
Kestrel: Using Mobile Devices to Augment Multi-camera
Vehicle Tracking

Anonymous Author(s)

ABSTRACT
As mobile devices have become more powerful and GPU-equipped,
vision-based applications are becoming feasible on these devices.
Mobile devices can augment fixed camera surveillance systems to
improve coverage and accuracy, but it is unclear how to leverage
these mobile devices while respecting their processing, communica-
tion, and energy constraints. As a first step towards understanding
this question, this paper discusses Kestrel, a system that tracks vehi-
cles across a hybrid camera network. In Kestrel, fixed camera feeds
are processed on the cloud, and mobile devices are invoked to re-
solve ambiguities in vehicle tracks. Kestrel’s mobile pipeline detects
objects using a deep neural network, extracts attributes using cheap
visual features, and resolves path ambiguities by careful association
of vehicle visual descriptors, while using several optimizations to
conserve energy and reduce latency. We evaluate Kestrel on a het-
erogenous dataset including both mobile and static cameras from a
campus surveillance network. The results demonstrate that Kestrel
on a hybrid network can achieve precision and recall comparable to
a fixed camera network of the same size and topology.

1 INTRODUCTION
Over the past five years, mobile device cameras have improved to
the point where they can capture high-quality full-motion videos.
Until recently, however, automated detection and classification has
been beyond the capabilities of these devices. Moreover, given the
bandwidth constraints of cellular and WiFi connections, it has also
not been feasible to upload videos for processing in the cloud, so it
has not been possible to exploit the large corpus of videos captured
by mobile device users.

With the advent of GPUs on mobile devices, complex vision algo-
rithms can now be executed on mobile devices. But a single camera
on a single mobile device provides only a limited perspective, and
most applications will require fusing the results of vision algorithms
across multiple cameras, continuously and in near real-time. Such
applications can stress the computational and network capabilities of
mobile devices, and significantly impact their energy consumption.

To understand what role mobile devices can play in such appli-
cations, and how to architect these applications, we consider the
challenging problem of tracking an object through a network of
heterogeneous cameras. Vehicle tracking arises in the context of
surveillance. Many large enterprises, such as university campuses,
employ a network of fixed cameras to visually inspect vehicles (and
people) traversing their streets. This camera network is used both
for real-time surveillance, and for forensic purposes (to determine,
after the fact, suspects or suspicious vehicles). With the prevalence
of mobile devices, it is natural to consider augmenting these fixed

SenSys, Delft, The Netherlands
2016. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

cameras with videos captured by mobile devices, such as those car-
ried by security officers or neighborhood watch personnel. Mobile
devices are now in widespread use in police and security work [44].
In particular, mobile video surveillance is on the rise: cities like
Chicago [27], and New York [53] have already equipped police offi-
cers with body cameras, and police cruisers [17] also have dashcams
for recording traffic stops.

The Vehicle Tracking Problem and Challenges. The problem
we consider in this paper is to automatically detect a path taken
by a vehicle through this hybrid fixed/mobile camera network. The
vehicle tracking problem stresses mobile device capabilities because
it requires associating vehicles across multiple cameras, which itself
requires significant network, processing and energy resources.

In our problem setting, each mobile or fixed camera either con-
tinuously or intermittently captures video, together with associated
metadata (camera location, orientation, resolution, etc.). Concep-
tually, this creates a large corpus of videos over which users may
pose several kinds of queries (either in near real-time, or after the
fact), the most general of which is: What path did a given car, seen
at a given camera (or at k distinct cameras), take through the camera
network?

One approach to designing a system that can support such queries
is to centrally collect this corpus in the cloud. This approach works
well for fixed cameras, which are engineered with significant net-
work bandwidth to the (private) cloud. Indeed, our approach assumes
that fixed cameras in our hybrid network can continuously upload
videos to the cloud.

However, for mobile devices with bandwidth-constrained net-
work interfaces, such an approach is impractical. Our paper seeks
to understand how to architect mobile device participation in this
hybrid camera network. Specifically, in this network, resources
are asymmetric, with the cloud having resource elasticity but with
mobile devices being constrained along many dimensions. Given
this asymmetry, we seek to design an architecture that must address
three challenges. First, it must trigger video processing at a mobile
device only when absolutely necessary, so that mobile devices are
not required to continuously process every frame of the video in
order to track vehicles. Second, it must use low-complexity de-
scriptors for vehicles and their trajectories that, while respecting
mobile device computational constraints, can also minimize band-
width consumed without significantly impacting accuracy. Third, it
must permit robust association of vehicles across different cameras
using vehicle descriptors and their trajectory, even when cameras
can have different perspectives (fixed cameras on light poles, mobile
device cameras at the street level, with all cameras pointing in po-
tentially different directions) and can be subject to different lighting
conditions.

Existing commercial surveillance systems do not support auto-
mated vehicle tracking across multiple cameras, nor do they support
a hybrid camera network. They either require a centralized collection

SenSys, November 6-8, 2017, Delft, The Netherlands Anon.

of videos [2][3], or perform specific object detection on an individ-
ual camera, leaving it to a human operator to perform association by
manual inspection [1].

