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Abstract

A novel boundary detection scheme based on “edge flow” is
proposed in this paper. This scheme utilizes a predictive
coding model to identify the direction of change in color and
texture at each image location at a given scale, and con-
structs an edge flow vector. By iteratively propagating the
edge flow, the boundaries can be detected at image locations
which encounter two opposite directions of flow in the stable
state. A user defined image scale is the only significant con-
trol parameter that is needed by the algorithm. The scheme
facilitates integration of color and texture into a single
Sframework for boundary detection.

1 Introduction

In most computer vision applications, the edge/boundary
detection and image segmentation constitute a crucial initial
step before performing high-level tasks such as object rec-
ognition and scene interpretation. However, despite consid-
erable research and progress made in this area, the
robustness and generality of the algorithms on large image
datasets have not been established. Detecting discontinuities
caused by color and texture continues to be a challenging
problem.

Our objective is to develop a framework for detecting
and integrating intensity/color and texture discontinuities as
well as illusory boundaries in images. Towards this we pro-
pose an edge flow model for boundary detection and image
segmentation. Salient features of this approach include (1)
use of a predictive coding model for identifying and inte-
grating the different types of image boundaries, (2) bound-
ary detection based on a flow field propagation, and (3) very
few “free” parameters that control the segmentation.

In the next section we briefly review the previous work
on edge and boundary detection. The proposed edge flow
model is explained in Section 3. The edge flow integration
and some post-processing issues are discussed in Section 4,
Section 5, and Section 6. Experimental results are demon-
strated in Section 7. We conclude with some discussions in
Section 8.

2 Previous Work

2.1 Edge Detection

Much of the research on edge detection has been devoted
to the development of optimal edge detectors which provide
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the best trade-off between the detection and localization per-
formance [4, 13]. A common strategy in designing such
edge operators is to find the filter which optimizes the per-
formance with respect to the three criteria: good detection,
good localization, and a unique response to a single edge. In
[4] Canny showed that the optimal detector can be approxi-
mated by the first derivative of a Gaussian. By convolving
the image with this filter, the edge detection 1s equivalent to
finding the maxima in gradient magnitude of a Gaussian-
smoothed image in the appropriate direction. Detecting and
combining edges at multiple resolutions and scales is
another important issue in edge detection [4, 13, 16]. The
regularization theory has also been frequently used in help-
ing the design of edge detection algorithms [7, 15].

2.2 Texture Segmentation

The goal of texture segmentation is to partition an image
into homogeneous regions and identify the boundaries
which separate regions of different textures. Segmentation is
obtained either by considering a gradient in the texture fea-
ture space [6, 9, 10], or by unsupervised clustering [1, 5, 8],
or by texture classification [12]. Segmentation by labelling
often suffers from a poor localization performance because
of the conflicting requirements of region labeling and
boundary localization in terms of the observation window.
Unsupervised clustering/segmentation requires an initial
estimate of the number of the regions in the image, which is
obtained mostly by setting a threshold in the feature cluster-
ing algorithm. However, estimating the number of regions is
a difficult problem and the results are usually not reliable.

3 “Edge Flow”

In this section, the general concept of edge flow is first
outlined and a detailed implementation of it is illustrated.
This approach facilitates the integration of different image
attributes such as intensity/color, texture, and illusory dis-
continuities into a single framework for boundary detection.

3.1 Definition of the Edge Flow
Let us define the general form of edge flow vector F at
image location s with an orientation 6 as:
F(5,0) = FI[E(s5,0) ,P(s5,0) ,P(s5,0+m)] 0]
where E (s,0) is the edge energy at location s along the

orientation 8, P (s, 8) represents the probability of finding
the image boundary if the corresponding edge flow “flows”



in the direction 6, and P (s, 8 + ) represents the probabil-
ity of finding the image boundary if the edge flow “flows”
backwards, i.e., in the direction 6 + 7.

