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ABSTRACT

We propose a nonuniform frequency sampling method for 2-D FIR filter design based on the concept of the
nonuniform discrete Fourier transform (NDFT). The NDFT of a 2-D sequence is defined as a sequence of samples
of its z-transform taken at distinct points located arbitrarily in the (2, z7) space. In our design method, we
determine the independent filter coefficients by taking samples of the desired frequency response at points located
nonuniformly on the unit bi-disc, and then solving the linear equations given by the NDFT formulation. The
choice of sample values and locations depends on the shape of the 2-D filter. Best results are obtained when
samples are placed on contour lines that match the desired passband shape. The proposed method produces
nonseparable filters with good passband shapes and low peak ripples. In this paper, we consider the design of
square-and diamond-shaped filters. Extensive comparisons with filters designed by other methods demonstrate
the effectiveness of the proposed method. We also investigate the performances of the filters designed by applying
them as prefilters and postfilters to schemes for rectangular and quincunx downsampling of images. Examples
show that the filters designed by our method produce output images which are sharper and have a higher PSNR,
as compared with other filters.

Keywords: 2-D FIR filter design, NDFT, nonuniform frequency sampling, square-and diamond-shaped 2-D
filters.

1 INTRODUCTION

We apply the concept of the nonuniform discrete Fourier transform (NDFT) to design 2-D FIR filters by
nonuniform frequency sampling. As proposed in [1], the NDFT of a 2-D sequence z[n;,n3) of size Ny x N
is defined as a sequence of samples of its 2-D z-transform X(z,z;), taken at Ny N, distinct points located
arbitrarily in the 4-D (z1, z3) space. These points can be chosen arbitrarily but in such a way that the inverse
transform exists [1]. Therefore, nonuniform sampling on the unit bi-disc corresponds to the case: z; = edwi,
z; = e/*1. Earlier efforts in nonuniform 2-D frequency sampling design have involved either constrained sampling
structures which reduce computational complexity [2-5], or a linear least squares approach that guarantees unique
interpolation [5]. Our approach involves generalized frequency sampling, where the samples are placed on contour
lines that match the desired shape of the passband or stopband of the 2-D filter. The proposed method produces
nonseparable 2-D filters with good passband shapes and low peak ripple. Filters of good quality are obtained,
even with small regions of support. This is important since such filters are most likely to be used in practical
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filtering applications.

This paper is organized as follows. The general strategy for the proposed 2-D nonuniform frequency sampling
filter design method is outlined in Section 2. Details of the procedure for designing 2-D filters with square-and
diamond-shaped passbands are given in Sections 3 and 4, respectively. We also present filter design examples
and comparisons with filters obtained by other design methods. In Section 5, we apply the filters designed, as
prefilters and postfilters to schemes for rectangular and quincunx downsampling of images. Section 6 contains
the concluding remarks.

2 PROPOSED 2-D NONUNIFORM FREQUENCY SAMPLING
DESIGN

In the proposed 2-D filter design method, the desired frequency response is sampled at N; points located
nonuniformly in the 2-D frequency plane, where N; is the number of independent filter coefficients. All symmetries
present in the filter impulse response are utilized so that N; is typically much lower than the total number of filter
coefficients, N2. This reduces the design time, besides guaranteeing symmetry. The set of N; linear equations
given by the 2-D NDFT formulation [1] is then solved to obtain the filter coefficients.

As in the case of 1-D filter design [6], the choice of the sample values and locations depends on the particuiar
type of filter being designed. In general, the problem of locating the 2-D frequency samples is much more complex
than in the 1-D case. Our experience in designing 2-D filters with various shapes indicates that best results are
obtained when the samples are placed on contour lines that match the desired passband shape. For example,
to design a square-shaped filter, we place the samples along a set of square contour lines in the 2-D frequency
plane. Note that these results agree with the filter design results in [4] and [5], where better control over shape
was obtained by placing samples at the edges of the passband and the stopband. The total number of contours
and number of samples on each contour have to be chosen carefully so as to avoid singularities. A necessary
condition for nonsingularity is known [5, Theorem 2, p. 171] and helps to serve as a rough check. However, this
condition is not sufficient to guarantee nonsingularity. The theorem asserts that if the sum of the degrees of the
irreducible curves, on which the samples are placed, is small compared to the degree of the filter polynomial, then
the interpolation problem becomes singular. Going back to our example of designing a square filter, it is clear
that the number of square contours must be chosen appropriately with respect to the filter size.