Contributions. This paper describes the design of Kestrel (§2) for
addressing the vehicle tracking problem. Users of Kestrel provide
an image of a vehicle (captured, for example, by the user inspecting
video from a static camera), and the system returns the sequence of
cameras (i.e., the path through the camera network) at which this
vehicle was seen. This system carefully selects, and appropriately
adapts, the right combination of vision algorithms to enable accurate
end-to-end tracking, even when individual components can have less
than perfect accuracy, while respecting mobile device constraints.
Kestrel addresses the challenge described above using one key ar-
chitectural idea. Its cloud pipeline continuously processes videos
streamed from fixed cameras to extract vehicles and their attributes,
and when a query is posed, computes vehicle trajectories across these
fixed cameras. When there is ambiguity in these trajectories, Kestrel
queries one or more mobile device (which runs a mobile pipeline
optimized for video processing on mobile devices). Thus, mobile
devices are invoked only when absolutely necessary, significantly
reducing resource consumption.

Our first contribution is techniques for fast execution of deep
Convolutional Neural Networks (CNNs) on mobile device embedded
GPUs (§3.1). The context for this contribution is that object detection
and localization based on deep CNNs (those with 20 or more layers)
has become significantly more accurate than earlier generations
of detection algorithms. However, mobile GPUs cannot execute
these deep CNNs because of insufficient memory. By quantifying
the memory consumption of each layer, we have designed a novel
approach that offloads the bottleneck layers to the mobile device’s
CPU and pipelines frame processing without impacting the accuracy.
Kestrel leverages these optimizations as an essential building block
to run a deep CNN (YOLO [57]) on mobile GPUs for detecting
objects and drawing bounding boxes around them on a frame.

Our second contribution is the design of an accurate and efficient
object tracker for objects within a single video (§3.2). This tracker
runs on the mobile device, and we use it to extract object attributes,
like the direction of motion and low-complexity object descriptors.
Existing general purpose trackers (§6) are computationally expen-
sive, or can only track single objects. Kestrel leverages the fact that
object detection is relatively cheap with mobile GPUs and period-
ically detects objects (thereby reducing the energy cost of object
detection), say every k video frames, so that the tracking algorithm
has to only be accurate in between frames at which detection is
applied. This enables even simpler tracking techniques, based on
keypoint tracking, to be very effective in our setting, and an order of
magnitude more efficient.

Our third contribution is accurate vehicle association (§4.1).
Given an object in a camera’s video, the association can determine
which object in a second camera best matches the given object. As-
sociation is performed both on the cloud and in mobile devices, and
uses the attributes determined from the tracking algorithms. Kestrel
achieves highly accurate, low-complexity association using three
simple ways to winnow candidate matching objects: the travel time
between cameras, the direction of motion of the object in the first
camera, and the color distribution of the vehicle. Association is used

Mobile

...

...

Query Path Inference

Vehicle Detection Tracking in Camera

Attribute Extraction Association Path Re-ranking

Association

Vehicle Detection Tracking in Camera Attribute Extraction

OF Filter

Cloud

Figure 1—Kestrel System Architecture

by a path inference algorithm that uses a dynamic programming
approach to find the most likely paths through the camera network
that a vehicle may have traversed.

The evaluation (§5) of Kestrel uses a dataset of videos collected
from a heterogeneous camera network. Specifically, our dataset
consists of a total of nearly 4 hours of video footage collected on a
university campus comprising of 11 static and 6 mobile cameras. In
this dataset, we have manually annotated a ground truth dataset of
~120 cars. Kestrel is able to achieve over 90% precision and recall
for the path inference problem across multiple hops in the camera
network, with minimal degradation as the number of hops increases,
even though, with each hop, the number of potential candidates
increases exponentially. Its overall performance on a hybrid network
is comparable to an identical fixed camera network: the use of
mobile devices only minimally impacts performance. Finally, the
association has nearly 97% precision and recall with each winnowing
approach contributing to the association performance.

2 KESTREL ARCHITECTURE
To address the challenges discussed above, Kestrel leverages several
techniques. First, mobile GPUs can run deep neural nets trained
for object detection, but these GPUs are energy hungry and funda-
mentally constrained with respect to their desktop counterparts. So,
Kestrel features a novel vehicle detection and localization pipeline
to invoke the neural nets on mobile devices only when necessary,
and uses novel compute offload techniques to achieve low latency
and energy. Next, Kestrel uses a fast tracking algorithm that can
track and associate vehicles across successive frames in the same
camera, while compensating for mobile camera movement. This
tracking helps determine the vehicle’s trajectory, which, together
with other attributes for a vehicle (such as its color, or its direction of
motion), can help associate (or re-identify) cars across multiple non-
overlapping cameras with different perspectives. Finally, Kestrel
exploits a novel dynamic programming estimation framework to
determine the most likely path of the vehicle across the hybrid cam-
era network. Our novelty lies in determining the right set of object
attributes (descriptors, trajectories, etc.) that can most effectively
disambiguate between multiple possibilities while incurring minimal
energy consumption and latency. This path inference framework
runs on the cloud and provides the basis for identifying paths taken
by specific vehicles, and for determining when to query a mobile
device to increase confidence in the result.

Figure 1 shows the system architecture of Kestrel, which consists
of a mobile device pipeline and a cloud pipeline. Videos from fixed

Kestrel SenSys, November 6-8, 2017, Delft, The Netherlands

cameras are streamed and stored on a cloud. Mobile devices store
videos locally and only send metadata to the cloud specifying when
and where the video is taken. Given a vehicle to track through
the camera network, the cloud performs object detection, tracking,
attribute extraction, cross-camera association, and path inference
only on videos from the fixed cameras. When the cloud determines
that it has low confidence in the result, it uses metadata from the
mobile devices to query relevant mobile devices to increase tracking
accuracy. Once the mobile device receives the query, it executes
a pipeline, optimized for energy and computation, to augment the
tracks determined by the fixed cameras. In the following sections,
we describe Kestrel’s mobile and cloud components.

