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A Unified Approach to Boundary Perception:
Edges, Textures, and Illusory Contours

B. S. Manjunath, Member, IEEE and Rama Chellappa, Fellow, IEEE

Abstract—This paper presents a unified approach to boundary
perception. The model consists of a multistage system which
extracts and groups salient features in the image at different
spatial scales (or frequencies). In the first stage, a Gabor wavelet
decomposition provides a representation of the image which is
orientation selective and has optimal localization properties in
space and frequency. This decomposition is useful in detecting
significant features such as step and line edges at different scales
and orientations in the image. Following the wavelet transfor-
mation, local competitive interactions are introduced which help
in reducing the effects of noise and changes in illumination.
Interscale interactions help in localizing the line ends and corners,
and play a crucial role in boundary perception. The final stage
groups similar features, aiding in boundary completion. This
approach is consistent with some of the known neurophysiological
observations regarding biological visual information processing,
as the different stages can be identified with processing by simple,
complex, and hypercomplex cells in the visual cortex of mammals.
Experimental results are provided to indicate the performance of
this model in detecting boundaries (both real and illusory) in
real and synthetic images.

I. INTRODUCTION

E suggest a simple biologically motivated approach to

detecting image boundaries. Biological vision systems,
especially those of mammals and in particular human’s, are
extremely adept at processing the vast amount of intensity data
projecting from the three-dimensional external world on to
the two-dimensional retina. Recent research in psychophysics
and neurophysiology has begun to shed light on some of the
basic mechanisms that are used in interpreting this information.
The initial stages of this visual processing are very important
in this respect as they detect and group various types of
salient features, and transform the intensity information to a
more suitable representation convenient for further processing.
These stages are responsible for preliminary processing of
stereo, texture, and motion, which further aid in performing
one of the fundamental tasks in image understanding, namely
boundary perception and scene segmentation.
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In the three-dimensional world the objects are separated
from the background (as well as other objects) by depth
discontinuities, which usually manifest as intensity discon-
tinuities in two-dimensional images. Intensity changes also
result from occlusion of objects, sharp changes in surface
orientation, changes in reflectance properties, or illumination.
As these intensity changes are a rich source of information,
detecting them is an important problem both in computer
vision as well as in human vision. Among the most commonly
used edge detection algorithms are the zero crossings of the
Laplacian of the Gaussian [1] and Canny’s edge detector
[2). Textures form another important class of natural scenes
and like intensity edges provide useful information regarding
shape and motion. In vision, many models ranging from
stochastic to structural ones have been used in analyzing
textures. Random field models have been especially successful
in classifying and segmenting scenes consisting of several
natural textures, and parallel relaxation algorithms have been
developed for this purpose [3]. Computational models for
human texture perception have also been extensively studied
[4]1-[7]. Though intensity edges and textures are fundamental
to image understanding, only recently some work has been
done in integrating the detection of these features. In [8], a
composite model is proposed for detecting both the intensity
as well as texture edges. A random field model is proposed for
a general boundary detection scheme in [9], where the problem
of segmentation is formulated as an optimization process and
relaxation algorithms are used to obtain the segmentation.

In addition to intensity edges and textures, human vision
system can perceive object boundaries where none physically
exist, giving rise to what are generally referred to as illusory
contours. This perception is a consequence of the mechanisms
involved in interpreting incomplete information such as those
due to occlusion, which is very common in the real world.
The mechanisms themselves are not well understood and
surprisingly not much attention has been given to this problem
in computer vision research. The problem of understanding
the perception of such contours is complicated because it
is difficult to separate the role of high level (or contextual)
knowledge from the low level mechanisms which actually
complete the boundary. Our discussion in this paper regarding
such contours, hence, is limited to very simple examples such
as the ones induced by line terminations (see Fig. 10).

A schematic diagram of our model is shown in Fig. 1. The
input image is first processed through a bank of orientation
selective bandpass filters at various spatial frequencies. Our
choice of Gabor functions to model these filters has been
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Fig. 1. Schematic diagram of the model. The input image is first processed
through a wavelet transform based on Gabor functions. In the next stage local
competitive interactions are introduced in each of the frequency channels.
Interscale interactions help in localizing line ends. In the final stage outputs
from like oriented cells are grouped to complete boundaries. Edges are located
at the local maxima in Z and texture boundaries correspond to local maxima
in the gradient field of Z.

mainly due to mathematical convenience and their important
theoretical properties concerning localization in space and
frequency. Gabor functions are modulated Gaussians having an
even symmetric real part and an odd symmetric imaginary part.
They have been used in many vision applications such as op-
tical flow computations {10], image coding [11], [12], pattern
recognition [13], and texture analysis [14]. The convolution
of the image with these filters yields a representation which is
localized in space as well as in frequency. The filter parameters
determine the exact nature of this representation. A special
class of this decomposition is the wavelet transformation
where the filter profiles are all self-similar. Wavelets are
families of basis functions obtained through dilations and
translations of a basic waveler and such a decomposition
provides a compact data structure for representing information.
In our case the basic wavelet is a Gabor function and we refer
to this decomposition as the Gabor wavelet transformation (in
[12] the term Gabor pyramid is used instead). A Gabor wavelet
decomposition can be interpreted as extracting salient features
in the image at different scales and orientations and the local
maxima in their energy (see Section IV-A) correspond to the
intensity edges in the image.