The first component E (s5,0) of edge flow is used to
measure the energy of local image information change (such
as intensity/color, texture, and phase difference in the fil-
tered outputs), and the remaining two components P (s, 8)
and P (s, 0+ m) are used to represent the probability of
flow direction. The basic steps for detecting image bound-
aries is summarized as follows:

* At each image location, we first compute its local edge
energy and estimate the corresponding flow direction.
The local edge energy is iteratively propagated to its
neighbor if the edge flow of the corresponding neighbor
points in a similar direction.

The edge energy stops propagating to its neighbor if the
corresponding neighbor has an opposite direction of
edge flow. In this case, these two image locations have
both their edge flows pointing at each other indicating
the presence of a boundary between the two pixels.
After the flow propagation reaches a stable state, all the
local edge energies will be accumulated at the nearest
image boundaries. The boundary energy is then defined
as the sum of the flow energies from either side of the
boundary.

3.1.1 Some Definitions

Consider the Gaussian function G (x, y) (0 denotes its
standard deviation). The first derivative of Gaussian (GD)
along the x-axis is given by

GD,(x,y) = —(x/07) Gy (xy),

@

and the difference of offset Gaussian (DOOG) along the x-
axis is defined as:

DOOG (x,y) = G,(x,y) =G (x+d,y) 3)

where d is the offset between centers of two Gaussian ker-
nel and is chosen proportional to ¢. By rotating these two
functions, we generate a family of previous functions along
different orientations 0 :

GD, 4(x,y) = GD (x,y),

DOOG 4(x,y) = DOOG(x,y"),

Q)

X' = xcos0+ysin0,and y' = —xsinB + ycos6.
3.2 Intensity Edge Flow
3.2.1 Computing E (s, 8)

Now consider an image at a given scale ¢ as I (x,y) ,
which is obtained by smoothing the original image I (x, y)
with a Gaussian kernel G (x,y) . The scale parameter will
control both the edge energy computation and the local flow
direction estimation, so that only edges larger than the speci-
fied scale are detected.The edge flow energy E (s, 0) at
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Figure 1. The computation of E (s, 0) and P (s, 0) using GD
and DOOG along a orientation 6 . The shaded regions indicate the
negative regions in the filter responses.

G, 0

scale ¢ is defined to be the magnitude of the gradient of the
smoothed image I (x, y) along the orientation 6, which
can be computed as

E(s,0) = |[[(x,y)* GDg )

where s = (x,y) . This edge energy indicates the strength
of the intensity change.
3.2.2 Computing P (s, 6)

For each of the edge energy along the orientation 8 at
location s, we consider two possible flow directions; the
forward (6) and the backward (8 + n ), and estimate the
probability of finding the nearest boundary in each of these
directions. These probabilities can be obtained by looking
into the prediction errors toward the surrounding neighbors
in the two directions. Consider the use of image information
at § to predict its neighbor in the direction 8. Ideally they
should have similar intensities if they belong to the same
object, and thus the prediction error can be computed as
Error(s,0) = |I;(x+dcos8,y+dsin®) -1 (x,y)| (6)

= |I(x,9)* DOOG, o(x,Y)]

where d is the distance of the prediction and it should be
proportional to the scale at which the image is being ana-
lyzed. In our experiments, we choose d = 46. Because a
large prediction error in a certain direction implies a higher
probability of finding a boundary in that direction, we assign
the probabilities of edge flow direction in proportion to their
corresponding prediction errors:

_ Error (s, 0)
P(s,0) = Error(s,8) + Error(s,0+m)

Q)

The computations of E (s,8) and P (s, 0) using the GD
and the DOOG are shown in Figure 1.