3 KESTREL MOBILE DEVICE PIPELINE
Kestrel’s cloud component, discussed in §4, produces a rank-ordered
set of vehicle paths in response to a query. These vehicle paths
represent the cloud’s best estimates of when, and which cameras the
query vehicle traversed (we define paths more formally later). The
cloud can determine which mobile devices could potentially have
images of the query vehicle; the cloud can do this using metadata
from mobile devices, which describe the locations and times at
which each video was taken. To each such candidate mobile device,
the cloud sends attributes of the queried vehicle (discussed below),
a time window when the vehicle is likely to have been seen at the
mobile device, and the set of ranked paths. Using this information,
the mobile device re-ranks the vehicle paths, and returns this to
the cloud, which can then iteratively refine the ranking by querying
other mobile devices. This architectural choice, where the cloud
only invokes a mobile device if it could potentially refine the result,
is crucial for the feasibility of Kestrel on hybrid camera networks.

The primary challenge in Kestrel’s mobile pipeline (Kestrel-
Mobile, Figure 1) is to optimize energy, computation, and com-
munication overhead. Kestrel-Mobile uses modern CNNs on mo-
bile GPUs to detect vehicles in frames, but because running CNNs
on GPUs can be both power hungry and time consuming, Kestrel-
Mobile uses the time window to narrow down the set of frames
to detect objects on, and a computationally efficient optical flow
filter to determine which of these frames to run the object detector
on. Moreover, Kestrel-Mobile features a lightweight state-of-the-art
multi-object tracker to reduce object detector invocation times and
further limit latency and energy consumption, as well as to extract
crucial attributes for instance association (§3.2). Also, Kestrel-
Mobile caches all instances and attributes extracted for reuse across
subsequent queries. Using these components, the mobile pipeline
associates cars seen in its videos with cars seen in vehicle paths
received from the cloud, then re-ranks those paths, and returns them
to the cloud. In this section, we discuss most of these components,
and defer the association and re-ranking until §4.

3.1 Object Detection: Deep CNNs
Kestrel-Mobile uses GPUs on mobile devices to run Convolutional
Neural Networks (CNNs) for vehicle detection. Driven by AR/VR
applications, GPUs have started appearing in commercial off-the-
shelf mobile processors. An example mobile processor with a GPU
is the Tegra K1, manufactured by nVidia, which contains 192 GPU
cores and conforms to the Compute Unified Device Architecture
(CUDA) specification. The Tegra K1 has already been incorporated

into tablet-class devices such as the Nexus 9 [10] and the Google
Tango [7]. Its successor, nVidia Tegra X1 [12], has been incorpo-
rated into Google’s Pixel C [8]. Beyond tablets, mobile phones
such as Lenovo Phab 2 Pro [42] and Asus ZenFone AR [18] are
equipped with the latest Qualcomm Snapdragon 652 and 820 chips.
In this paper, we use, for our evaluations, the Jetson TK1 board from
nVidia [11], which contains the Tegra K1 mobile processor and an
associated CUDA-capable development environment. Several bench-
marks [14, 15] have already demonstrated that TK1’s performance
is comparable to that of other GPUs like the TX1 or the 820.

Traditional GPU architectures separate GPU and CPU memory,
but starting from CUDA 6, platforms (like the TK1) have unified
memory, so the CPU and GPU can share memory, which can result
in programming simplicity [16]. However, relative to the run-time
memory requirements of deep convolutional neural networks, de-
vices like the TK1 have limited memory (2GB on the TK1).

YOLO. Kestrel-Mobile uses YOLO[57], a deep CNN for per-
forming object detection. As shown in Figure 2, YOLO not only
classifies the object but also draws a bounding box around it. YOLO
is structured as a 27 layer CNN, with 24 convolutional layers, fol-
lowed by 2 fully-connected (FC) layers and a detection layer. The
convolutional layers extract the features that best suits the vision
task, while the FC layers use these features to predict the output
probabilities and the bounding box coordinates.

YOLO requires 2.8GB memory on TK1 using the regular GPU
programming workflow described below (after removing variables
that are only required in the training phase). Almost 80% of the
memory allocated to the network parameters is taken by the first FC
layer (also observed by other works [36]).

A normal GPU programming workflow involves loading the data
to be operated upon (in our case the trained CNN weights) first in
CPU RAM, then copying them to GPU memory and starting the
kernel operation. If we had enough resources to hold the entire CNN
model in memory, then multiple video frames can be dispatched for
processing in sequence and the computation is very fast. However,
when we ran YOLO on the TK1 using the workflow described
above, it failed to execute due to insufficient memory resources.
This motivated us to explore several methods to manage the memory
constraint on mobile GPUs.

The CPU offload Optimization. Prior work has considered of-
floading computation to overcome processor limitations [25, 26].
We explore offloading only the FC layer computation to the CPU,
not motivated by processor speed considerations, but by the fact that,
because the CPU supports virtual memory it can more effectively
manage memory over-subscription required for the FC layer. With
CPU offloading, we observe that when the CPU is running the FC
layer on the first video frame, the GPU cores are idle. So we adopt a
pipelining strategy to start running the second video frame on the
GPU cores rather than letting them idle. To achieve this kind of
pipelining, we run the FC layers on the CPU on a separate thread, as
GPU computation is managed by the main thread.