As we locate the frequency samples along contour lines of the desired shape, the parameters to be chosen are:
(a) the number of contours and the spacing between them, (b) the number of samples on each contour and their
relative spacing, and (c) the sample values. In the following sections, we show how these parameters are chosen
for square-and diamond-shaped filters. A common approach used is that a particular cross-section of the desired
2-D frequency response is approximated by 1-D analytic functions based on Chebyshev polynomials, similar to
those used for 1-D FIR filter design in [6,7]. The samples are then placed on contours that pass through the
extrema of this cross-section. This will become clear when we look at design examples in the following sections.

3 SQUARE FILTER DESIGN

Consider the design of a square-shaped lowpass filter h[ni, na], whose frequency-response specification is shown
in Figure 1. Let the filter be of size N x N, with passband edge w, and stopband edge w,, as defined in Figure 1.
Since the frequency response exhibits a fourfold symmetry, the zero-phase response H(wi,w?2) can be expressed
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Figure 1: Frequency-response specification of a square-shaped
lowpass filter. Shaded region: passband, dotted region: transi-
tion band, unshaded region: stopband.

in the form [8]

(N-1)/2 (N-1)/2
H(wi,w2) = h[0,0]+ Z 2h[ny, 0] coswing + Z 2h[0, n3) coswan,
ny=1 na=1
(N-1)/2(N~-1)/2
+ Z Z 4h[ny, no) coswing coswon,. (1)
n;=1 np=1

Thus, the number of independent filter coefficients is N; = (N + 1)2/4. To solve for these coefficients, we require
N; samples of H{wy,ws) located in the first quadrant of the (wy,ws) plane.

Our design method is based on the following idea. If we take a cross-section of the 2-D frequency response along
the w, axis (or ws axis), then the plot looks like a 1-D lowpass filter response. An example of this cross-section is
shown in Figure 2. Given the 2-D filter specifications such as the support size and band-edges, we first represent
the passband and stopband of this cross-section by separate analytic functions, Hp(w) and H,(w), as done earlier
for 1-D lowpass filter design [7]. Then we place samples along the w axis, at the extrema of these functions [6].
In the 2-D frequency plane, the samples are placed on squares passing through these extrema. All the samples on
a particular square have the same value and are evenly spaced. The total number of square contours is (N +1)/2.
The number of samples on the kth contour starting from the origin is (2k - 1), for k = 1,2,...,(N + 1)/2. This
choice works well, since the total number of samples is given by the sum of the series of {N + 1)/2 odd numbers:

(N+1)/2

> @k-1)= (-’\1;—1)2 (2)

k=1
which equals N;.
The filter coefficients are found by solving the N; equations obtained by sampling Eq. (1) at N; points. The
above design method can also be used to design square-shaped highpass filters. In this case, only one modification

is required—the cross-section of the 2-D frequency response along the w; axis (or ws axis) has to be approximated
by a 1-D highpass response. The following example illustrates the design method.
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Figure 2: Cross-section of desired square filter frequency response along the w; axis.

Example 1. Consider the design of a square lowpass filter with the specifications: support size = 9 x 9,
wp = 0.357, w, = 0.657. Since only 25 of the 81 filter coefficients are independent, we require 25 samples located
in the first quadrant of the 2-D frequency plane. The total number of square contours is five. The cross-section
of the 2-D frequency response along the w; axis is represented by 1-D analytic functions, as shown in Figure 3.
Then, the location and values of the five samples along the w; axis are obtained by sampling these functions. as
marked by “¢” in Figure 3. Finally, the remaining samples are placed on five successive squares passing through
these points, as illustrated on the contour plot in Figure 4(a). The frequency response is also shown in this figure.
Clearly, the passband has the desired square shape.