Figure 2 shows a comparison of the edge flow model
with the conventional approaches to detecting edges. Instead
of seeking the local maxima of the intensity gradient magni-
tude (or finding the zero-crossings of the second derivative
of image intensity), we construct the flow vectors whose
energy is equivalent to the magnitude of the intensity gradi-
ent and whose direction is estimated by the prediction errors.
As can be seen from Figure 2(b), the edge flows on the right
side of boundary all have their directions pointing to the left
because P (left) > P (right) in that region, and the edge
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Figure 2: A comparison of the edge flow model with the conven-
tional approach to detecting edges. (a) Traditional method of
edge detection. (b) Edge flow model.

flows on the left side all point to the right because of
P(right) > P (left). After the flow is propagated (see Sec-
tion 5) and reaches a stable state, the edge locations are iden-
tified as those places where two opposite edge flows meet
each other, and the boundary energy is equal to the integra-
tion of the gradient magnitude (shaded area). This example
illustrates that the edge flow model gives identical results as
a zero crossing for noise-free step edges (this result can also
be easily derived analytically using (5)-(7)). However, real
images usually do not contain such ideal edges.

3.3 Texture Edge Flow

The previous section illustrated the basic concepts of
edge flow computation using intensity edges. Much of the
same formulation carries over to image attributes such as
color and texture.

The texture features are extracted based on a Gabor
decomposition. These features have been widely used in
many texture analysis/segmentation applications {1, 6, &,
11]. The basic idea is to decompose images into multiple ori-
ented spatial frequency channels, and the channel envelopes
(amplitude and phase) are used to form the feature maps. We
use the strategy proposed in [11] for adaptively designing
the Gabor filter bank.

Given the scale parameter 6, we define the lowest center
frequency U, of the Gabor filters to be 1/ (46) cycles/
pixel. This value is based on the consideration of the Gauss-
ian smoothing window and the distance d = 40 used in
computing the prediction error, so that the window size cov-
ers at least one cycle of the lowest spatial frequency. Fur-
thermore, the highest center frequency U, is set to 0.45
cycles/pixel. Based on the range of these two center fre-
quency, an appropriate number of Gabor filters g, (x,y) is
generated to cover the spectrum.

The complex Gabor filtered images are:

O;(x,y)= Ix g, (x,y)=m;(x,y)exp [$,;(x,¥)] (8)

where 1 i< N, N is the total number of filters, m, (x, y)
is the magnitude, and ¢, (x, y) is the phase. By taking the

amplitude of the filtered output across different filters at the
same location (x, y) , we form a texture feature vector

Y,y = [my),myxy), .omy(x,y)]1. (9

For most of the textured regions, this feature vector is good
enough for distinguishing their underlying pattern structure.
Some exceptions are illusory boundaries such as the one in
Figure 5(c). In this case, the phase information {¢ (x, y) }
have to be incorporated in order to detect the discontinuity.
We will discuss this in Section 3.4. In the following, let us
first consider the formulation of edge flow using the texture
features ¥ . The texture edge energy, which measures the
change in local texture information, is given by

E(s,0) = Y |m; (x,9)* GDg o (x, )| - w;  (10)
1<isN
where w, = 1/||a]| and ||| is the total energy of the

subband i. The weighting coefficients w; normalize the
contribution of edge energy from the various frequency
bands.

Similar to the intensity edge flow, the direction of texture
edge flow can be estimated using the prediction error:

Error(s,8)= Y |m;(x,y)* DOOG ¢(x,y)| w,(11)
1<isN ’
which is the weighted sum of prediction errors from each
texture feature map. Thus, the probabilities P (s, ) of the
flow direction can be estimated using (7).

3.4 Edge Flow Based on Phase

From (8), the complex Gabor filtered image can be writ-
tenas O(x,y) = Re(x,y) +j - Im(x,y), where Re (x, y)
and Im (x,y) represent the real and imaginary parts of
Gabor filtered output, respectively. The phase of the filtered
image can be expressed as:

0 (x,y) = atan {Im(x,y) /Re(x,y)]. (12)

This phase information will contain discontinuities at 7
because the operation of inverse tangent only provides the
principal value of the phase. In order to compute ¢ (x, y)
without discontinuity, phase unwrapping is required. A gen-
eral strategy for solving the unwrapping problem is to add or
subtract 27 from the part of phase function that lies after a
discontinuity. However, this phase unwrapping problem can
become very difficult if too many zero points (both the real
and imaginary parts are zero here, and therefore, the phase is
undefined) are in the image [14].