Other memory optimizations. As mentioned above, the FC lay-
ers are the ones that require most memory in a CNN. Thus we also
explore reducing the size of the FC layer (other work [20, 22] has

SenSys, November 6-8, 2017, Delft, The Netherlands Anon.

Figure 2—YOLO Detection

car3: Moving

car4: Exiting

Figure 3—Multi-Object Tracking

R
ela

tiv
e

M
ove

C
a

m

M
o

v
e

Absolute

Move

Figure 4—Camera Movement Subtraction

explored similar techniques in different settings), which can poten-
tially reduce detection accuracy. To reduce the size of the FC layer,
we reduce the number of filters and the number of outputs in the
network configuration and re-train.

To reduce the memory footprint of the FC layer, we can also split
the computation in some layers [51]. Specifically, in the FC layer,
the input vector of previous layer is multiplied by the weight matrix
to obtain the output vector. Splitting this matrix multiplication
and reading the weight matrix in parts allows us to reuse memory.
However, re-using memory and overwriting the used chunks incurs
additional file access overheads (§5.5).

Speed optimizations. In addition to memory optimizations, our
results incorporate two optimizations for speeding up the compu-
tation. First, we set the GPU clock-rates to the highest supported
to ensure best performance. This approach trades off power for
increased computation speed. Second, a few CUDA operations (ma-
trix operation, random number state initialization) incur significant
latency when they are invoked for the first time. We perform these
operations before running the CNN to reduce latency.

Generality. Our optimizations are applicable to other complex
vision tasks using CNNs as well. For example, FCN [46] (for seman-
tic segmentation) requires 4.8GB memory, VGG 19 and 16 [61] (for
object recognition) both require about 1.3 GB memory to load the
base neural network. Although newer mobile GPU hardware (e.g.,
TX1 [12]) has more memory, mobile GPU memory increases are
limited by energy budgets: as [45] points out, DRAM power can ac-
count for up to 30% of the total power consumption of smartphones.
Further, designing unified virtual memory across heterogeneous
processors is still an active area of research [54, 55]. Virtual mem-
ories, however, incur performance overheads (e.g., TLB and cache
validation, memory coherence and address resolution). For these
reasons, application-specific memory management techniques for
deep CNNs will continue to be useful.

3.2 Attribute Extraction
After detecting objects, Kestrel-Mobile’s pipeline extracts several
attributes of the object from a video on a mobile device, including its
(i) direction of motion, and (ii) a low-complexity visual descriptor.
These attributes are used to associate objects across cameras (§4.1).
To estimate the direction of motion, it is important to track the object
across successive video frames.

Light-weight Multi-Object Tracking. To be able to track ob-
jects1 in a video captured at a single camera, Kestrel-Mobile needs
to take multiple objects detected in the individual frames above and
associate them across multiple frames of the video. Our tracking
algorithm has two functions: (i) it can reduce the number of times
YOLO is invoked, which in turn reduces the latency, and (ii) it can
be used to estimate direction of motion. The state-of-the-art ob-
ject tracking techniques [50, 52, 66] take as input the pre-computed
bounding box of the object, then extract sophisticated features like
SIFT [47], SURF [19], BRISK [43], etc. from the bounding box, and
then iteratively infer the position of these key-points in subsequent
frames using key point matching algorithms like RANSAC [29].

However, we observe that designing the most robust tracker for a
single object is different from effectively tracking all the objects that
appear within a given time window in a video. This is because in
dynamic mobile camera scenarios, objects (especially fast moving
vehicles) can enter and exit the scene frequently. This means that
Kestrel-Mobile needs to run object detection algorithms like YOLO
frequently in order not to miss out on tracking new objects. To avoid
this, Kestrel-Mobile uses two optimizations. First, it performs optical
flow 2 based scene change detection and whenever a scene change
is detected, it runs YOLO to detect new objects. Second, to avoid
running YOLO on every subsequent frame, we run YOLO every k
frames (for small k) and stitch the detected objects together using a
tracker that tracks light-weight features such as Good Features To
Track (GFTT [60]). In §5, we compare our tracker against other
state-of-the-art trackers to quantify the latency vs. accuracy tradeoffs
between the two approaches.

Specifically, given a video stream, Kestrel-Mobile’s tracker de-
tects keypoints of each frame and uses a keypoint tracker, Kanade-
Lucas-Tomasi (KLT [48]), to track keypoints across frames. For
every k frames (called YOLO frames), Kestrel-Mobile runs YOLO
to detect the objects of interest in the frame. Each detected object is
stored in Kestrel-Mobile with a series of attributes: object ID (OID),
the bounding box coordinates, the coordinates and features descrip-
tion of the keypoints in the bounding box, etc. (Kestrel-Mobile
computes other attributes during this process, as discussed below).
Kestrel-Mobile tries to associate each detected object with its previ-
ous appearance in the last YOLO frame by tracking the object over
k frames. In the new YOLO frame, Kestrel-Mobile finds the match

1While our paper is about tracking vehicles, many of the components we use are generic
and can be used to detect and track objects in general (e.g., people). Where a component
is specific to vehicles, we will indicate as such.
2An optical flow in a video is the pattern of motion of points, edges, surfaces, objects in
the scene.

