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1   Introduction

Feature detection is an important early vision problem. Previous work on feature detection include the use

of grey level statistics (e.g.: Moravec’s operator [1],[2]) and the detection of edges and corners [3]. Meth-

ods based on detecting edges and corners are particularly useful in applications such as analysis of aerial

images of urban scenes, airport facilities, image to map matching, etc. Algorithms based on grey level sta-

tistics are applicable to a wider variety of images such as desert scenes and vegetation, which may or may

not contain any man-made structures. Features, by definition, are locations in the image that areperceptu-

ally interesting. One can characterize an image feature detection algorithm by two attributes -- (a) General-

ity, and (b) Robustness. Given that the nature of salient features vary from application to application, it is

desirable that a feature selection algorithm be as general as possible. In case of structured objects such fea-

tures could be corners and locations with significant curvature changes. When analyzing human faces, fea-

tures of interest could be the eyes, nose, mouth, etc. The generality criterion addresses the issue of whether

a given feature detection algorithm can be used in a wide variety of applications.

The second criterion, that of robustness, is equally important in applications such as image registration. A

feature detection algorithm can be considered robust if it identifies the same feature locations independent

of rotation and translation, as well as minor scaling and perspective deformations. Most feature detection

schemes which obtain a symbolic representation in terms of edges and corners are not quite general,

whereas it has been observed that general purpose feature detection algorithms such as the Moravec opera-

tor or its variants are not robust [4]. The method we describe below is both robust and of general utility,

and has been tested successfully on several wide-ranging applications. A third attribute of our scheme is

that it provides a simple representation mechanism as well, and this is useful in applications such as human

face recognition.

The model we describe in Section2 is in part motivated by our earlier work on texture image segmentation

[5]. It is based on the observation that certain textures (such as the classical L - + texture) have no orienta-

tion or scale preference, and differ only in the distribution of line endings and intersection. This in turn led

to the scale interaction model we proposed to detect these features in [5]. In addition to texture discrimina-

tion, this model was used to explain the perception of certain types of illusory contours. It is interesting to

note that there are cells in the visual cortex which also exhibit sensitivity to line endings, and are called

endstopped cells or hypercomplex cells.

During the course of this work we became aware of the related work by Dobbins et al [6],[7] on modeling

the endstopping cells and their extensive simulation studies on relating endstopping with curvature detec-
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tion. Although our scale interaction model for feature detection was developed independently, there are

many commonalities that one can observe between our model and the one in [7]. In particular, both these

models are based on the observation that curvature response of the feature detectors results from the differ-

ence of two low-pass responses of different bandwidths. These models are quite non-linear and not amena-

ble for easy mathematical analysis. The empirical studies performed by Dobbins et al. agree well with our

own simulations in relating curvature with the feature responses, and the main focus of this paper is to

demonstrate the robustness of the proposed feature detection mechanism as we explore its applications to

several image analysis problems.

In demonstrating the utility of this feature detection we have chose three different applications: The first

one concerns the image registration problem which is a classical problem in image analysis. Image regis-

tration involves obtaining a correspondence between two or more images of a scene taken from different

viewing positions or at different times. Image registration is the first step in many image analysis systems

such as geometric stereo, image data fusion, and applications involving template matching. In order to

accurately register the images, one need to identify salient image features, and the feature detection algo-

rithm should be robust to rotation and small geometrical distortions. In this context, our approach to fea-

ture detection has been tried successfully on hundreds of images with no parameter tuning [8].

Another interesting application we investigate is that of face recognition [9]. In this case, we use the fea-

ture information at the salient image locations to represent face images as topological graphs, and use a

simple graph matching algorithm for recognition. A variation of this approach is also used in the third

application, that of motion tracking.

This paper is organized as follows: In the next section we introduce our scale interaction model for feature

detection and representation based on the Gabor wavelet transform. In Section3 application to image reg-

istration, face recognition and motion correspondence are presented along with detailed experimental

results. Section4 presents the conclusions.