The unwrapped phase can be decomposed into a global
linear phase component and a local phase component. The
local phase contains important information about the loca-
tions where the texture property changes. In other words,
within a uniformly textured region, the phase ¢ (x,y) will
vary linearly, and it changes its varying rate when a bound-
ary between different texture regions is crossed. As a result,
the local phase has been used in many texture segmentation
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schemes [1, 2, 3].

In order to formulate the edge flow field using the phase
information, there are two problems that we have to over-
come. First, we have to compute the phase derivatives with-
out unwrapping the phase. Second, instead of just using the
DOOG functions to compute the prediction error, we have to
include a first-order predictor to compensate for the global
linear phase component. d 2

Consider the formula g;a@n (x) = 1/(1+x7)
Assuming the derivative of the phase exists everywhere, we
can compute the phase derivative using the following equa-
tion without going through the phase unwrapping procedure:

F0(x3) = imag[0*(5) 20 ]/m(x)(3)

where * is complex conjugate. The phase derivative with
respect to any arbitrary orientation can be computed in a
similar manner,

Without loss of the generality, we first consider the
design of a linear phase predictor along the x axis

N d
¢(x+d,y) = 0(ny) +d =0 (x ), (14)
and therefore, the prediction error is equal to
d .
Error = ¢(x+d,y) —¢(x, ) —d- 50 (xny). (15

However, because the first two terms in equation (15) are
wrapped phases, the prediction error has to be further cor-
rected by adding or subtracting 21 such that it always lies
between —n and ©. Because the linear component of the
phase has been removed by the first-order predictor, the
magnitude of the prediction error is usually much smaller
than 1. As a result, the prediction error contributed by the
27 phase wrapping can be easily identified and corrected.
The general form of computing the phase prediction error
can be written as

Error (s, 0) O(x+d-cosB,y+d- sinB) (16)

—0(n ) d- 29(5y) +2mk (x,y)

where n = (cos®, sin®) and k (x,y) is an integer.

4 Edge Flow Integration
4.1 Combining Different Types of Edge Flows

The edge flows obtained from different types of image
attributes can be combined together to form a single edge
flow for general-purpose boundary detection:

E (5,0) > E,(5,8) w(a), Y w(a) =1 (17)
ac A ae A
P (s,9) Y P,(5,0) -w(a) (18)

aec A

where E, (s,0) and P, (s,8) represent the energy and
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Figure 3: (a) A flower image. (b) The computed edge flow field.
(c) The result after edge flow propagation. (d) The result of
boundary detection.

probability of the edge flow computed from image attribute
a where a € {intensity/color, texture, and phase} . w (a)
is the weighting coefficient among various types of image
attributes.

4.2 Combining Different Directions of Edge Flows

In the example of Figure 2, the final direction of local
edge flow is simply determined by selecting the direction
with larger probability because there are only two possible
directions to be considered in the I-D case. However, for a
given image location, the computed edge flows can range
from O to 7. In order to identify the best direction for
searching for the nearest boundary, the following scheme is
used: suppose we have edge flows {F (s, 0) lo<o<nt » WE
first identify a continuous range of flow directions which
maximizes the sum of probabilities in that half plane:

O(s) = argmax { Y P(s5,0)}

6 0<O <O+

(19)

Then, the final resulting edge flow is defined to be the vector
sum of the edge flows with their directions in the identified
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Figure 4: (a) Edge signals and image pixels, (b) The stable flow
field vector F, and (c) Boundary detection based on the edge flow.

range, and is given by

F(s) = >

O(s) <O0<O(s) +

E(s,0) -exp (jO), (20)
where F (s) is a complex number with its magnitude repre-
senting the resulting edge energy and angle representing the
flow direction. Figure 3(a)-(b) show an example of the edge
flows on a flower image with scale 6 = 2 pixels.

5 Flow Propagation and Boundary Detection

After the edge flow F {s) of an image is computed,
boundary detection can be performed by iteratively propa-
gating the edge flow and identifying the locations where two
opposite direction of flows encounter each other. At each
location, the local edge flow is transmitted to its neighbor in
the direction of flow if the neighbor also has a similar flow
direction (the angle between them is less than 90 degrees).
The steps are:

1.Setn = 0 and Fy(s) = F(s) .