Kestrel SenSys, November 6-8, 2017, Delft, The Netherlands

by comparing the keypoints of tracked objects with those in the
bounding box of the newly detected one. The new objects that are
successfully associated with a tracked object will inherit the existing
object ID, otherwise a new unique ID is assigned. Also, for each
matching existing box, Kestrel-Mobile resets the tracking attributes,
i.e., the box coordinates are updated with the new box coordinates,
the feature keypoints are updated with those from the YOLO frame
inside the new box. Between two YOLO frames, Kestrel-Mobile
tracks the object by updating the box attributes frame by frame.
Specifically, it calculates the average displacement of all the key-
points associated with one object, and updates the box coordinates
accordingly. By integrating the optimized YOLO with KLT, we
have built a fast and effective mobile video processing toolkit that
achieves real-time robust object detection, localization and track-
ing on mobile devices. Figure 3 shows Kestrel-Mobile tracking 2
vehicles.

Object State Extraction. An object seen in a single camera can
go through different states: it can enter the scene, leave the scene,
move or be stationary. Determining these states is important to
filter out uninteresting objects like permanently parked cars, etc.
Kestrel-Mobile differentiates moving objects from stationary ones
by detecting the difference of the optical flow in the bounding boxes
and in the background. For moving objects, the state of the object
changes from entering, moving, to exit, as it moves through the
camera scene. A moving object can become stationary in the scene,
a stationary object can also start moving at any time. For example, a
car may come to a stop sign or a traffic light at an intersection, or
park temporarily for loading passengers. If the object is detected as
exited from the scene, then the object can be evicted. Kestrel-Mobile
uses fast eviction: after an object exits the scene, all the feature
points and information for tracking are evicted from memory. This,
in our experience, not only helps save memory, but also improves
accuracy because evicting the keypoints from previous objects can
reduce the search space for matching candidates (§4.1).

Extracting the Direction of Motion. Kestrel-Mobile estimates
the direction of motion of a vehicle to re-rank the cloud-supplied
paths. Suppose a vehicle is moving towards camera A as shown
in Figure 5, but one of the cloud-supplied paths shows that it went
through a different camera, say B located away from the vehicle’s
direction of motion. Since it could not possibly have gone through
B, the mobile pipeline can lower that path’s rank. Extracting the
direction poses two challenges unique to mobile devices: how to
deal with the movement of the mobile device, and how to transform
the direction of motion to a global coordinate frame.

Kestrel-Mobile addresses the first challenge by compensating for
camera movement. In general, to extract the direction of motion
in the frame coordinates, we can use the difference between the
bounding box positions from consecutive frames. In our experi-
ence, however, using the optical flow in the bounding box gives us
more fine-grained direction estimation that is robust to the errors in
YOLO’s bounding boxes. To compensate for camera movement, we
subtract the optical flow of the background from the optical flow of
the object bounding box. The result is the direction of the object
under consideration (Figure 4).

Kestrel-Mobile needs to transform the direction of motion to
a global coordinate frame in order to reason about, and re-rank,

E (0)W(180)

N(+90)

S(-90)

N(+90)

A

B

Figure 5—Extracting the Direction of Motion and Coordinate Transformation

other vehicle paths provided by the cloud. For an arbitrary camera
orientation, the exact moving direction in global coordinates can be
calculated using a homography transformation [68]. However, in
most practical scenarios, cameras have a small pitch and roll (i.e., no
tilt towards ground or sky and no rotation, videos are often recorded
in either portrait or landscape) especially across a small number of
frames. So, we only use the azimuth of the camera, and infer only
the horizontal direction of moving objects (Figure 5). As per the
Android convention (that we use to obtain our dataset), right (east) is
0◦ and counterclockwise is positive in camera (global) coordinates.
The transformation is simply θg = γ + (θc − 90◦) where θc (θg) is
the direction of motion in the camera (global) coordinates, and γ is
the azimuth of the camera orientation.

To obtain the azimuth for mobile cameras we use the orientation
sensor on off-the-shelf mobile devices. We have a custom Android
application that records meta-data of the video (GPS, orientation
sensor, accelerometer data, etc.) along with the video. However, to
use this information directly is not feasible as we cannot align the
orientation sensor readings to a particular frame of the video. The
timestamp of the video being taken on a mobile device may or may
not be available.

To find the correct time alignment between frames and mobile sen-
sors, Kestrel-Mobile takes the first few seconds optical flow pattern
as a sliding window, and calculates its correlation with orientation
sensors, as it slides through the beginning sequence of the sensor
readings. By selecting the correlation peak, Kestrel-Mobile can find
the time shift and calibrate the timestamp of each video frame (Fig-
ure 6). In this experiment, the camera is horizontally panned towards
the left first and then towards the right. The accumulated optical
flow reflects the total movement of the scene in the video. Both the
orientation sensor and accumulated optical flow show the correct
movement of the camera. We see that although there is correlation in
the curves, they are shifted along the time axis and, after calibration,
the optical flow is better aligned with the azimuth.

Extracting Object Descriptors. Kestrel-Mobile’s pipeline
requires a method to re-identify cars seen in cloud-provided
vehicle paths with vehicles detected by its object detector. For this,
Kestrel-Mobile extracts descriptors of objects. A good descriptor
has the property that is low-complexity (can be computed easily
and requires minimal network bandwidth to transmit), yet can
effectively distinguish different objects. The simplest descriptor,
a thumbnail image, can distinguish objects but can consume
significant bandwidth (§5).