2   The Scale Interaction Model for Feature Detection

Our formulation of the feature detection model is based on filtering using a class of self-similar Gabor

functions or Gabor wavelets. Gabor functions are Gaussians modulated by complex sinusoids. In its gen-

eral form, the 2-D Gabor function and its Fourier transform can be written as [10]:
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(1)

(2)

 and  define the widths of the Gaussian in the spatial domain and  is the frequency of the

complex sinusoid. A well known property of these functions is that they achieve the minimum possible

joint resolution in space and frequency [10]. A signal such as a delta function which is concentrated at a

point in space has no frequency localization. Likewise, a delta function which is concentrated in frequency,

has no spatial localization. A good measure of localization in the two domains is given by the product of

the bandwidths in space and frequency. The effective bandwidth of a signal is defined as the square root of

the variance of the energy of the signal. Let  and  be the effective widths of the signal in the horizon-

tal and vertical directions in space respectively and,  the corresponding widths in frequency. Then

the following inequalities (also called the uncertainty relations) hold: (a) , and

. Gabor functions are unique in attaining the minimum possible value of this joint uncer-

tainty.

Gabor functions form a complete but non-orthogonal basis set and any given function can be

expanded in terms of these basis functions. Such an expansion provides a localized frequency description

and has been used in image compression [11],[12], face recognition [9],[13] and texture analysis [5],[14].

Local frequency analysis, however, is not suitable for feature representation as it requires a fixed window

width in space and consequently the frequency bandwidth is constant on a linear scale. However, in order

to optimally detect and localize features at various scales, filters with varying support rather than a fixed

one are required. This would suggest a transformation similar to wavelet decomposition rather than a local

Fourier transform. We now consider such a wavelet transform where thebasic wavelet is a Gabor function

of the form:

(3)

where  is the spatial aspect ratio and is the preferred orientation. To simplify the notation, we drop the

subscript  and unless otherwise stated assume that . The family of basis functions corresponding

to the basic wavelet in (3) is obtained by translations and dilations of . For practical applica-
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tions, discretization of the parameters is necessary. The discretized parameters must cover the entire fre-

quency spectrum of interest. Let the orientation range  be discretized into N intervals and the scale

parameter  be sampled exponentially as . This results in the wavelet family

(4)

where . Then we define the transform by

(5)

At each resolution in the representation hierarchy these wavelets localize the information content in both

frequency and spatial domains simultaneously. Any desired orientation selectivity can be obtained by con-

trolling the parameter .

2.1   Feature Detection and Localization

We now define the response of the feature detector, denoted by  at location  with pre-

ferred orientation  as:

(6)

where  is the normalizing factor, and  is a non-linear transformation function (e.g.: a

sigmoid function). Locations  in the image which are identified as feature locations satisfy

(7)

 represents a local neighborhood of  within which the search is conducted. Computing the fea-

ture response  can be thought of as a two stage process: In the first stage the image data is con-

volved with filters at two different scales to extract the first levelsimple features. These represent lines and

edges at the two scales in the image. The second stage involves taking a difference of these simple features

and performing a non-linear transformation, which results in the scale-interaction model. The difference of

the filtered outputs is similar to a difference of Gaussian filter (except for the orientation tuning), and will

have a positive middle region and negative end zones (see Figure1). This makes them responsive to start

line segments, line endings, and in general changes in curvature.

