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Abstract

This paper presents a unified approach to boundary
perception. The model consists of a hierarchical sys-
tem which extracts and groups salient features in the
image at different spatial scales. In the first stage a
Gabor wavelet decomposition provides a representation
of the tmage which is orientation selective and has op-
timal localization properties, and provides a good model
for early feature detection. Following this, local com-
petitive interactions are introduced which help in re-
ducing the effects of noise and illumination variations.
Scale interactions help in localizing line ends and cor-
ners, and play an important role in boundary percep-
tion. The final stage groups similar features aiding in
boundary completion. Ezperimental results on detect-
ing edges, tezture boundaries and illusory contours are
provided.

1 Introduction

In this paper we suggest a simple biologically motivat-
ed approach for detecting image boundaries. Biolog-
ical vision systems, especially those of mammals and
in particular human’s, are extremely adept at process-
ing the vast amount of intensity data projecting from
the 3-D external world on to the 2-D retina. Intensi-
ty discontinuities in 2-D images are a result of phys-
ical phenomena such as occlusion in the 3-D world,
depth discontinuities, changes in surface orientation,
reflectance properties or illumination. In computer vi-
sion most edge detection algorithms have been devel-
oped for finding step edges [1, 2], and consequently
their performance is poor on other edges such as lines
(or bars) and ramps. In general no linear filtering op-
eration will be able to detect and localize composite
edges accurately [3, 4, 5]. Textures form another im-
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portant class of natural scenes, and like intensity edges
provide useful information regarding shape and mo-
tion. In computational vision, many models ranging
from stochastic to structural ones have been used in
analyzing textures. Computational models for human
texture perception have also been extensively studied
[6, 7). In addition to intensity edges and textures, we
also consider the detection of subjective contours. The
perception of these contours is a consequence of mech-
anisms involved in interpreting incomplete and noisy
information. We restrict here to simple cases of such
contours induced by line ends, which can be recovered
without using high level knowledge or context infor-
mation.

We discuss here a unified framework in which all
these different types of boundaries can be detected.
The basic steps include (a) feature extraction using
oriented band pass filters at various scales (modeled
by Gabor wavelet decomposition), (b) local feature in-
teractions consisting of competition between spatial
neighbors in each frequency channel,competition be-
tween orientations at each spatial location and scale
interactions to generate end-inhibition, and (c¢) Group-
ing of features and locating boundaries.

2 Multiscale representation
and Gabor Wavelets

The multiscale approach provides an elegant hierar-
chical framework for image analysis. There has been
a growing interest in the use of wavelets for multi-
scale representation of the image data [8]. Wavelets
are families of basis functions generated by dilations
and translations of a basic wavelet. The wavelet trans-
form is thus a decomposition of the function in terms
of these basis functions. One of the objectives of such
a transformation is to provide a simultaneous descrip-
tion of data in frequency and spatial domains. The



basic wavelet used in our work is a Gabor function
and we refer to the resulting transform as the Gabor
wavelet transform.

Gabor functions are Gaussians modulated by com-
plex sinusoids. In its general form, the 2-D Gabor
function can be written as [9],
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o, and oy define the widths of the Gaussian in the spa-
tial domain and (uo, vo) is the frequency of the complex
sinusoid. A well known property of these functions is
that they achieve the minimum possible joint resolu-
tion in space and frequency domains [9]. Gabor func-
tions form a complete but non-orthogonal basis set and
any given function f(z,y) can be expanded in terms
of these basis functions. Such an expansion provides
a localized frequency description and has been used in
texture analysis [10]. Local frequency analysis of this
nature, however, is not suitable for feature representa-
tion as it requires a fixed window width in space and
consequently the frequency bandwidth is constant on
a linear scale. In order to optimally detect and localize
features at various scales, filters with varying support
rather than a fixed one are required. This would sug-
gest a transformation similar to wavelet decomposition
rather than a local Fourier transform. We now consid-
er such a wavelet transform where the basic wavelet is
a Gabor function of the form
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(2)
where A is the spatial aspect ratio, 8 is the preferred
orientation. To simplify the notation, we drop the sub-
script A and unless otherwise stated assume that A = 1.
The corresponding family of wavelets is