Kestrel-Mobile extracts visual features for use as descriptors.
Visual features fall into two groups, local descriptive keypoints
(SIFT, BRISK, ORB [59], etc.), and global features (color histogram

SenSys, November 6-8, 2017, Delft, The Netherlands Anon.

0 5 10 15 20 25

Time (sec)

Camera Azimuth

Accu. Horizontal OF

Aligned Accu. Horizontal OF

Sliding Window Correlation

Sensor

Start

Cam

Start

Sensor

End

Est.Video

Start

Est.Video

End

Corr.

Peak

Figure 6—Time Alignment of Motion Sensor and Opti-
cal Flow (OF)

Figure 7—Matching The Same Object From Different
Angle Using SURF Features

Figure 8—Object Thumbnail and Corresponding Color
Histogram Before and After GrabCut.

(CH), edge histogram, color layout descriptor (CLD), etc.). In multi-
camera scenarios, local features do not work well since objects can
be captured in different angles with varying degrees of occlusion,
illumination, etc. Figure 7 shows two cameras capturing the same
vehicle at different angles and scales. Using SURF features and
RANSAC [29] for keypoint matching demonstrates how slightly
different views can lead to mismatches: the four matching keypoints
(connected by green lines) are all false positives. In §5, we quantify
the performance tradeoffs of these approaches.

For these reasons, Kestrel-Mobile extracts the color histogram.
Before doing so, it preprocesses the bounding box to exclude back-
ground pixels. GrabCut [58] efficiently removes the background in a
bounding box, leaving only the pixels of the object of interest to be
counted. As we see in Figure 8 (left), with so many gray background
pixels the color histogram can look very different from the color
histogram of the car seen in Figure 8 (right) after removing the back-
ground pixels. Background removal helps other visual features as
well, since keypoints from the background can confound matching
during association.

The choice of color histogram does have drawbacks: vehicles
with similar colors can have high correlation scores. Figure 9 il-
lustrates, in our dataset, both a easy case, where Kestrel-Mobile
searches for a red sedan among other vehicles of different colors,
and one of the most challenging cases, where three white SUVs have
very similar color layout that would require careful human inspec-
tion. But Kestrel does not rely on color alone: it uses other filters
(direction, travel time estimation) to further narrow the candidate
space and achieve high object association accuracy. Indeed, using
these techniques, Kestrel was able to correctly distinguish between
the three SUVs. We present the details of the association pipeline in
the following sections.

4 KESTREL CLOUD PIPELINE
In Kestrel’s architecture, video from fixed cameras are streamed to
the cloud (Figure 1). The cloud continuously extracts objects and at-
tributes from the streamed video. Unlike the mobile pipeline, which
is only invoked on demand, the cloud pipeline processes every frame
(and can afford to do so because of the cloud’s resource elasticity).
Unlike the mobile pipeline, the cloud pipeline does not need to com-
pensate for camera motion, and, because the camera positions are
known ahead of time, transformation to a global coordinate frame is
straightforward. Kestrel’s cloud pipeline (Kestrel-Cloud) re-uses the
classifier and the matching descriptor from its mobile pipeline. It
could have used a more heavyweight classifier, but YOLO has good
accuracy while enabling full frame rate processing: more recent

classifiers, like MSCNN [21] achieve higher accuracy, but with an
order of magnitude higher execution time. Finally, the cloud pipeline
would have the resources to use local descriptors for matching, but
as discussed before, these can introduce matching error because of
perspective differences (Figure 7). Beyond these similarities, the
cloud pipeline performs several tasks that the mobile pipeline does
not; we discuss these below.

To search for a vehicle’s path through the camera network, a
Kestrel user (e.g., a surveillance officer) selects a car in a specific
frame of a fixed camera’s feed. Given this input, the cloud pipeline
runs a path inference algorithm, an important component of which
is pair-wise instance association.

4.1 Pair-Wise Instance Association
An instance corresponds to a specific object captured at a specific
camera, together with the associated attributes (§3.2). Instance
association determines if object instances at two cameras represent
the same object or not. Without loss of generality, a camera network
can be modeled as an arbitrary topology shown in Figure 10. Assume
that each intersection has a camera (Cam c), and each camera
extracts several instances. We define the nth object instance of
Cam c as oc,n. Kestrel-Cloud infers association between any pair
of object instances (ox,i, oy,j), using three key techniques: visual
features, travel time estimation and the direction of motion.

Preprocessing. Before associating instances, Kestrel-Cloud pre-
processes each instance to narrow the search space. Since YOLO
can detect several types of objects, the preprocessing stage filters all
object types other than vehicles. Also, it filters all stationary objects,
such as parked cars on the side of the streets. Even so, there could
still be hundreds of instances to search from multiple neighboring
cameras. Kestrel-Cloud estimates the travel time ET (x, y) between
a pair of camera x, y, and sets a much smaller but coarse time
window (which is refined in the next step) to limit the number of
candidate instances at this preprocessing stage.

Spatio-temporal Association. To associate between two object
instances (ox,i, oy,i), Kestrel-Cloud uses the timestamp of the ob-
ject’s first scene entry TIN and its last appearance exiting the scene
TOUT . Kestrel-Cloud calculates the total travel time from Cam x
toCam y as ∆T (ox,i, oy,j) = TINy,j −TOUTx,i, and compares
this to the estimated time ET (x, y) needed to travel from Cam x
to Cam y. Taking the exit timestamp from the first camera and the
entry timestamp in the second camera filters out any variance due to
a temporary stop (e.g., at a stop sign) while in the camera view.