In a simplistic way, such a processing can be related to the behavior of endstopped (hypercomplex) cells in

the visual cortex. The original idea of using such scale interactions dates back to the early work of Hubel

0 π,[ ]

α αj
j, Z∈

g αj
x x0– y y0–,( ) θk, 

 
 
  α ℜ j,∈, 0 1 2– …, ,–,{ }=

θk kπ( ) N⁄=

Wj x y θ, ,( ) f x1 y1,( ) g* αj
x x1– y y1–,( ) θ, 

 
x1d y1d∫=

θ

Qij x y θ, ,( ) x y,( )

θ

Qij x y θ, ,( ) f Wi x y θ, ,( ) γWj x y θ, ,( )–( )=

γ α 2 i j–( )–
= f .( )

x y,( )

Qij x y θ, ,( ) max
x' y',( ) Nxy∈

Qij x' y' θ, ,( )=

Nxy x y,( )

Qij x y θ, ,( )



6

and Wiesel [15]. As mentioned earlier, a similar approach using difference of responses from filters of dif-

ferent bandwidths have been explored in [7], where the authors focus on the relationship between endstop-

ping behavior and curvature representation. They provide extensive simulation results indicating curvature

selectivity of endstopped cells, and suggest that in biological systems these cells provide a representation

for curves. The activities of these cells represent curvature changes at different spatial scales, thus repre-

senting in some sense acurvature primal sketch [16]. It should be noted that unlike parametric models

often used in computer graphics and image processing for representing curves and curvature singularities,

this approach does not involve any underlying image model. However, the non-linearities inherent in these

models make it difficult to provide a detailed mathematical analysis.

It has been suggested that endstopped cells help in localizing texture boundaries. We have provided a clear

demonstration of their role in texture boundary perception in [5]. The role of these cells in illusory contour

perception is discussed in [17],[18], and some of the observations are also used in our model for boundary

detection in [5]. That these cells respond to line-ends is nothing but one extreme example. This is further

illustrated in Figure1.

Figure2 illustrates the observation that the feature locations correspond to points with significant curva-

ture changes. All the corners in this hand-drawn hammer picture are located by the algorithm, although

only one particular set of parameters is used for the scales. Figure3 shows the types of features that are

detected on face images. Information at these locations is used in the recognition process and will be dis-

cussed in detail in the following. We now discuss in more detail applications to face recognition and in

estimating motion parameters by tracking features over a sequence of images.

3   Applications

3.1   Image Registration

Figure4 shows an example where there are no well defined structures to obtain a registration. The two

images shown are part of a sequence of images of Mojave desert taken from a camera attached to a bal-

loon. This setup was used to simulate the Mars’94 project where one of the goals is to measure the 3-D

wind velocity on Mars surface. The proposal is to use a downlooking camera attached to a balloon to mea-

sure the motion of the balloon (by using the image sequence) and hence determine the wind velocity. Since

there are no significant structures, registering such images is a challenging and difficult problem. Tradi-
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tional solutions to this problem are unreliable when the rotation and scale change between the two frames

is significant.

A computational vision approach to solve this registration is proposed in [8],[19] using the feature detec-

tion algorithm described earlier. A small number of feature points are located in the two images from the

sequence using the algorithm described in the previous section. Typically, 20-40 features are identified per

image. The figure shows these feature locations (marked with +s) superimposed on the original images.

The rotation between the two frames is estimated using an illuminant direction estimation method [20]. By

estimating the illuminant direction in each frame, we can estimate the rotation between the two frames and

simplify the matching process. Since the common area between the two frames can be much smaller than

the image field, and in addition there may be scaling between successive frames, methods based on corre-

lation matching become unreliable. An initial estimate of translation and scaling is obtained by pair-wise

matching of the detection feature points. Subsequently, a hierarchical correlation matching is performed to

obtain an accurate camera motion estimate.

For more details about this registration scheme the reader is referred to [8],[19]. It has been tested on many

different data sets including stereo image pairs and satellite image data. This application illustrates the

robustness of this feature detection method in identifying a consistent set of features irrespective of signif-

icant amounts of rotation, scaling and perspective distortion between pairs of images.