2. Set the initial edge flow F w+1(8) attime n+1 to zero.

3. At each image location s = (x,y) , identify the neigh-
bor s' = (x',y') which is in the direction of edge flow
F,,(s) ,l.e., ZF,, (s) = atan{((y' =¥}/ (xX'=x)) .

4. Propagate the edge flow if F, (s) - F,(s) >0
Fooi(s) = Fori (8) +F,(5) 5
otherwise, F, . (s) = F,,,(s) +F,(s) .

5. If nothing has been changed, stop the iteration. Other-
wise, set n = n+ 1 and go to step 2.

Once the edge flow propagation reaches a stable state, we
can detect the image boundaries by identifying the locations
which have non-zero edge flow coming from two opposing
directions. The vertical and horizontal edge maps between
image pixels (see Figure 4(a)) are used to represent bound-
ary. Let F= (h(x,y),v{(x,y)) be the final stable edge
flow (see Figure 4(b)). Then, the edge signals will be turned
on if and only if the two neighboring edge flows point at
each other. Its energy is defined to be the summation of the
projections of those two edge flow toward it. Figure 4(c)
shows the detected edges. Figure 3(c)-(d) shows an example
of the edge flow propagation and boundary detection using a
flower image.

6 Boundary Connection and Region Merging

After boundary detection, disjoint boundaries are con-
nected to form closed contours. The basic strategy is to asso-

(@ ®)
Figure 5: The use of edge flow model for detecting different type
of image boundaries. From top to bottom are original image, edge
flow computation, and boundary detection. (a) Intensity edges. (b)
Texture boundaries. (¢) lHlusory boundaries.

ciate a neighborhood search size proportional to the length
of the contour. At the unconnected ends, a search is con-
ducted for the nearest boundary element which is within the
specified search neighborhood. If such a boundary element
is found, a smooth boundary segment is generated to con-
nect the open contour to another boundary element. This
process is repeated few times (typically 2-3 times in our
experiments) till all open contours are closed. Finally, a
region merging algorithm (based on a normalized distance in
the feature space: color histograms and texture features) is
used to reduce the number of regions to within a certain user
specified value.

7 Experimental Results

Figure 5 shows the use of edge flow model in detecting
the various types of image boundaries. The segmentation
results of some typical texture images are shown in Figure 6.

In addition, we have applied this algorithm to segment
about 2,500 real natural images from Corel color photo CDs.
The usefulness of the proposed scheme for segmentation lies
in the fact that very little parameter tuning or selection is
needed. The two parameters controlling segmentation are
the preferred image scale and the approximate number of
regions (for the region merging algorithm). The experimen-
tal results indicate that the proposed approach results in
visually acceptable segmentation on this diverse image col-
lection. Unfortunately, we can not provide any quantitative
performance measures at this time due to the lack of ground
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Figure 6. Image segmentation using edge flow model. (a) Using
texture edge flow, (b) Using edge flow based on the Gabor phase.

truth. Figure 7 shows some of the examples. More examples
of color image segmentation are available on the web (http:/
/vivaldi.ece.ucsb.edu).

8 Discussions and Conclusions

We have presented an edge flow model for detecting var-
ious types of image boundaries within a single framework,
and demonstrated the use of this model in segmenting a
large variety of natural images. In contrast with the tradi-
tional approaches, the edge flow model utilizes a predictive
coding scheme to detect the direction of change in various
image attributes, and perform the boundary detection by
propagating this flow field. The only control parameter (not
including the region merging post-processing) is the image
scale, which can be adjusted to the user’s requirements.

We are currently working on using an adaptive local
scale instead of a single scale parameter for the entire image.
Our preliminary experiments indicate that the results can be
improved further by selectively choosing this scale depend-
ing on the local texture/color properties. Automatic selection
of this parameter is an important research issue. Application
lo content based image retrieval which combines segmenta-
tion and feature extraction are being investigated.
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