Kestrel SenSys, November 6-8, 2017, Delft, The Netherlands

Color Histogram

Correlation O!set

0.374

0.440
0.545

0.264

0.755
0.772

Color Histogram

Correlation O!set

Easy Case Challenging Case

Figure 9—Object Descriptor Correlation

1.1

1.2

2.1

2.2

3.1

3.2

4.2 5.2

5.14.1

6.2

6.1

Figure 10—A Network of Camera Captured Object In-
stances

Figure 11—Heterogeneous Camera Network

One way to estimate travel time between two cameras is to use the
Google Directions API [33]. For dense camera deployments typical
of campuses, travel times between cameras are small (~30 secs) and
can be inflated by noise. To avoid this, we estimate the travel time
between each pair of cameras using a small annotated ground truth
dataset. Further, since cars have different travel speeds and may
stop in between, there is some variance in the travel time between
cameras. We also estimate this variance from our training dataset.
To filter out unlikely associations (e.g., a car cannot appear at two
cameras that are one block away from each other within 1 sec), we
apply temporal constraints derived from the dataset: specifically, if
the estimated travel time is x, over 95% of the vehicles take a travel
time of x± 0.6x.

Visual Similarity. The visual similarity of object instances is
also used in object association. Given two color histograms H1, H2
from two instances, Kestrel-Cloud measures their similarity using
a correlation offset, which is 1 minus the correlation between the
two histograms. The lower the offset is, the more likely the two
instances are the same. We find that this metric can discriminate
well between similar and dissimilar objects. From a sample of 150
images (figure omitted for space reasons) we find that over 95% of
identical objects have an offset of less than 0.4, while over 90% of
different objects have an offset larger than 0.4. In a more general
setting, this threshold can be learned from data.

Direction Filter. We also use the direction of motion (§3.2) to
prune the search space for association. For example, in Figure 10,
assume that the moving direction of instance o1,1 from Cam 1 is
from east to west, then Kestrel-Cloud ignores Cam 4, and searches
over all object instances of Cam 2 within the temporal window
around the expected travel time between Cam 1 and Cam 2, and
considers only those instances exiting Cam 2 towards Cam 1.

Instance Association in the Mobile Pipeline. The mobile
pipeline also contains some of these elements of instance associ-
ation, which are necessary for re-ranking paths. Specifically, the
mobile pipeline must eliminate stationary objects, but does not need
spatio-temporal filtering and temporal filtering in the preprocessing
stage (because Kestrel-Cloud selects the mobile device at the
relevant location, and supplies the corresponding Kestrel-Mobile a
time window over which to search for associations). The mobile
pipeline computes visual similarity and applies the direction filter.

4.2 Path Inference
Building upon its object detection, attributes and association com-
ponents, Kestrel-Cloud can infer, in the cloud, the path of a target
object through a multi-camera network. Our pair-wise association

simplifies the object instance network and retains only the valid
paths i.e., filters out objects moving in incorrect direction, those
outside the temporal window and those whose visual correlation
is too low. In this pruned network, the weight w(ox, oy) of a link
l(ox, oy) is defined as the color histogram correlation offset (lower
the offset, better is the correlation). A path from a source instance
os to destination od in an instance network is defined as an instance
path p(os, od) = os, o1, o2, ..., od . A physical route in the real
world, termed a camera path, is defined by the sequence of cameras
traversed by a vehicle: multiple instance paths can traverse the same
camera path.

Consider one object of interest ox,i, captured by either a mobile
user or a camera operator from Cam x. Kestrel-Cloud seeks to infer
the instance path it takes and answers this query in near-real time,
generating the path and instances at each camera as a feedback to
the user.

One straightforward approach is to assign the correlation offset
as a weight to the links in the pruned instance network, and use max-
imum likelihood estimation (MLE) to find the minimum weighted
path from any given instance. However, this approach fails to cap-
ture the correlation between non-neighboring instances, as it only
relies on the link weight. One can associate between every pair of
cameras, producing a clique, but our problem then reduces to finding
the minimum weighted k-clique which is NP complete.

Instead, Kestrel-Cloud takes a hop-by-hop iterative approximation
approach to find the best matching last hop instance each time. At
every hop with multiple candidate paths joining at one instance,
Kestrel-Cloud evaluates the weight of each path from the candidate
set and uses the Viterbi decoding algorithm [65] to eliminate paths
with heavy weight to keep the algorithm at polynomial complexity.
Given an instance in the instance network (Figure 10), we define
a valid neighbor as an instance that has a direct link and passes all
the filters defined in §4.1. Every time a new instance is added to a
path, the path weight is multiplied by an amount equal to the average
correlation offset of this instance from every other instance in the
path. The worst case complexity is O(kn2), assuming every camera
is right next to each other, and every instance has a valid link to any
instances. In practice, each camera has an average of 2.2 neighbors,
and vehicles usually traverse each node in the network only once
except for looping scenarios.

Re-ranking Paths in the Mobile Pipeline. The output of the path
inference algorithm can be ambiguous: there may be multiple in-
stance paths with high path weights. In this case, the cloud pipeline
attempts to find (from previously uploaded metadata) a set of mobile

SenSys, November 6-8, 2017, Delft, The Netherlands Anon.