3.2   Human Face Recognition

3.2.1   Previous work on Face Recognition

Human faces provide a very good example of a class of natural objects which do not lend themselves to

simple geometrical representations, and yet the human visual system does an excellent job in efficiently

recognizing these images. Considerable research has been done in developing algorithms to solve this

problem. A comprehensive survey of computer recognition of faces can be found in [21],[22]. Most of this

work is either recognition by using facial profiles (for example, see [23],[24]) or using the frontal views. In

this paper we are interested in the latter case where the input is an intensity image of the frontal view of a

face. Previous related work can be found in [25], the WISARD system ([26],[27]) and the dynamic link

architecture for face recognition [28]. One of the early systems built for this task is described in [29]. The

system automatically localizes features such as corners of the eyes, nostrils, mouth etc. Then a set of six-

teen facial parameters corresponding to these features is computed. They correspond to ratios of distances

and areas, and angles to compensate for scaling differences. A simple Euclidean distance measure is then
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used to compute the similarity between a test face and a stored face. The best case performance of the sys-

tem was 15 correct identifications out of 20 test faces. The test data differed from the training data in that

there was a period of one month between the acquisition of the samples; in both cases a full frontal view

was used.

In [30],[31] the authors describe a real time face recognition system using the Karhunen-Loeve Transform.

Their system tracks a person’s head and identifies the face by comparing its features with a known data-

base. The basic idea is to find a low dimensional feature space to represent the intensity data, for which

they use principal component analysis. Since intensity data is directly used in the recognition process, such

a system will be prone to local fluctuations in the image. This approach to recognition is similar to many

earlier attempts in transforming a 3-D recognition problem to a 2-D matching, without detecting any per-

ceptually significant features. See for example the associative memory models for face detection

([32],[33],[34])

Our approach to face recognition is somewhere in between the two extremes of using the raw intensity data

and using the high level face feature information. It is feature based, but does not depend on the explicit

use of high level facial features. As our experimental results indicate, it is robust to facial distortions and

changes in facial expressions while being computationally less expensive.

3.2.2   Representation and Recognition Using Graphs

Given a face image, salient feature points are detected using the scheme outlined in the previous section. In

the following discussion we will assume that these features are detected using a specified pair of scales in

the end-inhibition model, and to simplify the notation we drop the subscriptsi andj in (6). Information

about the faces is represented using the available information at the feature points, for which we use topo-

logical graphs. For convenience the features detected in a given image are numbered  in any

arbitrary, but consistent way. Corresponding to each feature pointi in the image there is an associated node

 in the graph. Each node  is characterized by the pair , where  represents the

spatial location, and

(8)

is the feature vector corresponding to theith feature. Let  denote the set of neighboring feature points of

the ith node. Directional edges connect the neighbors in the graph (i.e., the neighborhood is not symmet-

ric). The neighborhood of a node is determined by taking into account both the maximum number of

neighbors allowed as well as the distance between them. The Euclidean distance between two nodes
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and  is denoted by . The resulting graph structure forms our representation of a face image. Thus

each face in the database is represented as a labeled graph. Recognizing an input face image then involves

converting it first into a graph representation using the method described above (and we refer to this graph

as the input graph) and obtaining a match with one of the stored graphs.

Matching the input with an object from the database is an important research issue by itself. In the follow-

ing, however, we are interested in evaluating the feature representation mechanism for face recognition

rather than in developing an optimal search scheme. Matching the input graph with a stored one is formu-

lated as an optimization problem involving minimization of a cost function. The cost function has two

parts, one measuring the similarity between matched features and the other corresponding to the topology

of the features. The algorithm involves local search, is deterministic in nature and extremely fast. The

algorithm, however, does not guarantee optimizing the criterion function. In spite of this the recognition

rate is comparable to that of most face recognition schemes that we are aware of, demonstrating further the

robustness of our feature extraction. Although this implementation calls for matching the input graph with

each one of the stored graphs (hence linear search complexity in the number of stored objects) we note that

this can be implemented easily on a parallel hardware (for example, artificial neural networks). Our imple-

mentation of the matching algorithm is given below:

In the following, subscriptsi, j refer to nodes in the input graph, and  correspond to nodes in a

stored graph .