Following the wavelet decomposition we introduce local
feature interactions. Three distinct types of interactions are
considered: competition between spatial neighbors in each
orientation channel, competition between orientations at each
spatial location, and interscale interactions. These interactions
are shown in Fig. 1. One extreme form of this type of
interactions is the winner-take-all case where the dominant
feature suppresses all the others, and this has been used in [71,
[15]. Interscale interactions are used in localizing line ends and
play an important role in boundary detection. The second stage

(a) (b) ()

Fig. 2. (a) Step edge (b) bar or line edge (c) ramp.

of interactions groups similar features in the neighborhood.
This cooperative processing helps in the boundary completion
process. The receptive fields of the cells in this stage have the
same orientation selectivity as their inputs and have a larger
receptive field, and the filter profiles are modeled by oriented
Gaussians. From a neurophysiological perspective the Gabor
wavelet decomposition can thus be identified with processing
by simple cells and local interactions with those of complex
and hypercomplex cells.

The final step in the model involves identifying the bound-
aries in the image. Let the output after the grouping stage
be denoted by Z;, where i corresponds to the ith frequency
channel. Features such as intensity discontinuities and illusory
contours can now be located at the local maxima in Z;
and textural boundaries correspond to the local maxima in
the gradient of Z;. Experimental results on several images
are presented to illustrate the performance of this model in
detecting these features.

The organization of this paper is as follows: Section II
discusses some related work on edge detection, preattentive
segmentation and illusory contour perception. Section III gives
a brief introduction to wavelets and Gabor functions. Section
IV describes the different stages in our model which includes
Gabor wavelet transformation to extract features and local
feature interactions for segmentation and grouping. A brief
analysis of the Gabor wavelets in edge detection is also given.
Experimental results in detecting edges and texture boundaries
in a variety of images are provided in Section V.

II. REVIEW OF PREVIOUS WORK

A. Energy Features and Edge Detection

Almost all techniques for edge detection in computer vision
literature have been developed for detecting step edges. Con-
sequently their performance is poor on other edges such as
lines (or bars) and ramps (Fig. 2). As mentioned earlier, the
popular techniques include locating edges at the zero crossings
of the Laplacian of the Gaussian convolved with the image
[1], or at the local maxima of the outputs of convolution
with directionally selective odd-symmetric filters [2]. The
limitations of these methods are well known [16]-[18]. Some
important observations are that feature detection/localization
by any type of linear filtering operation is not adequate, and
in particular zero crossings of the result of applying any linear
operator to the image do not capture all significant features in
the image. Secondly, there is a need for directionally selective
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quadrature filter pairs. The outputs of these filters cannot be
analyzed separately (except when either the step edges alone or
the line edges alone are present). In general no linear filtering
operation will be able to detect and localize composite edges
accurately [17], [18]. As an alternative, Morrone and Burr {17]
suggested the use of energy measures in edge detection. They
show that locations in an image where the Fourier components
have zero phase difference constitute perceptually significant
features (such as the different types of edges mentioned
above), and these could be detected at the local maxima in
an appropriate energy measure. This energy model for edge
detection is also used to explain perceptions of Mach bands!
and several other visual illusions [19]. An analysis on the
performance of energy features in composite edge detection is
given in [20], where the filters are derived from the Gaussian
function and its derivatives. Note that energy is one of the
measures that can be used in combining the outputs of the
even and odd symmetric filters and a discussion of other means
of combining the information and their relative merits can be
found in [18].

B. Preattentive Segmentation

Preattentive segmentation refers to the ability of humans
to perceive textures without any sustained attention. Among
the basic primitives that strongly influence the perception of
textural scenes are color, brightness, orientation, and size [4].
In addition, distribution of features also play an important
role. For example, Fig. 9(a) shows randomly oriented L and
+ texture. The two regions are easily discriminable, although
there is no statistical difference in either orientation or scale
of the micropatterns. What they differ is in the distribution of
higher order features such as corners and intersections. Central
to solving this problem are the issues of what features need to
be computed and what kind of processing of these features is
required for texture discrimination.

Some of the early work in this field can be attributed to
Julesz [21] for his theory of textons as basic textural elements.
Spatial filtering approach has been used by many researchers
for detecting texture boundaries not clearly explained by the
texton theory [5]. Recently an elegant computational model
for preattentive texture discrimination is proposed by Malik
and Perona [7]. Their three stage model involves convolution
with even symmetric filters followed by half wave rectification,
local inhibition, and texture boundary detection using odd
symmetric filters. They present convincing arguments for the
necessity of each of these stages, and provide quantitative mea-
sures regarding the performance of their algorithm to establish
consistency between their results and human perception of
textures.

