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Abstract

A computational vision approach is presented for
the estimation of 2-D translation, rotation, and scale
from two partially overlapping images. An illuminant
direction estimation method s first used to obtain an
tnitial estimate of camera rotation. A small number
of feature points are then located based on a Gabor
wavelet model for detecting local curvature disconti-
nuities. An initial estimate of scale and translation is
obtained by pairwise matching of the feature points de-
tected from both frames. Finally, hierarchical feature
matching is performed to obtain an accurate estimate
of translation, rotation and scale. The approach re-
sulls in a fast method that produces excellent results
even when large rotation has occurred between the two
frames and the images are devoid of significant fea-
tures. Ezperiments with synthetic and real images
show that this algorithm yields accurate results when
the scale between the image pair differ by up to 10%,
the overlap between the two frames is as small as 35%,
and the camera rotation between the two frames is sig-
nificant.

1 Introduction

Automatic image registration is an important prob-
lem in many multi frame based image analysis and
applications. Traditional solutions [1, 3, 4, 6, 7, 9] to
this problem are unreliable when the rotation of the
camera and scale change between the two frames are
significant. Registration becomes even more difficult
if the images are devoid of significant features and/or
the overlap between the two frames is small. In the
Mars ’94 project we have such a challenging problem.
One of the goals of the Mars '94 project 1s to measure
the 3-D wind velocity in Mars. It is proposed to use a
downlooking camera attached to a balloon to measure
the motion of the balloon and hence determine the
wind speed. Figure 1 illustrates the schematic of this
project, in which successive image frames are shut-
tered at times t; and ¢5. Balloon motion can be de-
termined by measuring the translation, rotation and
scale between the image pair. Due to other techni-
cal constraints, only two frames will be available for
each location, and the rotation and translation be-
tween the images could be significant. Also there is a
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scale change due to the vertical motion of the balloon.
A simple and robust registration algorithm is required
for on-board motion estimation systems.

In this paper we present a computational vision ap-
proach for the estimation of 2-D translation, rotation,
and scale from two partially overlapped images. Fig-
ure 2 shows the block diagram of our camera motion
estimation algorithm. We notice that the illumination
on the Mars surface is from the sun and is constant
within the time the image pair is taken. By estimating
the illuminant direction in each frame, we can estimate
the rotation between the two frames and simplify the
matching process. Since the common area between the
two frames can be much smaller than the image field
and in additionally there is scaling between the two
frames, methods based on correlation matching be-
come unreliable. In this work we use a feature based
matching technique. First we extract a small num-
ber of feature points based on a Gabor wavelet model
for local curvature analysis. Since no prior knowledge
about the translation is available, an initial estimate
of scale and translation is obtained by pairwise match-
ing between the neighbors of feature points detected
from both the frames. Subsequently, hierarchical cor-
relation matching is performed to obtain an accurate
camera motion estimate. Experiments with several
real desert balloon images acquired by JPL show that
our algorithm works for all the cases tested. The con-
sistency test based on forward and backward motion
estimations shows that estimation is quite accurate
with the discrepancy in forward and backward esti-
mation of rotation, translation and scale being less
than 0.05°, 0.5 pixel, and 3 x 1073 respectively [10].

The organization of the paper is as follows: Sec-
tion 2 formulates the balloon motion estimation as an
image registration problem; Section 3 discusses the
algorithm. Section 4 presents experimental results on
Mojave desert images taken from a flying balloon.

2 Balloon Motion Estimation
Let (x;, vi, z;) be the 3-D coordinates and (Xj,

Y;) be the image frame coordinates, both measured
with respect to the position of balloon at time t;, for
it = 1,2. Then the central projection equations are
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where f is the focal length of the camera. The relation
between the two image frames can be approximated by
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scaling factor, 8 is the rotation angle between the two
image frames, and (AX,, AY:) 1s the image trans-
lation measured in the image coordinate of frame t5.
With AX5, AY3, 8, and s determined, the balloon mo-
tion §= (Az, Ay, Az) can be easily determined if the
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3 Algorithm

Step 1: @ Estimation of the illuminant azimuth =

from frame ¢;, 1 = 1,2;
e Set s - 1
[4 = T — T
AX = 0
AY = 0

Step 2: @ Reduce the image size to that of the lowest

resolution layer;
e Estimate feature points from each frame.