1. The input graph  is spatially aligned with the stored graph by matching the centroids of the fea-

ture set  and .

2. Let  be the spatial neighborhood for theith feature in the input graph, over which a search is con-

ducted to find the best matching feature node in the stored graph, such that

(9)

 is typically a circular region of specified radius (seven pixels in our implementation) around the

ith feature location.

3. After all the individual features are matched, the total cost is computed by taking into account the

topology of the matched graphs. Let the nodesi andj match  and  respectively, and further let

 (i.e.,  is a neighbor of . Let . Then the topological

cost for this particular pair of nodes is computed as

Vj dij

I
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(10)

Note that if the match is perfect,  and

4. The total cost for matching input graph to a stored graph  is then given by

(11)

where  is a scaling parameter which controls the relative importance of the two cost functions.

5. The total cost is then scaled appropriately to reflect the difference in the number of features between

the input and stored graphs. If  denote the number of feature nodes in the input and stored

graphs respectively, then the scaling factor , and the scaled total cost

.

6. The best candidate match  then satisfies

(12)

Note that the above algorithm does not take into account the topological cost during the matching process.

The topological cost is computed only after the features are matched. The advantage is that there are no

iterations, and no stochastic elements involved in the search, resulting in a very fast algorithm for match-

ing.

3.2.3   Experimental Results

We have implemented a simple face recognition system based on the above principles. The input is a

 image, having a white background. In our current implementation, the feature responses are

computed corresponding to the scale parameters  and  in (6). Typical numbers of

feature points detected in a face image using (7) vary from 35 to 50. The number of discrete orientations

used was  (in (8)) corresponding to . One byte of information is stored for

each of the components in the feature vector, or approximately 200 bytes of information per face. Com-

pared to the original intensity data of 16K bytes, this results in a considerable savings in storage memory.

The database we have used has face images of 86 persons, with two to four images per person, taken with

different facial expressions and/or orientations. Often there is a small amount of translation and scaling as

well. There are a total of 306 such face images in the current database. For each face image, the stored

information corresponds to the feature graph discussed in the previous section. The neighborhood set

of theith feature node consists of its five nearest neighbors. Note that this set is not necessarily symmetric.
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The performance of the system is evaluated as follows: For each entry of a face image in the database, the

cost of associating another entry in the database is computed according to (11). The parameter  in (11) is

set to 0.2, so as to have equal contributions to the total cost from the similarity measure and the topological

cost (as the summation overj is over the neighbors, which in our case total five). These costs are then

sorted and the best match is the one having the minimum associated cost as in (12). Note that in doing this

self-matches (which obviously result in zero total cost) are ignored. The recognition accuracy in terms of

the best match corresponding to the right person was 86%, and in 94% of the cases the correct person’s

face was in the top three candidate matches. The graph matching steps 1 through 5 discussed in

Section3.2.2 typically take less than 0.5 seconds for each graph (on a SUN Sparc 2 workstation). Some

results are shown in Figure5.

 In a typical application of this system, one can store 10 to 20 images of each person’s face, taken from dif-

ferent angles, with different facial expressions. Any incoming face image can then be matched to this set of

images, and a threshold can be associated with the matching cost to either accept a match or to reject. Due

to the nature of representation used, the associated memory requirements are minimal. The entire matching

process can be implemented on a parallel hardware or connectionist network for real time applications.

Among the issues to be addressed for future work are the scale invariance and use of high level feature

information.

3.3   Motion Correspondence

The previous application to face recognition illustrated the use of feature information in representing

shape. The following application to motion correspondence demonstrates another aspect of this feature

detection scheme, that of robustness. While the feature information is directly used in the face recognition

case, here we use the entire Gabor wavelet at each feature location (we refer to this as the Gabor jet [13]).