(9(a(z — 20,y ~ w0),0)),« €R, 0 €[0,7] (3)

The Gabor wavelet transform is then defined by
Wf,g (av 0’ Zo, 310) =
[ 1@ o (@t = 20,5 = w0),0) dz dy ()

For practical applications, discretization of the param-
eters is necessary. The discretized parameters must
cover the entire frequency spectrum of interest. Let the
orientation range [0, 7] be discretized into N intervals
and the scale parameter @ be sampled exponentially
as o/, j € Z. This results in the wavelet family
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3 The Model

We now present a simple model for feature processing
based on the Gabor wavelet decomposition of the im-
age and local feature interactions. We begin with a
brief analysis of the Gabor wavelets as edge detectors.

3.1 Line and Edge detectors

The wavelet decomposition using Gabor functions has
an important physical interpretation. The even and
odd components of the complex Gabor function re-
spond maximally to line edges (or bars) and step edges
respectively, in the image. These features can be de-
tected at the local maxima in their energy {3, 5]. If
R, and I, represent the response from the even and
odd symmetric feature detectors at a position s, then
the local energy E, at s is given by E, = \/R? + IZ.
The limitations of conventional edge detectors are well
known [4, 5]. Some important observations are that
feature detection/localization by any type of linear fil-
tering operation is not adequate, and in particular zero
crossings of the result of applying any linear operator
to the image do not capture all significant features in
the image. Secondly, there is a need for directionally
selective quadrature filter pairs. The outputs of these
filters cannot be analyzed separately (except when ei-
ther the step edges alone or the line edges alone are
present) and one way to combine the output is to
consider the total energy in them as discussed above.
These energy feature detectors not only respond to,
and localize simple line and step edges, but also oth-
er perceptually significant features such as roof edges
and Mach bands [3]. A discussion on alternate means
of combining information from the quadrature filters
and their relative merits can be found in [4].

3.1.1 Performance Analysis

In the following we assume 1-D functions for sim-
plicity and give an analysis of signal to noise ratio
(SNR) and localization properties analogous to the
one given in [2] (see also [5] for a similar analysis).
The Gabor wavelet function in 1-D can be written as
g(z) = exp(—a?z?/2 +imaz). Let the true location of
the edge e(z) be at £ = 0 and due to presence of noise
n(z) the observed maximum in the energy E(z) is at
zo. Let y(z) be the response of the complex filter g(z)
to a noisy input e(z)+n(z), and f(z) and n(z) denote
the signal and noise terms respectively in the output.
For a white noise process, the output noise energy is

/ Z 0(2)g" ()ds =
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SNR at the true location of the edge is given by the
ratio of the signal power to the noise power at the

origin:
17(0)|

= ()
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The edges are located at the local maxima in the
energy E(z) = y(z)y*(z) and E’'(zo) = 0. Further, as-
suming that the noise power is small compared to the
signal, E(z) = ff*(z) + 2(fr(z)n-(z) + fi(x)ni(z)),
where the subscripts r and ¢ denote the real and com-
plex components. As suggested in [2], the inverse of
the variance of zg, (£(z3))~! provides a measure of
localization, and is given by [11]
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We computed the SNR and localization for the com-
plex Gabor filter [11] for the cases of line and step
edges:

SNR(step) = 0.2774/+/a, L(step) = 1.93v/a  (9)
SNR(line) = 0.7511 \/a, L(line) = 0.33av/a  (10)

In general (except for the special case of line edge),
the SNR improves with increasing filter width whereas
localization deteriorates. The SNR (for step edges) is
poor compared to the first derivative of Gaussian used
in [2], but its overall performance in the presence of
composite edges is better. Note that both the Marr-
Hildreth [1] and Canny [2] operators will fail to detect
line edges at their true locations. In fact it is easy to
show that at the true locations of line edges the SNR
is zero for these operators.