Step 3: @ Apply an affine transformation with param-
eters (s, 8, AX, AY) on the lowest res-
olution version of frame t; and its feature

points;

¢ Do initial matching to obtain estimates (s’,
¢, AX', AY");
e Update (s, §, AX, AY).

Step 4: @ Reduce the image resolution corresponding

to current layer of the matching hierarchy;

e Magnify the coordinates of the feature
points corresponding to the resolution of the
current layer;

e Apply an affine transform with parameter

(s, 8, AX, AY) on frame {;

e Do matching refinement to obtain (s’, ¢,
AX', AY')

e Update the estimate of (s, 8, AX, AY).

IThe height of the balloon can be determined by measuring
the time lapse between transmitting and receiving of a radio
signal from the balloon.
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Step 5: o If current level is at the highest resolution
then stop;

o Increase image resolution and adjust the
translation estimation by

(337) =

e Go to Step 4.

Some of the key operations in our algorithm are
discussed below.

Initial Estimation of Camera Rotation The initial
estimation of camera rotation is computed as the dif-
ference of illuminant azimuth angles estimated from
both of the frames. To estimate the illuminant di-
rection from image we use the local voting illuminant
azimuth estimator reported in [11]. To be more spe-
cific, for each pixel we first compute

2AX
2AY
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AY

X=(
T\
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61, dry by
. 81, bxa by
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61 is the increment in intensity along the direction §=
(6x,éy), and N is the number of measured directions
for §.

The estimate of illuminant azimuth is then com-
puted as

T = arctan

After the illuminant azimuth 7;, ¢ = 1,2 are com-
puted, the initial estimation of camera rotation is com-
puted as

(6)

Feature Detection We use a method which is based
on a biologically motivated model for identifying lo-
cal curvature discontinuities, and makes use of Gabor
wavelet decomposition of the image and local scale
interactions between features [8]. The basic wavelet
function used in our decomposition is of the form

bo=11—12

N
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where 8 is the preferred spatial orientation and A is
the aspect ratio of the Gaussian. For convenience, we



will drop the subscripts in further discussion. In all
our experiments, A is set to 1, and 8 is discretized into
four orientations.

The corresponding wavelet transformation is ob-
tained by convolving the image data f with a bank of
filters whose responses are simple dilations and trans-
Lations of the basic wavelet in (7), and are denoted

Yy

Wi(z,y,0)=f Q) ®(c’z,a'y,0), j ={0,1,2,.} (8)

Here a denotes the scale parameter. Usually the
parameter values used are those corresponding to half-
octave (o = \/53 or octave (a = 2). Physically, this
transformation detects features in the image such as
line and step edges. Biologically, this models the pro-
cessing by simple cells in the visual cortex of mam-
mals. These features by themselves are not good for
applications such as obtaining correspondence. The
next stage in our feature detection module involves
interactions between these simple features (at differ-
ent spatial frequencies, within each orientation). This
step can be identified with the responses of hyper-
complex cells in the visual cortex. Hypercomplex cells
exhibit end-inhibition. They are sensitive to oriented
lines and step edges of short lengths, and their re-
sponse decreases if the lengths are increased. Using
scale interactions to model these cells was first sug-
gested by Hubel and Wiesel [5], who were the first to
discover these cells in the visual cortex. Subsequent
anatomical studies have also supported this model [2].
We model these interactions as follows:

Im,n(zvy)zmeaXQ(”Wm(rryag)_'YWn(:cv y,ﬁ)H) (9)

where ¢ is a non-linear transformation, such as
thresholding or a sigmoid non-linearity, v is a normal-
izing factor, and n > m. In order to identify features
at different scales, one has to consider different scale
interactions. The final step is to actually localize these
features, and this is done by looking at the local max-
ima of these feature responses.