C. Boundary Contour System

We begin with a brief review of some terminology. For
simplicity, the various types of cells in the early processing
stages in the visual cortex are grouped into three broad

!Mach bands are bright and dark lines that are perceived close to the
transition regions of a blurred edge.
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functional classes, simple, complex, and hypercomplex cells
[22). Simple cell receptive fields are sensitive to bars (lines)
and step edges and their orientations, and can be modeled
by even-symmetric (line detectors) and odd-symmetric (step
edge detectors) filters. In addition the cells are also sensitive
to the direction of contrast. Complex cells respond to more
complex patterns such as textures, and unlike simple cells,
do not contain any phase information, are less sensitive to
precise location but are tuned to respond to different specific
orientations and direction of movement. These cells are usually
modeled by summing the outputs of a group of simple cells of
similar orientations. Hypercomplex cells in the cortex exhibit
end-inhibition, in that they respond to small lines and edges,
and their response decreases as the length increases [22]. These
cells appear to play an important role in localizing line-ends
and texture boundaries, and both simple and complex cells
with this end-stopping behavior are known to exist. A related
concept, the end-cut mechanism, is introduced by Grossberg
and Mingolla [15] where it is hypothesized that all perceived
line ends are illusory and activation of orthogonal orientations
at the end of lines are due to local competitive interactions in
the early stages of visual processing.

Grossberg and Mingolla’s Boundary Contour System (BCS)
[15] is one of the first attempts to model the early processing
stages in the visual cortex. The BCS processes the intensity
data and performs preattentive segmentation of the scene. The
first stage of BCS consists of oriented contrast filters at various
scales and orientations and extracts the contrast information
from the scene. The outputs of the filters are then fed to a
two stage competitive network whose main goal is to generate
end-cuts. Subsequent long range cooperative interactions and
a positive feedback to the competitive stage help in boundary
completion. The boundary detection takes place independently
in different spatial channels. A detailed description of this
model and its performance in texture grouping and in detecting
illusory contours such as the Kanisza’s square can be found
in [15].

The BCS model provides a very general framework in which
many of the current models for detecting boundaries can be
included, though the details might differ. The model itself
as detailed in [15] is quite complicated and computationally
expensive to simulate on any real image examples. The BCS
model does not account for even symmetric mechanisms which
are useful in detecting lines and in texture discrimination [7].
Another problem with the BCS model is its end-inhibition
mechanism, described as follows.

In the BCS model it is hypothesized that all line ends are
illusory. In order to detect line ends, a two stage competi-
tive network is proposed. Lateral inhibition between similar
orientations in neighboring positions and between different
orientations at the same spatial location result in the generation
of end-cuts. At the line ends, the simple and complex cell
outputs are not strong and compensatory mechanisms are
required for detecting these line ends. However, it is not clear
if these competitive interactions by themselves are sufficient
for end-cut generation, and if not, what additional mechanisms
are needed. Further, as noted in [23], the two stage model
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hypothesizes that all cells involved in boundary completion
exhibit end-inhibition, which is a debatable issue. We propose
an alternate model for this using scale interactions in Section
IV-C, and demonstrate the usefulness of end-inhibition in
texture discrimination and illusory contour perception.

III. MULTISCALE REPRESENTATION AND WAVELETS

The multiscale approach provides an elegant hierarchical
framework for image analysis. The features of interest in an
image are generally present in various sizes. An efficient way
to analyze such features is to have a multiscale decomposition
of the image. Laplacian pyramid [24] is one of the early
schemes developed for such applications, though initially it
was proposed for compact image coding applications. Mul-
tiscale representation also helps in parallel processing as the
different channels can now be analyzed independently (at least
initially). Multiscale approach has also been used in robust
detection of step edges [1] and Witkin [25] describes how
information at different levels can be related. The presence of
parallel visual pathways consisting of cells with varying recep-
tive field sizes and orientations are indicative of a multiscale
feature extraction in biological systems as well. However, the
role of interactions that exist between different scales in these
systems is not well understood. In Section IV-C we suggest
a simple model which uses such interactions in detecting line
ends and corners, and its possible biological significance.

There has been a growing interest in the use of wavelets
for multiscale representation of the image data [26]. Wavelets
are families of basis functions generated by dilations and
translations of a basic wavelet. The wavelet transform is thus
a decomposition of the function (image intensity) in terms
of these basis functions. One of the objectives of such a
transformation is to provide a simultaneous description of the
data in frequency and spatial domains.

Let us first consider the one-dimensional case. Let g(z) bea
wavelet, z € R (R denotes the set of real numbers). Then the
family of basis functions corresponding to g{x) can be gener-
ated by translations (g(z — s)) and dilations ( g(azx)), where
s and « are the translation and scale parameters, respectively.
Let this family be denoted by (g(a(z - 5))), (a, s) € R2. The
wavelet transform of a function f(z) (assuming that f(z) is
square integrable) is defined by

Wias) = / " f@)e (alz - 8))dz )

where the (*) indicates complex conjugate. Wavelets can be
discretized by a suitable sampling of the parameters « and
s. For example we can write the scale parameter as o’ where
J € Z, Z being the set of integers. This results in a class
of discrete wavelets represented by g(a’z — n), (j,n) € Z2.
A function f(x) can then be expanded in terms of the basis
functions g(-) as

f@) =Y cugleds - ).
1)

The Laplacian pyramid [24] mentioned earlier is a wavelet

decomposition based on the Difference of Gaussian (DOG)
wavelet and has found many applications in image processing
[27]. Orthogonal wavelets are a special family of discrete
wavelets corresponding to o = 2, where the basis functions
are mutually orthogonal, i.e., [ g(z)g(2’z — k)dz = 0 for
((4, k) € Z*%). A discussion on orthogonal wavelets and their
applications to image processing can be found in [26]. An
important feature of orthogonal wavelets is that the informa-
tion at different resolutions is uncorrelated. Orthogonality, in
general, is a strong condition, and is difficult to achieve if
arbitrary orientation selectivity is desired. Further, it is harder
to give a frequency domain interpretation of the features so
extracted by the decomposition. In the following we consider a
transformation based on nonorthogonal Gabor basis functions
and discuss its usefulness in image processing applications.