SNR =

L =[£(z2)%

(8)

3.2 Local Interactions

Following feature extraction using Gabor wavelets, we
now consider local competitive interactions and group-
ing of these features. Competitive interactions help in
noise suppression and reducing the effects of illumi-
nation. These interactions are modeled by non-linear
lateral inhibition between features. Two types of such
interactions are identified. The first type includes
competition between different orientations at each s-
patial position and the second between spatial neigh-
bors within each orientation. The following notation
is used in explaining the interactions: The output of a
cell at position s in a given frequency channel with a
preferred orientation  is denoted by Y, ¢, with I, 4 be-
ing the excitatory input to that cell from the previous
processing stage. Let N, be the local spatial neigh-
borhood of s = (z,y). The competitive dynamics is
represented by
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(11)

Yoo = 9(Xs0) (12)

and (a,b,c) are positive constants. In our experi-
ments we have used a sigmoid non-linearity of the form
g(z) = 1/(1+exp(—pz)). The dynamics of (11) can be
visualized as follows : At each location within a single
frequency channel, the corresponding cell receives an
excitatory input (I ¢) from a similarly oriented fea-
ture detector (of the same spatial frequency). Further
it also receives inhibitory signals from the neighboring
cells. We assume that all these interactions are sym-
metric (b, s+ = by s and cg 61 = c1,6). The competitive
dynamics of the above system can be shown to be sta-
ble. The Lyapunov function for the system [12] can be
written as

E(Y)

1 1
5 Z bs,s’Ys,BYs’,e + 5 029; 09,0’Y3,0Ys,0’

Y0
+‘,zygv/0 (as,eg;;(y) - Ia,G) dy (13)

Under the assumptions that the interactive synaps-
es are symmetric and that g(-) is monotone non-
decreasing, the time derivative of E is negative and
the system represented by (11) always converges.

s,8!

3.2.1 Scale Interactions and End-Inhibition

End-inhibition is a property peculiar to hypercomplex
cells in the visual cortex of mammals. These cells
respond to small lines and edges in their receptive
field, and their response decreases as the length of
lines/edges increase (hence these are often referred to
as end detectors). These cells appear to play an impor-
tant role in localizing line-ends and texture boundaries.
We model here the response of these end-detector cells
by simple scale interactions. If QS'% denotes the re-
sponse of such an end-detector at 'position s in the
frequency channel ¢ and orientation 6, then

QL = g(enll} - eal?)) (14)
At line ends, cells with shorter receptive fields will have
a stronger response than those with larger fields, and
consequently will be able to excite the hypercomplex
cells. At other points along the line, both small and
large receptive field cells are equally excited and in
the process the response of the hypercomplex cells is
inhibited. It appears that such scale interactions to



generate end inhibition do exist in the visual cortex.
In [13] it is observed that layer 6 cells in the cat’s
striate cortex, which have large receptive fields, in-
fluence the end-inhibition property of the hypercom-
plex cells in layer 4 having relatively shorter receptive
fields. Inactivating layer 6 cells results in a loss of end-
inhibition in layer 4 cells, without affecting their other
attributes such as orientation selectivity. The original
idea of using such interactions dates back to the early
work of Hubel and Wiesel [14]. "An alternate model
for end-inhibition using local competitive interactions
is discussed in [15]. The hyper-complex cells in turn
activate cells whose orientation is orthogonal to those
of hypercomplex cells and with larger receptive fields
to initiate the grouping process. A similar model for
grouping the responses of hypercomplex cells has been
proposed in {16].