The frequency response of a square filter, shown in Fig. 1, is essentially a separable one. We can design a
separable 2-D square filter h[ny, ny] by first designing two 1-D lowpass filters hi[n] and ha[n], and then simply
taking their product along orthogonal directions. Separable filters are widely used in practice because of their
design simplicity and ease of implementation. However, they suffer from the following problem. If é;,, 85, and
bps, 05, are the peak ripples in the passband and stopband of the two 1-D filters, respectively, then the resulting
9-D filter can have peak ripples as large as (&, + 6p,) in the passband, and max(é,,, 8,,) in the stopband. Thus,
the 2-D filter might have large passband ripple, which is undesirable. In such cases, much better results can be
obtained by utilizing the N2 degrees of freedom available in designing a nonseparable filter, instead of the 2N
degrees used in a separable design.

We now compare the nonseparable square filter in Example 1 to a separable filter, designed with the same
specifications. The Parks-McClellan algorithm is used to design the corresponding 1-D lowpass filter with length
N = 9, and band-edges as specified in Example 1. Figure 4(b) shows the frequency response and contour plot
of the separable square filter. Note the large ripple obtained in the passband. The comparative performance is
shown in Table 1. We denote the peak ripples obtained in the passband and stopband by 6, and 6, , respectively.
Note that the peak passband ripple obtained by our method is nearly a third of that present in the separable
filter.
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Figure 3: Generation of analytic functions for square filter designed by the NDFT
method. The cross-section of the 2-D frequency response along the w; axis is
approximated by Hp(w) (solid line) in the passband, and H,(w) (dashed line) in
the stopband. These functions are sampled at the locations denoted by “+”.

Table 1: Comparative performance for
square filter design.

[Method % [ & ]

NDFT 0.0322 | 0.0471
Separable Design [{ 0.1116 | 0.0579

4 DIAMOND FILTER DESIGN

Diamond filters find important practical applications as prefilters for quincunxially sampled data, and in
interlaced-to-noninterlaced scanning converters for television signals. A diamond filter has a frequency-response
specification with passband edge w, and stopband edge w,, as defined in Figure 5. In other words, the diagonal
line w; = wy in the frequency plane intersects the passband edge at (wp,wp) and the stopband edge at (ws,ws)-
A diamond filter exhibits an eightfold symmetry in the frequency domain [8]. Besides, a diamond filter is a 2-D
half-band filter. Its frequency response H(wi,wz) is symmetric about the point (w1, ws, H) = (x/2,7/2,0.5) in
frequency space. This implies that the impulse response has alternating zeros, as given by

07 = i
Mrand={ 05, I ®)

On account of these symmetries, the number of independent coefficients [9] in a filter of size N x N is reduced to

o[22 252
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Figure 4: Frequency response and contour plot for square filters of size 9 x 9 designed by (a) NDFT method,
and (b) separable design method. The sample locations for the NDFT method are denoted by “x” on the
corresponding contour plot.
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Figure 5: (a) Frequency-response specification of a diamond filter. Shaded region: passband, dotted region:
transition band, unshaded region: stopband. (b) The darkly shaded region is the only independent part,
because of eightfold symmetry and the half-band nature of the filter.

where P = (N - 1)/2.

The N; independent points in the impulse response lie in a wedge-shaped region below the diagonal line
ny = nz in the first quadrant of the (ny, ns) spatial plane. Thus, the frequency response of a diamond filter can
be expressed as [9]

L(P+1)/2]
H(wi,wy) = 05+ Z 2h[2n; — 1,0]{cos(2n1 — 1)w; + cos(2n; — 1)w;}
n;=1
L(P+1)/2] |P/2)
+ Z Z 4h[2n; — 1, 2n,5){cos(2n; — 1)w; cos(2ny)w
ny=1 na=1

+ cos(2n3)wy cos(2ny — 1wy }. (5)