A. Gabor Functions and Wavelets

Gabor functions are Gaussians modulated by complex sinu-
soids. In its general form, the two-dimensional Gabor function
and its Fourier transform can be written as [28]

9(2, y:uo, vo) = exp( ~ (2% /202 + 4 /207 2
+ 2mifuox + voy))

G(u,v) = exp (=27 (02 (u — ug)? + a'g(v - 0)?))

3

o, and oy define the widths of the Gaussian in the spatial
domain and (ug,vq) is the frequency of the complex sinu-
soid. A well known property of these functions is that they
achieve the minimum possible joint resolution in space and
frequency domains [28]. A signal such as a delta function
which is concentrated at a point in space has no frequency
localization. Likewise, a function concentrated in frequency
has no spatial localization. A good measure of localization in
the two domains is the product of the bandwidths in space
and frequency. The effective bandwidth of a signal is defined
as the square root of the variance of the energy of the signal.
Let 6z and 6y be the effective widths of the signal in the
horizontal and vertical directions in space respectively and
du, v denote the corresponding widths in frequency. Then
the following inequalities (also called the uncertainty relations)
hold: a) ézéu > 1/4xr and b) §ydv > 1/4x. Gabor family of
functions are unique in attaining the minimum possible value
of this joint uncertainty. This localization property has received
considerable attention among vision researchers and has led to
many applications [11]-[14].

The Gabor functions form a complete but nonorthogonal
basis set and any given function f(z,y) can be expanded in
terms of these basis functions. Such an expansion provides a
localized frequency description and has been used in image
compression {11] and texture analysis [14]. Local frequency
analysis, however, is not suitable for feature representation as
it requires a fixed window width in space and consequently the
frequency bandwidth is constant on a linear scale. However,
in order to optimally detect and localize features at various
scales, filters with varying support rather than a fixed one
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are required. This would suggest a transformation similar to
wavelet decomposition rather than a local Fourier transform.
We now consider such a wavelet transform where the basic
wavelet is a Gabor function of the form

ga(@,y,0) = e~ Ve yDine’ @)

2’ =z cosf + ysind

gy =—xsinf + ycosf

where ) is the spatial aspect ratio and 6 is the preferred
orientation. To simplify the notation, we drop the subscript A
and unless otherwise stated assume that A = 1. For practical
applications, discretization of the parameters is necessary.
The discretized parameters must cover the entire frequency
spectrum of interest. Let the orientation range [0, 7] be dis-
cretized into N intervals and the scale parameter o be sampled
exponentially as o’. This results in the wavelet family

(g(a](z —To,Y — y0)79k)),04 € Rs] = {01 -1, -2, } (5)

where 0, =
defined by

kmx/N. The Gabor wavelet transform is then

Wy(o.9,6) = [ Fo1,m)a" (@ @1 = .00 = ), B)dad:
6
At each resolution in the representation hierarchy these
wavelets localize the information content in both frequency
and spatial domains simultaneously. Any desired orientation
selectivity can be obtained by controlling the orientation
parameter f. The Gabor wavelet decomposition also has an im-
portant physical interpretation of the type of features detected
and this is further discussed in Section IV-A.

IV. STAGES IN BOUNDARY DETECTION

We now discuss the various processing stages in our model
shown in Fig. 1. We begin with a brief analysis of the Gabor
wavelets as edge detectors.

A. Line and Edge Detectors

The wavelet decomposition using Gabor functions has an
important physical interpretation. The complex Gabor func-
tion has an even-symmetric (cosine) real part and an odd-
symmetric (sine) imaginary part, which respond maximally
to line edges (or bars) and step edges (of appropriate sizes
and orientations), respectively, in the image. This wavelet
decomposition can be viewed as obtaining a primal sketch
of the raw intensity data by detecting perceptually significant
features at different scales. These features can be detected at
the local maxima in their energy [17]. If R; and I; represent the
response from the even and odd symmetric feature detectors
at a position 4, then the local energy F; at ¢ is given by
E, = /R?+I2

1) Performance Analysis: In the following we assume one-
dimensional functions for simplicity and give an analysis of
the signal-to-noise ratio (SNR) and localization properties
analogous to the one given in [2]. The SNR is defined as the
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ratio of the signal power output to the noise power at the true
location of the edge. Localization (L) gives a measure of the
performance of the detector in accurately localizing the edge in
the presence of noise and is defined as the inverse of the square
root of the variance in this deviation. In [2], the product of
SNR and localization is maximized in deriving an appropriate
filter for detecting step edges. Notice that in general these two
criteria contradict, as better localization implies poorer SNR.

For one-dimensional line and step edges it is shown in
Appendix A that

SNR(step) = 0.2774/+/a,L(step) =~ 1.93/a  (7)

SNR(line) = 0.7511y/a, L(line) =~ 0.33av/cx. (®)

In general (except for the special case of line edge), the SNR
improves with increasing filter width whereas localization
deteriorates. The SNR (for step edges) is poor compared to
the first derivative of Gaussian used in [2], but its overall
performance in the presence of composite edges is better. Note
that both the Marr—Hildreth [1] and Canny [2] operators will
fail to detect line edges at their true locations. In fact it is easy
to see that at the true locations of line edges the SNR is zero
for these operators.