3.2.2 Grouping

The final stage involves grouping similar orientations.
The grouping process receives inputs from the compet-
itive stage and from end-detectors described in section
3.2.1. Note that the orientation of the activating end-
detector is orthogonal to the actual orientation of the
grouping process. If Z, 4 represents the output of this
process, then

Zo =g ([ dls= 5.0 s + Qe a) ()

d(s, 0) — e(—(2a’)"[k’(z cos 84y sin 8)%+4(—z sin §+y cos 8)?])

(16)
d(s,0) represents the receptive field of Z 4, 0 is the
preferred orientation, ¢ is the corresponding orthogo-
nal direction, and ) is the aspect ratio of the Gaussian.
The Z cells thus integrate the information from sim-
ilar oriented cells within each frequency channel and
from appropriately oriented end-detectors. Since the
various frequency channels are sampled, the effective
standard deviation of the Gaussian is 0/c’, where o
is the scale parameter for channel i.

3.3 Locating Boundaries
Intensity edges and Subjective contours

In section 3.1 the usefulness of energy detectors in lo-
calizing image features was discussed. In detecting the
intensity edges in the image we used the energy fea-
tures as input to the competitive stage. Thus the input
to a cell in the competitive stage at a position (z,y)
in the ith frequency channel is given by

Iz.z,y),ﬂ = ”Wf,Q(a‘)aixr y)” (17)
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where W(-) is as in (4), and i = {0,-1,-2,-3,..}
and 0 = kx/N, k = {0,1,...,N — 1}, N is the num-
ber of discrete orientations. The edges are located at
the local maxima of the Z(-) in (15). The same ener-
gy features are also used in our experiments to detect
line-ends through scale interactions and the perceptu-
al boundaries for the examples in Figure 4 are also
marked at the local maxima of Z(-).

Texture boundaries

The information extracted by the wavelets can be used
in several ways to detect textures, though the results
reported here are obtained using the energy measure.
Texture boundaries are located at the local maxima of
the gradient of Z.

To summarize, boundary detection consists of three
distinct steps (a) Feature extraction using Gabor
wavelets, (b) Local interactions between features, in-
cluding local scale interactions for end-inhibition, and
(c) Grouping of features and identifying boundaries.

4 Experimental Results

The performance of the model is illustrated on sever-
al images. The following parameter values were used
in all the experiments described here: § = 4.0 in the
transfer function g(-). The strengths of the inhibito-
ry synapses in (11) are b, ,» = 1/||N,|| and ¢ = 1/N,
where ||N,|| is the cardinality of the neighborhood set
and N is the number of discrete orientations used.
The aspect ratio of the Gaussians in both the Gabor
wavelets (2) and in the receptive field of Z cells (16) is
set to 0.5.

Regarding implementing the dynamics of competi-
tion, we used a simple gradient descent on the corre-
sponding energy function instead of solving the set of
differential equations. The equilibrium points in gener-
al for these two methods will be different. The results
of edge detection are shown in Figure 1. The model
was also tested on different texture images containing
both real and synthetic textures. We give one exam-
ple for each in Figure 2. Use of scale interactions in
texture boundary detection is illustrated in Figure 3
and Figure 4 gives the result of perceiving subjective
contours.

5 Conclusions

In this paper we have a developed a common frame-
work for detecting perceptually significant features
such as edges and texture boundaries in images. We
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Figure 1: (a) and (c) show two 256x256 images and
the corresponding edges detected are shown in (b)
and (d). In (b) the edges are from two channels
o = {1/v/2,1/2} and in (d) o = 1/v/2. For both

examples o = 1.

have suggested a simple model based on detecting ori-
ented features at different spatial scales and on local
interactions between features. Interactions between
frequency channels is used in generating end-inhibition
which plays an important role in boundary perception.
Several examples are provided to illustrate the perfor-
mance of this approach in detecting different types of
boundaries.
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line terminations and the detected contours superim-
posed on the original images. In (b) of = {1/2,1/4}
and ¢ = 8 and in (¢) o’ = {1/v/2,1/4} and ¢ = 2.
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