Scale Estimation Since the Euclidean distance be-
tween the feature points only depends on the scale be-
tween the two frames, and is invariant to rotation and
translation, the scale factor can be estimated prior to
the estimation of other parameters. Assume that the
matched feature point pairs are {(X])Y/) = (X:,Yi)
i=1,---,N"} with N’ be the number of matched
feature pairs. Then

((i] dANI):SI(dl d2 dN’)

where d; is the distance between the feature 7 and the
center of the matched feature points in frame t;, and
d; is the distance between the feature 7 and the center
of the matched feature points in frame t. The scale
factor from frame ¢; to frame ¢ is computed as

s = vazl d; - Cii
==F—
Zi:l d; - d;

Rotation and Translation Estimation Assuming that
the matched feature point pairs are {(X)Y]) =

d» (10)

(11)
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(X,-,Y}) i = 1,---,N’ }, the relation between the

matched feature pairs is
Xi ’
= 12
() ( J)+(5) o
Note 8, being the residual of initial rotation estima-

tion, is very small. By approximating cos 8’ and sin ¢’
up to linear terms, (12) can be rewritten as
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The vector C can then be computed as
C=(B'B)"!B'A (15)

Estimation Refinement In our method, at each level
of the matching hierarchy, frame ¢, is first transformed
using the estimated camera motion parameters s’, 6,
AX’, and AY’ and then matched to frame ;. The
correction on initial estimation is computed using (11)
and (15). After that, the total transformation is ob-
tained by combining the two transformations together
[10]:

6+ 0
ss s
s'(cosf AX +sinf’ AY)+AX' lax| (16
s'(=sin@ AX +cos@ AY)+AY’ AY

4 Experiments

We have tested our algorithm on several balloon
images of the Mojave desert, whose environment is
similar to Mars. The input image size is 512 x 512.
The image size for the lowest resolution layer in our
implementation is 128 x 128. For feature detection, m
and n of (9) are set to 2 and 5 respectively. In the
experiments, we compute the local maximum of I, »
and only salient points which are maximum among the
radius of r = a” are selected as feature points. Due
to space limitation, only two examples are presented?.
Figure 3 shows a typical experiment on registration
of desert images obtained from a flying balloon. (a)

2More examples and accuracy analysis are given in {10]



and (b) are the input images. (c) and (d) show the
feature points detected, in which the white crosses in-
dicate the locations of feature points. In our exper-
iments, the number of feature points detected from
each frame is between 15 to 30. This can be controlled
by automatically adjustive the threshold of the local
maximum. The estimated parameters of motion from
Ball09 to Balll2 are s = 0.995574, § = 1.60708°,
AX = —250.769, and AY = 146.602. (e) shows the
mosaicking of (a) and (b) using the estimated mo-
tion parameters. (f) shows the difference between the
transformed (a) and (b) with the zero of difference
shifted to 128.

Figures 4 shows another experiment on image pair
with significant camera rotation. (a) and (b) are the
input images. (c) and (d) show the feature points
detected from each frame. The estimated camera
motion parameters are s = 0.991534, # = 57.1240°,
AX = 234.276, and AY = —78.1810. (e) shows the
mosaicking of (a) and (b) using the estimated mo-
tion parameters. The continuity of features across the
frame borders illustrates the correctness of matching.
(f) shows the difference between the transformed (a)
and (b) with the zero of difference shifted to 128.
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Figure 1: Geometry of Balloon Imagery.
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Figure 2: Block diagram of the algorithm



Figure 4: Registration of desert images Ball40 and Ball44.