B. Local Spatial Interactions

Following feature extraction using Gabor wavelets, we now
consider local competitive and cooperative processing of these
features. Competitive interactions help in noise suppression,
and in reducing the effects of illumination.

These interactions are modeled by nonlinear lateral in-
hibition between features. Two types of such interactions
are considered. The first type includes competition between
different spatial neighbors within each orientation and scale.
Fig. 1 shows the various interactions in two frequency channels
in the system. For simplicity the transfer function g(z) of all
feature detectors is assumed to be the same. The following
notation is used in explaining the interactions: The output
of a cell at position s = (z,y) in the ith spatial frequency
channel with a preferred orientation 6 is denoted by Y;(s,9),
with I;(s, ) being the excitatory input to that cell from the
previous processing stage. For example I;(s,#) could be the
energy in the filter output corresponding to feature (s,6) in
the ith frequency channel. For convenience we will drop the
subscript 7 indicating the frequency channel whenever there is
no ambiguity. Let N, be the local spatial neighborhood of s.
The competitive dynamics is represented by:

X(5,0) = —a,6X(s,0) + I(s,8)
= N b ¥(5,0) = D copY(s,8) O

s'EN, 6'#6

Y(s,0) = g(X(s,6)) (10)
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where (a,b,c) are positive constants. In our experiments
we have used a sigmoid nonlinearity of the form g(z) =
1/(1 4 exp(—@x)). The dynamics of (9) can be visualized as
follows: At each location within a single frequency channel,
the corresponding cell receives an excitatory input from a sim-
ilarly oriented feature detector (of the same spatial frequency).
Further it also receives inhibitory signals from the neighboring
cells within the same channel. We assume that all these
interactions are symmetric (bs o = byrs and cg o = cgr g).
The competitive dynamics of the above system can be shown
to be stable. The Lyapunov function for the system [29], [30]
can be written as

E(Y)= %st,s'Y(s,ﬁ)Y(s',ﬁ)

1 ,
+ 5 929; co0Y (5,0)Y(s.6)

an

Y (s,0)
+ Z/O (05097 (y) = I(s.6))dy.

s,0

Under the assumptions that the interactive synapses are sym-
metric and that g(-) is monotone nondecreasing, the time
derivative of E is negative and the system represented by
(9) always converges.

The specific form of the dynamics such as the one in (9)
is not very critical, as long as there is some form of local
inhibition to suppress weak responses. For example, one can
use the inhibition scheme proposed by Malik and Perona in
[7], or the one suggested in Grossberg and Mingolla’s BCS
[15]. In [15] the orientation competition is separated from the
local spatial competition between neighbors. An advantage of
our method as well as that of BCS is that since the dynamics
is expressed in terms of differential equations, it is amenable
for analog implementations. One of the important differences
between our model and that of BCS is in the generation of
end-inhibition, discussed as follows.

C. Local Scale Interactions

We now suggest a simple mechanism to model the end-
inhibition property of hypercomplex cells. For this the hy-
percomplex cell receptive field must have inhibitory end
zones along the preferred orientation. Such a profile can
be generated either by modifying the profile of the simple
cell itself or through interscale interactions, discussed below.
The fact that both simple and complex cells often exhibit
this end-stopping behavior further suggests that both these
mechanisms are utilized in the visual cortex. A schematic
diagram of the model which utilizes interscale interactions
is shown in Fig. 3. If Q;;(x,y,6) denotes the output of the
cell C at position (z,y) receiving inputs from two frequency
channels i and j (&' > &f) with preferred orientation 6,
then

Ql](xye)zg(HVV't(mye)fny](Tye)H) (12)

where v = a~2(=9) is the normalizing factor. Fig. 4 shows
a typical receptive field profile of such an end-inhibited

Grouping
Mechanism

c Cells responsive to
< short line segments,
line-ends and corners

two different
frequency
channels

() inhibitory synapse

@ cxcitatory synapse

Fig. 3. Interscale interactions: Cells with larger receptive profiles (B) inhibit
those with shorter receptive fields (C), which also receive excitatory inputs
from similar sized cells (A). Due to these interactions cell C exhibits
end-inhibition, and in turn cooperates with orthogonal orientations in grouping
the edges.

cell, corresponding to an even symmetric receptive field, and
without taking into account the sigmoid nonlinearity g(-).
The parameter values used are o = /2,7 = 2,5 = =5.
In Fig. 3, unit C represents the hypercomplex cell, which
receives an excitatory input from unit A and an inhibitory
input from unit B. All three units A, B, and C have the
same orientation preference and unit B has a larger receptive
field profile compared to A. Unit C thus responds to only
line ends and short line segments and its response decreases
as the output of B increases for larger line segments. The
logic behind this is simple. At line ends, cells with shorter
receptive fields will have a stronger response than those with
larger fields, and consequently will be able to excite the
hypercomplex cells. At other points along the line, both small
and large receptive field cells are equally excited and in the
process the response of the hypercomplex cells is inhibited. It
appears that such scale interactions to generate end inhibition
do exist in the visual cortex. Bolz and Gilbert [31] observe
that connections between layers 6 and 4 in the cat striate
cortex play a role in generating end inhibition. The cells in
layer 4 are of hypercomplex type exhibiting end inhibition.
Layer 6 cells have large receptive fields and require long
bars (or lines) to activate them. In addition, cells in both
layers show orientation selectivity. Inactivating layer 6 cells
resulted in the loss of end-inhibition property of layer 4
cells, while preserving other properties such as orientation
selectivity. Thus, in the absence of layer 6 activity, cells in
layer 4 could be excited by short bars and their response
did not decrease as the bar lengths increased, suggesting
that layer 6 cells have inhibitory effect on the cells of layer
4.

