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ABSTRACT

We propose a new class of mapping-based nonlinear
quadratic Volterra filters for image enhancement. The
input signal is mapped prior to filtering by a mem-
oryless one-to-one nonlinear mapping function. The
mapping function can be described by any arbitrary
function and implemented by a simple look-up table.
If necessary, an inverse mapping function is applied af-
ter filtering. Using this general approach, the quadratic
Volterra filter output can be adjusted to a desired re-
sponse. Some results are presented where a highpass
quadratic Volterra filter is used to enhance an image
by unsharp masking.

1. INTRODUCTION

In its general form, a 1-D quadratic digital Volterra
filter is given by the 2-D convolution of the 1-D sample
products x(n1) · x(n2) with a 2-D kernel h2(n1, n2).
Specifically,

y(n) =
∞∑

k1=−∞

∞∑
k2=−∞

h2(k1, k2) · x(n − k1)x(n − k2).

(1)

For example, Teager’s algorithm [1], which estimates
a measure of the signal energy, is a 1-D quadratric
Volterra filter defined by

y(n) = x2(n)− x(n − 1) · x(n+ 1). (2)

As discussed in [2], the output from Teager’s algorithm
is approximately equal to

y(n) ≈ µ[(x(n)− x(n − 1)) + (x(n)− x(n+ 1))] (3)

where µ = (x(n − 1) + x(n) + x(n + 1))/3. Thus the
output of a Teager filter is approximately equal to a
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highpass filter response weighted by the local mean.
The 1-D Teager filter can be extended to create 2-D

Teager-like filters [2], [3]. The 2-D Teager filter, like the
1-D Teager filter, is roughly equivalent to a local mean
weighted 2-D Laplacian filter and requires fewer com-
putations to implement. When the filter is applied to
an image, the response is stronger in regions of high av-
erage intensity than in regions of low average intensity.
The filter output can then be used to enhance an image
by unsharp masking. Because of the mean weighting
effect of the Teager filter, high frequency edges, such as
those due to impulse noise, are not enhanced as much
in dark regions. This characteristic is a good match for
the human visual system [3].
In other applications, it may be desireable to adjust

the degree to which the highpass filter output depends
on the average local intensity. In some cases, one may
even want to enhance high frequency information in
darker regions more than in brighter regions. This pa-
per explores a relatively simple method for adjusting
the dependence on the local average intensity by pre-
mapping the input signal, applying a 2-D Teager filter
to the resulting signal, and then applying an inverse
mapping to its output, if required.

2. MAPPING-BASED ENHANCEMENT BY
QUADRATIC FILTERING

The sensitivity of the 1-D Teager filter to the local
mean can be adjusted by raising each term in eq. (2)
to a fractional power. Specifically,

y(n) = x
2
m (n)− [x(n − 1) · x(n+ 1)] 1

m . (4)

Like the original function, this equation can be approx-
imated as

y(n) ≈ µ
2
m−1

m
[(x(n)−x(n−1))+(x(n)−x(n+1))] (5)

where, as before, µ is the local mean. The weighting of
the local mean can be adjusted by changing the param-
eter m. For m < 2, the highpass output is weighted



more heavily in high intensity regions. When m > 2,
the highpass output is weighted more heavily in low
intensity regions. For m = 2, the filter output does not
depend on the local mean and approximates the output
of a Laplacian filter.
Note that eq. (4) can be rewritten as

y(n) = (x
1
m )2(n)− [x(n − 1) 1

m · x(n+ 1) 1
m ]. (6)

Therefore, the filter can be implemented by taking the
mth root of each incoming pixel value and then filtered
using a preexisting Teager filter to produce the output.
Figure 1 describes our proposed implementation of

the adjustable Volterra filter. Without any loss of gen-
erality, we normalize x to a range of [0,1] where a one
corresponds to the maximum possible greylevel. The
input mapping function maps each pixel value to its
mth root or, more generally, to any desired function
of the pixel values. In some cases, an output mapping
stage may be required. Denormalization remaps the
filter output signal y to the original dynamic range of
the input signal.
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Figure 1: Mapping based Volterra filtering

Note that the normalization stages are not strictly
necessary and could be combined with the mapping
stages. The normalization steps simply ensure that the
input and output ranges of the Teager filter are the
same. In general, the range of the Teager filter output
will be equal to the square of the range of the input
signal. When scaled and combined with the original
image, the output of this filter can be used to perform
unsharp masking.
Figure 2 shows plots of some sample mapping func-

tions. The mapping functions are:

dashdot line:

fmap1(x) = x
1
2 =

√
x (7)

dashed line:
fmap2(x) = x2 (8)

solid line:
fmap3(x) = x (9)

circle marked line:

fmap4(x) =

{
1−

√
1−x

2 0.5 < x ≤ 1√
x
2 0 ≤ x ≤ 0.5

(10)

cross marked line:

fmap5(x) =
{
1− 2(1− x)2 0.5 < x ≤ 1

2x2 0 ≤ x ≤ 0.5. (11)

Mapping functions (7) through (9) implementmth root
mappings. Functions (10) and (11) combine features
of some of the other functions to adjust the intensity
band emphasized by the filter. Function (10) enhances
both very light and very dark areas. Function (11)
tends to enhance middle intensity regions more than
the intensity extremes. Output mapping is not required
for any of these functions.
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Figure 2: Mapping functions (7)-(11)

The darker portions of an image become increas-
ingly enhanced as m increases above 2. However, the
overall response of the filter decreases as m increases
due to the 1

m term in eq. (5). Therefore, this approach
becomes limited. Another approach is to use an in-
verse mapping prior to the Teager filter operation with
a value of m less than 2. The output of the Teager
filter with inverted inputs is

Teager(1− x) = Teager(x)− Laplacian(x), (12)



where,

Laplacian(x) = 2x[n]− x[n − 1]− x[n+ 1]. (13)

This relationship is exact. If we substitute the Tea-
ger filter approximation from eq. (3) into eq. (12),

Teager(1− x) ≈ (µ − 1) · Laplacian(x). (14)

If we use a postmapping of y1 = −y2 then the over-
all response is approximately equal to a highpass filter
response weighted by the inverse of the local mean.
Note, that this is not the same as simply reflecting
the Teager response around the midrange value of 0.5.
However, the response does decrease as the average lo-
cal intensity increases, as desired.

3. SOME EXAMPLES

Figure 3 provides some 1-D examples of responses to
the systems that have been discussed. Plot (a) is the
input signal and contains three impulses at various lev-
els and two step changes. Plots (b), (c), and (d) show
the output for some mth root mappings. The response
increases with average intensity for m < 2, is relatively
constant for m = 2, and decreases with average inten-
sity for m > 2. Plot (e) shows the response for fmap5.
This function enhances the middle intensity impulse
more than the high or low average intensity impulses.
Finally, plot (f) shows the output of the inverse map-
ping described at the end of the last section. The re-
sponse decreases with average intensity. Note that the
response is not the mirror image of the response for
m = 1, which is the normal Teager filter response.
Figure 4 demonstrates the difference in results that

can be obtained by changing the mapping function.
The original image is an x-ray of a human jaw. The
Teager-like filter used to highpass filter these images is
described by eq. (53) in [3]. The images were enhanced
using unsharp masking.
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Figure 3: Generalized Teager filter test input response.
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Figure 4: Enhancement examples using the generalized Teager algorithm. Image (a) is the original image of a human jaw.
The other images were enhanced using a 2-D Teager filter with (b) no premapping, (c) mapping function fmap2, and (d)
mapping function fmap5.


