to its first column. Thus, by substituting
different values of r = 1,2,..., M — 1, we can relate all
the columns of P(z) to its first column. Let the first
row of P(z) be [Ho(2), Hi(%),..., Hp—1(2)]. Hence,
the first two columns of the matrix P(z) are given by
[Ho(2), == Har-1(2), 2= Hyro(2), .., 2 Hy(2)]

and [Hl(z), Ho(z),z7 Y Hpr 1 (2), . . ., z‘ng(z)]T, res-
pectively, and so on. The general structure of the trans-

fer function matrix under aliasing cancelation is, there-
fore,

P(z) =
Hy(z) Hy(z) Hyro1(2)
Z_lHM_l(Z) HO(Z) HM_Q(Z)
2TV Hpr_o(2) 27 Hpro1(2) Hpr_3(2) (15)
U (2) 2= Ha(2) Ho(2)

As can be seen from the structure of the matrix, each
column is obtained by shifting the previous column
downward by one, and then recirculating the spilled
element after multiplying it by z. Summarizing, we
conclude that, for aliasing cancelation in a block filter,
its transfer function matrix P(z) must be of the form
of Eq. (15), which has been called a pseudocirculant
matrix [1],]4].

The above result can be trivially extended to the case
of M-band maximally decimated QMF banks. In this
case, we can carry out a polyphase decomposition of
the analysis and synthesis filters. The polyphase blocks
can then be moved to the center by making use of no-
ble identities. This reduces an M-band maximally dec-
imated QMF bank to the system shown in Figure 1,
with P(z) = R(2)E(z), where E(z) and R(z) are the
polyphase matrices of the analysis and synthesis filters
respectively. Thus, an M-band maximally decimated
QMF bank is free from aliasing if and only if the prod-
uct R(2)E(z) is a pseudocirculant matrix.

4. ALIASING CANCELATION IN

GENERAL LPTV SYSTEMS

A linear periodic time varying system with a period
M, and with identical input and output rates, is char-
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Figure 2: A linear periodic time varying system.

acterized by a set of M transfer functions, {A4,(z)}.
The system can be represented by the structure shown
in Figure 2. The output of this sytem at time n is equal
to the output of the filter A,(z) at time n — v, where
v = nmod M. Consider the LPTV system shown in
Figure 2. Here, the relations between different vari-
ables are given by

bi(n) =Y ai(k)z(n - k),
k
ci(n) = ai(k)z(nM — k),
and
c(n/M) n=IM 1=0+1...
di(n) = { O( / elsewhere.

The output of the entire system can be written as

M-1
Zdl (n —1).
1=0

Let n = oM + (. Again, at any instant of time, the
system output will be equal to the output of only one
of the up-samplers. Hence

S

#(n) = &(aM + 8) = -

M

dZ(CVM + ﬂ —_ Z)

o

7-
= ap
k

Let Zo(n) represent the output of the system for an
impulse at £ = 0. Similarly, let &.(n) be the output
corresponding for an impulse at ¥ = r. For aliasing
cancelation, we require that &,(n) = &¢(n—r), but only
forr=0,1,...M — 1, on account of the periodicity of
the system. Substituting z(n) = §(n — r) in Eq. (16)
yields

k)z

—~

(aM — k).  (16)

z.(n) = aglaM —r).

(17)



and
M1

Eo(n—r) = Zdi(aM—}—ﬂ—r—i)

1=

_{ dg_r(aM) if g>r
L dugpr((@—1)M) if <7
| cp—r(@) if g>r
- { emip—r(a—1) if g<r.

Using the above equation and Eq. (17), it follows that

ag(aM —r)
_ { ag_r(aM) it A2r g
apri—r((@— M) if B<r,
For § = 0, these equations reduce to
aolaM — 1) =apy—1(aM - M), forr=1
ag(laeM —2) = apy—o(aM - M), forr=2

aglaM ~ M+ 1) =a1(aM —M). forr=M -1

Taking z-transforms of both the sides, we obtain

[Ao0(2), Ao,1(2), .-, Aom-1(2)] =
[Ao)o(z), Aly()(z), '~-AM—1,O(Z)]'

where Ag o(z), Ao,1(2) . .., Ao, m—1(2) represent polyph-
ase components of Ag(z). Repeating the above proce-
dure for f =1 yields

[Al’o(z), Al’l(z), --~;A1,M—1(Z)] =
[Al)o(z), Agyo(Z), ..‘,ZAoyo(Z)].

Thﬁs, the second row of the polyphase matrix can be
obtained from the first row by shifting the first row
towards the left, and then recirculating the spilled ele-
ment after multiplying it by 2. For different values of
B, we can show that each row of the polyphase matrix
is obtained from the previous row by following the pro-
cedure described above. Hence, the polyphase matrix
can be written as

E(z) =
140’0(2) Al,o(z) AM—I,O(Z)
141,0(2) Az)o(z) ZAoyo(Z)
Azw—;,o(z) :ZAO,O(Z) .ZAM—2,0(Z)

It can be shown that E(z) has the structure of a pseu-
docirculant matrix. This implies that, for aliasing can-
celation in LPTV systems of the type shown in Fig-
ure 2, we require that the polyphase matrix of the fil-
ters {An(2)} be a pseudocirculant matrix.
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5. CONCLUDING REMARKS

In this paper, we have derived conditions for the alias
free operation of certain multirate systems by analyz-
ing the system in the time-domain. In particular, for
alias free operation of a block filter, we establish that
its transfer function matrix should be a pseudocircu-
lant matrix. This has also been observed in [4]. How-
ever, the main difference is that the analysis in [4] was
done in frequency domain whereas we have obtained
the same result with analysis in the time-domain. In
this way, we have extended the time-domain analysis
technique by showing that certain results that were ob-
tained by a frequency domain analysis of multirate sys-
tems, can also be obtained in the time-domain. This
technique for handling aliasing in the time-domain can
be very useful in designing maximally decimated QMF
banks in the time-domain. Instead of finding the coef-
ficients of both the analysis and synthesis filters by an
unconstrained optimization, as done in [2], we can use
the aliasing cancelation conditions to constrain the co-
efficients of the analysis and synthesis filters. The filter
coefficients can then be obtained by a constrained opti-
mization of a suitable cost function. In this way, we can
completely cancel aliasing in a QMF bank whereas the
technique used in [2] merely minimizes aliasing. Also,
for the case of a general LPTV system, we have shown
that, if the polyphase matrix of the filters is a pseudo-
circulant matrix, then, the system behaves like a linear
time Invariant system.
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