The model suggested in Fig. 3 is one of the ways of
generating end-inhibition (and probably the most simple one)
through scale interactions. The original idea of using such
interactions dates back to the early work of Hubel and Wiesel
[32]. A similar model is also suggested in [33], where the
role of end-inhibition in detecting curvature is also discussed.
It has generally been suggested that hypercomplex cells help
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©)

Fig. 4. Even symmetric cell’s receptive fields (a) for scale at =1 /2, (b)
for o' =1/ 2v/2, and (c) Profile generated due to interactions between the
above two fields.

in localizing texture boundaries. We provide here for the
first time a demonstration of their usefulness in detecting
texture boundaries (see example 4 in Section V). von der
Heydt and Peterhans [23], [34] were the first to clearly
demonstrate that these cells play a major role in the per-
ception of illusory contours, and some of their observations
are used in our model for boundary detection. Before getting
into the details of their role in the perception of illusory
contours, it would be interesting to consider again the type
of features that these cells represent. The inhibitory end-
zones of these cells help in making them respond to local
curvature changes in the input intensity data (see also [33]).
That these cells respond to line-ends is nothing but one
extreme example. These cells thus form the first stage in
extracting meaningful shape information. Appropriate group-
ing of these cells help in detecting texture boundaries, shape
recognition or perception of illusory contours, depending on
the context.
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D. Grouping and Boundary Detection

The final stage involves grouping similar orientations. The
grouping process receives inputs both from the competitive
stage (9) and from the end-detectors (hypercomplex cells)
described in Section IV-C. Note that the orientation of the
activating end-detector is orthogonal to the actual orientation
of the grouping process. This incorporates the observation
made in [23], [34] that hypercomplex cells are responsible
for detecting illusory contours. Abrupt line endings signal an
occluding boundary almost orthogonal to the edge orientation,
and this is represented by these end-inhibited cells providing
input to the grouping process nearly orthogonal in their
orientation preference. If Z;(s,6) represents the output of this
process, then

Zi(s,6) = g(/ di(s —s',8)(Yi(s',0) + Qij(s',ﬁ')ds')
(13)
d;(s,0) represents the receptive field of Z;(s,) and in our
experiments we have used

d(s = (z,y),0) = exp(—(202) " [\ (z cos § + ysin §)?
+ (—zsinf + ycos §)?]) (14)

where 6 is the preferred orientation, §’ is the correspond-
ing orthogonal direction, and A is the aspect ratio of the
Gaussian. The Z cells thus integrate the information from
similar oriented cells within each frequency channel and from
hypercomplex cells of appropriate orientation, and thus help in
grouping the features and in boundary completion. Since the
various frequency channels are sampled, the effective standard
deviation of the Gaussian is o/a’, where o' is the scale
parameter for channel :.

To summarize, this approach consists of three distinct steps
a) feature detection using Gabor wavelets, b) local interactions
between features, and c) scale interactions to generate end-
inhibition. The output Z(-) from different frequency channels
is now used to detect edges and texture boundaries.

1) Intensity edges and illusory contours: In Section IV-A
the usefulness of energy detectors in localizing image features
was discussed. In detecting the intensity edges in the image
we used the energy features as input to the competitive stage.
Thus the input to a cell in the competitive stage at a position
(z,y) in the ith frequency channel is given by

where W (-) is as in (6), and = {0,-1,-2,-3,...} and § =
kr/N,k = {0,1,...,N — 1}, N is the number of discrete
orientations. The edges are located at the local maxima of the
Z(-) field in (13). These energy features are also used in our
experiments to detect the line-ends through scale interactions.
The perceptual boundaries for the examples in Fig. 10 are
marked at the local maxima of the Z(-) field.

Texture boundaries: The information extracted by the
wavelets can be used in several ways to detect textures,
though the results reported here are obtained using the energy
measure. Texture boundaries are located at the local maxima
of the gradient of the Z field. Scale interactions also play an
important role in texture boundary detection as is evident from
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(c) (d)

Fig. 5. (a) and (c) show two 256 x256 images and the corresponding edges
detected are shown in (b) and (d). In (b) the edges are from two channels
a' = {1/v2.1/2} and in (d) o' = 1/\/2. For both examples ¢ = 1. (Fig.
5(c) is taken from a University of Massachusetts image sequence.)

the example in Fig. 9 where the two regions differ only in the
distribution of intersections and corners.