Due to the eightfold symmetry and the half-band nature of the filter, the only independent part of the frequency
response Is a triangular area within the passband, as shown in Figure 5(b). In our design method, N; samples
are placed within this region of the frequency plane. If we take a cross-section of H(w;,ws) along the diagonal
line wy = wy, it looks like a 1-D half-band lowpass response. We approximate the passband of this response by
a 1-D function Hp(w), as used for 1-D half-band lowpass filter design in [7]. The order p of the corresponding
Chebyshev polynomial Tp(z) is (N — 1)/2. The samples are then placed on (N — 1)/2 lines of slope —1, that pass
through the extrema of Hp(w). All samples on a particular line have the same value and are evenly spaced. The
number of samples on successive lines, as we go away from the origin, is given in Table 2, for filter sizes from 7 x 7
to 31 x 31. This range of filter sizes is large enough to cover the needs of most practical applications. The given
distribution of samples has been found to work well for various choices of the band-edges. Note that if there is
only one sample to be placed on a particular contour, it is placed on the w; axis. Finally, the N; samples are used
to solve for the impulse response coefficients in Equation (5).

The proposed design method produces diamond filters of high quality, with low peak ripple and better passband
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Table 2: Distribution of samples for diamond filter design. The
last column shows the number of samples placed on (N — 1)/2
successive contours for designing a filter of size N x N, which has
N, independent coefficients.

L N [ Ni | Number of samples on successive contours ||
7 4 1,2,1
9 6 1,1,2,2
11 9 1,1,2,3,2
13 12 1,1,2,3,3,2
15 16 1,1,2,3,3,4,2
17 20 1,1,2,3,3,4,4,2
19 25 1,1,2,3,3,4,4,4,3
21 30 1,1,2,3,3,3,4,4,5,4
23 36 1,1,2,3,3,3,4,4,5,6,4
25 42 1,1,2,3,3,4,4,4,5,6,6,5
27 49 1,1,2,3,3,4,4,4,5,6,6,6,5
29 56 1,1,2,3,3,4,4,4,5,6,6,6,7,5
31 64 1,1,2,3,3,4,4,4,5,6,6,6,7,7,6

Table 3: Comparative performance for diamond
filter design.

[ Method [ 5% [ & 1]
NDFT 0.0189 | 0.0184
Frequency Transformation || 0.0636 [ 0.0636
Bamberger-Smith 0.1085 | 0.1084
Chen-Vaidyanathan 0.0292 | 0.0281

shape as compared to filters produced by other existing design methods. A comparison between these methods
is presented in the following example. '

Example 2. Consider the design of a diamond filter with the specifications: support size = 9 x 9, w, = 0.36,
ws = 0.64m. Only six of the 81 filter coefficients are independent. The six samples are placed, as depicted on the
contour plot in Fig. 6(a), on lines that follow the diamond shape. The diagonal cross-section of the 2-D frequency
response is represented by a function H,(w), that has four extrema. Samples are placed on four lines passing
through these extrema. The number of samples on these lines are 1, 1,2, 2, respectively, as given in Table 2.

For comparison, we now consider three existing methods for designing diamond filters: (i) frequency transfor-
mation (8], (ii) the method proposed by Bamberger and Smith [10], and (iii) the method proposed by Chen and
Vaidyanathan [11]. We use each of these methods to design a diamond filter with the same specifications as given
in Example 2. Their comparative performance is shown in Table 3. For comparison, the frequency response and
contour plot of the filter designed by Method (ii) are included in Figure 6(b). In Method (i), a lowpass 1-D filter
(of length 9) is transformed to a 2-D diamond filter using a 3 x 3 transformation. This produces contours which
are more circular rather than diamond-shaped. The shape of the contours can be improved by using a higher
order transformation, but this also increases the filter size considerably. In this example, if we use a 5 x 5 trans-
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Figure 6: Frequency response and contour plot for diamond filters of size 9 x 9 designed by (a) NDFT
method, and (b} Bamberger and Smith’s method. The sample locations for the NDFT method are denoted
by “x” on the corresponding contour plot.
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Table 5: PSNR for square filters in rectangular
Table 4: PSNR for diamond filters in downsampling scheme.
quincunx downsampling scheme.