The goal here is to extract salient points from a sequence of images, and to obtain the image plane trajecto-

ries of these points. This is formulated as a recursive tracking problem, with the dual objective of estimat-

ing the motion of the camera, and tracking feature points in the image sequence. The method used for

feature point matching is discussed in Section3.3.1. The motion estimation aspects are discussed in detail

in [35], and are summarized in Section3.3.2.

The problem of motion correspondence is somewhat similar to the face recognition problem in the sense

that both require a correspondence between distinct features in two or more images, or between stored pat-

terns and a test pattern. In both cases, labeled graph matching provides the required invariance to limited

amounts of distortion, unlike correlation-based methods which are known to be sensitive to distortion.

λt
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There are two main conceptual differences between the two applications. Firstly, in motion tracking, it is

possible to interleave feature point matching with the recursive estimation of motion parameters. Current

3-D motion information can be used to predict the positions of feature points in the incoming image,

thereby reducing the search time for finding match points. The second difference is in the nature of the

search: the goal here is not to find the best matching graph from a number of stored graphs, but to extract

the graph from the incoming image that best matched the graph obtained for the current image. Feature

points are not assumed to have already been extracted in all the images in the sequence; instead, feature

points extracted from the first image aretracked over successive images in the sequence by graph match-

ing between consecutive image frames.

3.3.1   Matching

Let  and  be two successive images from an image sequence. Feature point matching between and

 is performed using the principles of labeled graph matching and motion coherence (Figure6). Let us

suppose that feature points in have been extracted using the method described in Section2, and that we

wish to find the matching points in . The feature points are treated as nodes in a labeled graph, where the

label vectors, calledjets, are obtained by convolution with the Gabor wavelet kernels. The jet for a pointi,

denoted by , is of the form

where the ’s are computed as described in Section2. The number of scalesm and the number of orienta-

tionsn can be adjusted to obtain the desired performance.
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Neighboring feature points in  are linked to form a topological graph, using inter-point distances as the

basis for linkage. Matching then consists of dynamically assigning image points in to the given feature

points in , starting from initial positions determined by current position and motion. This assignment is

guided by three criteria (a) the similarity of the label vectors of potential match points (b) the preservation

of the local topology of the graphs of the feature points in the two images and (c) the closeness of the

match points to theirpredicted locations. The matching is treated as minimization of a cost function of the

form

(13)

where  is the similarity cost,  the topological cost, and  is thediffusion cost, all costs being

determined locally for theith feature point. The similarity and topological costs are computed as in

Section3.2.2. Computation of the diffusion cost will be explained in the next subsection. The optimal val-

ues of the weighting parameters and  are determined experimentally. If the  or  cost terms for

a point are inordinately high after minimization, it is assumed that the point has beenlost due to occlusion

or other causes, and it is not tracked any further.

The actual minimization can be done in several ways. In our implementation, we used a hierarchical

approach, first finding the best match at the coarsest resolution, and then refining it at the finer resolutions.

This makes effective use of the intrinsic multi-scale nature of the Gabor wavelet representation. At each

scale, the best match is found by a locally exhaustive search, the size of the search neighborhood being

proportional to the scale.

3.3.2   Interleaving Matching and Motion Estimation

The matching process for the motion correspondence problem is interleaved with the recursive estimation

of 3-D motion parameters. Details of the recursive estimation technique used may be found in [35]. They

are briefly summarized here.

The motion parameters consist of 3-D feature point positions, camera velocities and camera pose parame-

ters. These are contained in a state vector. The recursive estimator used is the extended Kalman filter,

which operates in two steps, a time update or prediction, based on the motion model, followed by a mea-

surement update or filtering, based on the information in the incoming image. In the discussion that fol-

lows, k refers the index of the incoming image in the sequence. Let the estimate  denote the

predicted estimate, just after a time update, and the estimate  the filtered estimate, just after
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a measurement update. The motion model is represented by a state transition matrix, while the observa-

tion model, or the relationship between the parameters in the state vector and the measured image coordi-

nates of feature points, is represented by a nonlinear function. The position of theith feature point  in

the incoming image can be predicted as:

(14)

where  is the portion of the nonlinear measurement corresponding to theith feature point. Let

 be the covariance of the predicted state vector at time instantk, and let  be the

linearized measurement function, each row corresponding to one of the two image plane coordinates of

feature pointi, evaluated at the state estimate .