V. EXPERIMENTAL RESULTS

The performance of the model is illustrated on several
images. The following parameter values were used in our
experiments described here: 3 = 4.0 in the transfer function
g(+). The strengths of the inhibitory synapses in (9) are
bs.s = 1/||Ns|| and ¢ = 1/N, where ||N,|| is the cardinality
of the neighborhood set and N is the number of discrete
orientations used. Unless otherwise stated, N = 4 and N,
consists of the four nearest neighbors of s. The aspect ratio
of the Gaussians in both the Gabor wavelets (4) and in the
receptive field of Z cells (14) is set to 0.5. If more than one
channel is mentioned then the result shown is a superposition
of the boundaries detected in the individual channels. Since the
various frequency channels are sampled, in order to bring them
to the original image size the outputs of the grouping stage
are first convolved with appropriate size Gaussian smoothing
filters, and then the boundaries are detected.

Regarding the implementation of the dynamics of competi-
tion, we used a simple gradient descent on the corresponding
energy function (11) instead of solving the set of differential
equations. The equilibrium points in general for these two
methods will be different, but gradient descent on E in (11)
will be much faster (typically it takes less than 50 iterations
to converge on a 256 x 256 image).

Example 1 (intensity edges): Fig. 5 shows two examples
of edge detection using the energy measures. Fig. 5(a) and (c)

show the original 256 x 256 images. The edges shown in Fig.
5(b) are detected in channels o = {1/v/2,1/2} and in (d)
they correspond to the channel o = 1/4/2. In both cases o
is set to 1.

Example 2 (natural textures): Fig. 6 shows the boundaries
detected in an image consisting of four textures, grass, water,
wood, and raffia. The wood texture is present at two regions
at different orientations. The parameter values used are o =
{1/2,1/2v/2,1/4} and ¢ = 5.0.

Example 3 (LT-T texture): Fig. 7 shows the results on
a synthetic texture which is often used in psychophysical
experiments. The boundary between L and Ts is not easily
perceived where as that between straight and oriented Ts
clearly stands out. This boundary can be easily detected in
almost all frequency channels, and the parameters values used
in this example are the same as in the previous example.

Example 4: Fig. 8(a) shows a texture consisting of mi-
cropatterns which differ in their sign. This particular texture
is generated by adding to a constant intensity background
(intensity value 120 on a 0-255 scale) patterns formed of
bright (intensity 200) and dark (intensity 40) regions. The two
regions in such textures can not be distinguished using energy
measures. This was one of the motivations for using halfwave
rectification in [7], and is based on the assumption that the
filters are exactly zero mean and no nonlinear transformations
of the intensity prior to filtering. The cosine component
of the Gabor wavelet filters used in here is not exactly
zero mean (though very close to zero). The nonlinearities
following filtering enhance the differences at the boundaries
as is illustrated by the boundary detected (Fig. 8(b)). Slight
bias in the patterns toward one of the grey levels as in Fig.
8(c) (which has a background level of 150, brighter region at
200 and the darker region at 80) significantly influences the
strength of the boundary (Fig. 8(d)).

Example 5 (L-Plus texture): This example illustrates the
importance of end-inhibition in texture boundary detection.
Fig. 9 shows another of commonly used texture consisting of
randomly oriented Ls and +s. Unlike the previous example,
orientation information can not be used for segmentation. The
line segments forming Ls and +s have the same length (7
pixels). The two regions differ in the distribution of corners,
line-ends, and intersections. As we discussed in Section IV-
C, scale interactions play an important role in detecting these
features. None of the scales by themselves contain enough
information to segment the two regions, but using these
interscale interactions the boundary between the Ls and +s
can be detected (Fig. 9(b)). The boundary shown is for the
case of using the interactions between scales corresponding to
{1/2,1/4} with a o = 16. In this context it is interesting to
note the observation in [5] that the L+ texture can be discrimi-
nated by simple linear filtering followed by rectification, where
they used size tuned center-surround filters. These filters are
the simplest case of filters having inhibitory end-zones and as
such respond to blobs of certain size. Hence in a sense, they are
sensitive to the distribution of line ends and corners. Filters
which have such inhibitory end zones include Laplacian of
the Gaussians and the DOG’s, and have been used in texture
discrimination of L+ patterns in [7], [35].
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Fig. 6. (a) Image consisting of four natural textures, water, wood (in two
regions at different orientations), raffia and grass. (b) Texture boundary
detected using the scales o = {1/2,1/2v/2,1/4} and ¢ = 5 pixels. (c),
(d), and (e) Show the texture boundaries detected in each of these individual
frequency channels separately. The result in (b) is obtained by superimposing
the boundaries in (c)—(e), filtering using a Gaussian filter (to smoothly combine
the boundaries) and thresholding. The filter used has a standard deviation of
4 pixels.

Example 6 (Illusory contours): The usefulness of scale
interactions in detecting line endings and their subsequent
grouping to detect illusory contours is illustrated in Fig. 10.
For the line (Fig. 10(d)) and sine wave (Fig. 10(e)) contours
the results shown are for o = {1/2,1/4}, o = 8. For the
circle (Fig. 10(f)) o' = {1/v/2,1/2} and ¢ = 2.

VI. CONCLUSIONS

In this paper we have developed a common framework
for detecting perceptually significant features such as edges,
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Fig. 7. Texture consisting of three regions, L, T and tilted-Ts. The boundary
between L and T can not be easily detected. However the orientation difference
between the two T regions is enough to discriminate between the two regions
in almost all frequency channels. The boundary shown in (b) corresponds to
the combined output from channels of = {1/2,1/2v/2,1/4}and o = 5
pixels.

textures, and illusory contours. We have suggested a sim-
ple model based on detecting oriented features at different
spatial scales and on local interactions between features.
Interaction between frequency channels is used in generating
end-inhibition which plays an important role in boundary
perception. Several examples are provided to illustrate the
performance of this approach in detecting different types of
boundaries. We are also considering possible extensions of this
model to include segmentation based on shading information
in the image.