Filter design PSNR (dB)
[ Filter design method | PSNR (dB) || method Without codec | With codec
NDFT 35.12 NDFT 29.68 29.05
Bamberger-Smith 20.70 Separable 24.99 24.83

formation and the same 1-D filter of length 9, then the 2-D filter size becomes 17 x 17. So this is uneconomical.
In Method (ii), a diamond filter is designed by rotating a checkerboard-shaped filter [10] through an angle of 45
degrees. Although the shape of the contours is better than for frequency transformation, the ripple is too large.
Method (iii) produces a diamond filter with a good passband shape as well as low peak ripple, comparable to the
results obtained by our method. From Table 3, we can see that the NDFT method gives the lowest peak ripple
among these methods as well as good contour shapes.

5 APPLICATIONS OF 2-D FILTERS

We now consider applications of 2-D filters as prefiliers prior to downsampling, and as postfilters for interpo-
lating zero-valued samples after upsampling of images. Square-and diamond-shaped filters are used in schemes
for rectangular and quincunx downsampling, respectively.

Example 3. We consider an example application for diamond filters, as prefilters and postfilters in a quincunx
downsampling scheme, shown in Figure 7. Such schemes are used to reduce the data rate for digital transmission
of HDTYV signals. Quincunx downsampling is preferred to orthogonal downsampling because the former does not
limit resolution in the horizontal and vertical directions—the human visual system is more sensitive along these
directions. We compare the performances of two diamond filters in Example 2, designed by the NDFT method
and Bamberger-Smith’s method. The LENA image was used. Figure 9 shows the output images. With the input
image as reference, we compute the peak signal-to-noise ratio (PSNR) [12] for each output image. A comparison
of the PSNR values is given in Table 4. The image produced by using Bamberger-Smith’s diamond filter appears
to have lower brightness and contrast, and thus, has a lower PSNR.

Example 4. In this example, we evaluate the performance of two square filters designed in Example 1 by the
NDFT and separable design methods. These filters are applied in a typical scheme for rectangular downsampling
shown in Figure 8. We used the JPEG codec [13] to observe the effect of coding the smaller, downsampled image.
The overall bit rate with the codec is 0.5 bits/pixel. This includes the 4:1 reduction due to downsampling. For
reference, the input image was also coded using J PEG only (without downsampling) at 0.5 bits/pixel. Although
this image is sharper, it exhibits strong block artifacts, visible in the plain regions. Such artifacts are not present
in the image produced by the downsampling scheme, due to the smoothing effect of the filters. The PSNR values

Input Output
Image Diamond Quincunx Quincunx Diamond | _ Image
filter Downsampling Upsampling filter

Figure 7: A quincunx downsampling scheme with diamond filters as prefilters and postfilters.
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Figure 8: A rectangular downsampling scheme with square filters as prefilters and postfilters.

are given in Table 5. The square filter designed by the NDFT method performs better than the separable square
filter in both cases.

6 CONCLUSION

We have developed a nonuniform frequency sampling technique for designing 2-D FIR filters. This method
utilizes the freedom of locating samples nonuniformly in the frequency plane to produce nonseparable 2-D filters
with good passband shapes and low peak ripples. We have demonstrated the design of square-and diamond-
shaped 2-D filters using the proposed method and compared our results with other existing design methods. Note
that the proposed filter design method is general, and has been successfully used to design other types of 2-D
filters with circular, elliptic, and fan shapes [6]. Earlier nonuniform frequency sampling design methods did not
lay down clear guidelines for the choice of sample values and locations. The results are significant owing to the
lack of a practical, reliable algorithm to design optimal 2-D filters. We have also investigated the performances
of the square-and diamond-shaped filters designed, by applying them as prefilters and postfilters to schemes for
rectangular and quincunx downsampling of images, respectively. Considering the general problem of nonuniform
frequency sampling, we laid down some specific guidelines regarding the choice of the sample values and locations,
which were lacking in earlier techniques. These guidelines can serve as a basis for the design of more complex
2-D filters.
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