The covariance, or uncertainty, of the prediction in (14), denoted as , can be shown to be:

(15)

The predicted feature point positions can then be used to initialize the matching process, and the covari-

ance of the prediction to control thediffusion or search of match points during the matching. In other

words, the search for a match point is conducted in a region around its predicted location, the size of this

region being proportional to the uncertainty of the prediction. Further, the diffusion cost term  in equa-

tion (13) is chosen so as to favor matches close to their predicted locations. To be precise, it is selected to

be theMahalanobis distance from the predicted locations, i.e.

(16)

The matching procedure yields the measurements , which are then used to perform a measurement

update on the predicted state vector . The system is then ready to process the next image in the

sequence.

3.3.3   Experimental Results

Experimental results on a real image sequence, called the UMASS Rocket sequence, are presented in this

paper. For labeling feature points, Gabor wavelets at four different resolutions  and four orienta-

tions  were used. Each feature point was topologically linked with its three nearest neighbors. The

1st, 8th and 16th frames from this sequence are shown in Figure7. Feature points extracted using scale

interactions are shown in Figure8 (top), and trajectories of selected points are shown in Figure8 (middle)

and (bottom), superimposed on the 1st and 16th frames, respectively.

F

h ρi

ρ̂ k k 1–( ) hi F ŝ k 1 k– 1–( )[ ]=
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4   Conclusions

A simple and robust feature detection algorithm is presented here. The motivation behind the algorithm is

the observation that salient image feature points are often characterized by changes in local curvature, and

the scale interaction model localizes such image information. Unlike parametric models often used in

graphics and image processing, we do not assume any underlying image model while detecting the feature

points. This model for feature detection has been quite successful in applications including image registra-

tion, face recognition and motion correspondence. Our extensive experimental results demonstrate the

robustness of this approach to image feature detection.
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FIGURE 1. Illustrating the selectivity of the feature detector (shown as an ellipse) to local curvature changes. In (a), the
negative end zones (darker shaded regions at the two ends of the ellipse) are not activated, and the feature detector
responds strongly to the local curvature, (b) the negative end zones suppress the detector’s response. In our model,
the negative end zones are a result of the difference of responses of filters with different scale parameters.

FIGURE 2. Salient feature locations identified by the model;. Parameter values used are i = 0, j = -6, and .
These correspond to 1 and 8 pixel standard deviation of the Gaussians, respectively.

(a) (b)

α 2=
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FIGURE 3. Feature locations marked for face images. Scale parameters used in the experiment correspond to

. Information at these locations is used for recognition. The two faces shown here are
matched from a database of over 300 images.

(a) (b)

(c) (d)

i 2– j, 5– α, 2= = =
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FIGURE 4. Two successive images from a motion sequence with the feature locations identified by the model. The
composite image is obtained using a novel computer vision based registration technique by Zheng [IP Transaction’93]
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FIGURE 5. Examples of successful matches. The left image of each pair is the input image and the right image is the
best match found from a database of over 300 images. In 86% of the cases the best match was the correct match, and
94% of time the correct match can be found in the top three matches.
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FIGURE 6. Examples of failures. The first image in each row is the input image, and the following three images are the
top three matches found. Note that in the first two rows the correct match is among the best three matches.



23

FIGURE 7. Labeled graph matching applied to motion correspondence.

Graph edge

Feature point in I1

Predicted match point in I2
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Diffusion of match point
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FIGURE 8. Frames 1, 8, and 16 of the Rocket sequence
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FIGURE 9. Feature points extracted from the first image of the Rocket sequence (top), and trajectories of selected
points, superimposed on the first and last image in the sequence (middle and bottom).
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