APPENDIX A

Here we derive the SNR and the localization error for the
two cases (step and line edges) in one-dimensional. Let the
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Fig. 8. (a) Primitives in this texture are zero mean (i.e., mean equals
the background intensity level) patterns, with the intensity levels of the
background, brighter and darker regions, respectively at 120, 200, and 40
(on a 0-255 scale), (b) boundary detected using o' = 1/2v/2. ¢ = 5 pixels.
Even a slight offset in the mean of the patterns can result insignificant increase
in the strength of the boundary. In (c) the intensity levels are adjusted to be
nonzero mean (at 150, 80, and 200, respectively for the background, darker and
brighter regions, a net difference of 10 intensity levels between the background
and the patterns) and the boundary detected is shown in (d).

true location of the edge e(x) be at the origin z = 0 and due
to the presence of noise n(x) the observed maximum in the
energy E(z) is at xo. Let y(z) = f(z)+n(z) be the response
of the complex filter g(z) due to the noisy input e(z) + n(z),
where

9(z) = gr(x) + 1g:(x) = exp(—a’z?/2 + wrazx)

and f(x) and n(z) denote the signal and noise terms respec-
tively at the output. The output noise energy for a white noise
input is

/‘30 g(z)g*(z)dx = /oc exp(—a?z?)dr = Va/a. (16)

If the edge feature e(z) is centered at the origin, the SNR at
the true location of the edge is given by the ratio of the signal
power to the noise power at the origin:

1/(0)]

VT a.
The edges are located at the local maxima of the energy
E(z) = y(z)y*(z) and E'(zq) = 0. Further, assuming that

SNR an
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Fig. 9. Texture consisting of randomly oriented L and +. The line segments
of the primitives are 7 pixels wide and the image is 256 x256 pixels. The
two regions differ in the distribution of line-ends, intersections and corners.
The boundary shown in (b) (superimposed on the original texture) is detected
using the output of the scale interactions with o = 16. The scales used in this
example are a* = {1/2.1/4}, and (c) and (d) show the result of convolution
and (e) shows the output after the interactions.

the noise power is small compared to the signal power, we
can approximate the energy by neglecting the terms containing
n2(z), E(z) ~ [1*(2) + 2(f,(2)n,(x) + fi(z)ni(z)), where
fr(z) = gr *x e(z), fi(z) = g; * e(z). Similarly n, and n;
denote the real and complex parts of the output noise signal.
Now,

E'zo) = (££7) (x0) + 2(fonr + fini)/ (o) = 0.

Expanding the first term in a Taylor’s series around the origin,

(18)

(f£7) (o) = (££7)(0) + zo(f£*)"(0) + O(x5).  (19)
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Fig. 10. Some examples of illusory contours formed by line terminations
((a), (b), and (c)) and the detected contours (d) and (¢) correspond to the
interaction between scales o' = {1/2,1/4} and ¢ = 8. In (f) the scales are
o' = {1/v2,1/2} and 0 = 2.

Noting that (ff*)'(0) = 0 and substituting (19) in (18) and
ignoring higher order terms, we get

zo(f1*)"(0) + 2(frny + fini)' (zo) = 0.

As in [2], we use the inverse of the variance of zg, (£(x3)) !
as a measure of localization, and from (20) we get,

(20

(£ )" ()]

b e 7 Find GO,

€2y

We now evaluate the SNR and localization for the cases of
line and step edges. For a line edge, e(z) = §(z)

SNR(line) = |f(0)|/1/V7/a =0.7551va  (22)
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E[(frmr + fini) (z0))* = E[(frnr) (z0)]?
~ f2(z0)€[(n.) (z0)]%.

Further, it can be shown that

El(nr) (z0)]* = E[(n:) (w0)]* = 9.19a

fr(@o) = (gr * 6)(wo) = exp(—a’x2/2) cos(mazy).
To evaluate the numerator in (21),

(P =11+ ) + 21 (F) (23
and for the line edge, f(z) = é(z) * g(z) = g(z), f(0) =
g'(0) = e and f(0) = ¢"(0) = —a?(1 + =2). Substituting
these values in (23) (f£*)"(0) = 2¢2, and finally from (21)

202

2 exp(—a?z3/2) cos(mazo)v9.19
~ 0.33a+/a.

L(line) =

24

For the step edge we have e(z) = [*_ §(z')dz’, f(z)
I g(a)de!, |F(0)] = | [° g(a')da'| ~ 0.3694/a, and

SNRstep) = |£(0)|/\/V7/a ~0.2774/v/a.  (25)
Further we have f'(z) = g(z), f”(z) = ¢'(z) and from
(23)

0
9" (z)dz

wrwm=ﬂm/
0

+@W@/'mmw+@@f@

— 00

=4.32

and

E[(fonr + fing) (z0)]? = E[(fini) (z0)]?
~ fH(z0)€](n:) (x0)]?
~ 9.190(0.3693/a)?.

Substituting all these values in (21)

L(step) = 1.93V/a. (26)
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