Hop 1
Hop 2
Hop 3
Hop 4
Hop 5

MCam

101

Cam

20

MCam

106

Cam

19

GID 1 2 3 4 5 6 7 8 9

Figure 12—Example Ground Truth Instance Paths Across the Heterogeneous Camera Network

devices which might have videos that could help resolve this ambi-
guity. The cloud pipeline sends to the mobile device its set of ranked
instance paths. Given this set, the mobile camera does pair-wise
association with the instances from both the last hop and the next
hop static cameras of each instance paths. If the locally extracted in-
stance matches the path’s direction, a new instance path is generated
whose instance path weight is augmented with a pair-wise associa-
tion score. Note that a single instance path could generate multiple
new instance paths with different intermediate mobile instances and
path weights. The mobile pipeline can re-rank the paths and transmit
these to the cloud. For each new mobile instance, it only needs to
transmit the color histogram and the instance’s direction of motion
in case the cloud needs to query another mobile device.

5 EVALUATION
In this section, we evaluate the end-to-end performance of Kestrel,
and the performance and overhead of each submodule.

5.1 Methodology

Dataset. Our campus surveillance network contains 98 cameras,
64 of which monitor residential areas and the remaining monitor
main streets. We collected a video dataset from 17 distributed non-
overlapping cameras (6 mobile cameras and 11 surveillance cam-
eras), deployed in a whole block of a residential area (Figure 11).
Kestrel builds a hybrid camera network according to the topology
shown in the figure. The surveillance cameras (in yellow in the
figure) are commercial Axis Q-6035 and Q-6045 cameras, with a
resolution of 1280× 720 at 10 frames per second, and mounted on
light poles. The mobile cameras (in pink in the figure) are from
off-the-shelf smartphones held by human users at street level, and
these capture 1920 × 1080 video at 30fps using a customized app
which also captures inertial sensor readings from the phone. Users
collect video by sweeping the visible area for interesting events:
thus, unlike fixed cameras, the orientation (yaw and pitch) of the
cameras are continuously changing.

Ground Truth. To evaluate the association, we manually anno-
tate a ground truth list of instances that match across cameras (Fig-
ure 12). Specifically, each instance is labeled with a camera id (CID)
and an object id (OID), i.e., the first car that appears in camera 20
would be labeled as CID(OID) = 20(1). We visually track each
vehicle from camera to camera, and label their corresponding in-
stances in each camera with the same global object ID (GID). For
example, if a vehicle travels through cameras 101, 20, 106, 19, ap-
pearing as the 8th, 12th, 15th, 4th object of each camera respectively,
will form an instance path which can be represented as a set of

CID(OID), {101(8), 20(12), 106(15), 19(4)}, and can be assigned a
GID 2. In this section, we also evaluate Kestrel’s accuracy in detect-
ing the camera path, the sequence of camera traversed by the car.
The camera path ground truth is represented as the corresponding
set of CIDs.

From the dataset of 17 cameras, we have annotated, over a total
of 235 minutes of footage, 120 global objects / vehicles. The longest
path contains 7 cameras. In most cases, one vehicle going through
the camera network can be seen at three to four cameras. The number
can vary if the car goes into a plaza or parks in a private garage in
the residential block. To form as many valid ground truth paths as
possible, we issue a query with each instance of the path, except the
last instance before it disappears from the camera network. Kestrel
runs those queries to infer backwards as many hops as possible. For
example, if one car goes through 3 cameras, a, b, c, Kestrel can infer
from the instance at c to get b and a, or infer from b to get a. That
gives both a two-hop path and a one-hop path for the evaluation.
Collectively, we are able to establish 311 one-hop paths, 197 two-
hop paths, 125 three-hop paths, 55 four-hop paths, and 23 five-hop
paths. There are a small number of longer paths, which we ignore
because their number is too small to draw valid conclusions.

Metrics. The primary performance metric for Kestrel is accuracy.
We use recall and precision to evaluate the accuracy of Kestrel’s
association and path inference. Among all the given paths, recall
(T P

T P+F N) measures the fraction of the paths for which Kestrel
can make a successful inference. Given one instance of an object,
precision (T P

T P+F P) measures how often Kestrel correctly identifies
all the instances on the path within its top k choices. Ideally, Kestrel
should exhibit high recall and precision for as small a k as possible.

We explore two aspects of Kestrel’s accuracy. Its camera path
accuracy measures how accurately Kestrel can identify the sequence
of cameras traversed by a vehicle. We measure this by majority
voting across the top five instance paths. We also measure the
accuracy of determining the instance path: such a path identifies
not just the right sequence of cameras but also the right instances at
each camera matching the queried vehicle. For this, we present the
top-k accuracy: how often its top k choices contain the ground truth
path. Specifically, if the annotated ground truth is among those top k
choices, Kestrel is said to generate a true positive (TP), otherwise a
false positive (FP). Meanwhile, all the other unselected choices are
considered as negatives (N). The negatives are true (TN) when they
belong to different objects, otherwise false negatives (FN). Ideally,
Kestrel should exhibit high recall and precision for as small a k as
possible.

Kestrel SenSys, November 6-8, 2017, Delft, The Netherlands

CamPath Top 1 Top 2 Top 3
0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 P

re
c
is

io
n

Full

Partial

Mobile

CamPath Top 1 Top 2 Top 3
0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 R

e
c
a

ll

Full

Partial

Mobile

Figure 13—Augmenting Sparse Camera Network with Mobile Cameras to Achieve Full Performance

We evaluate several other metrics as well. We measure mobile
pipeline energy consumption in Joules per frame, by using a CA
60 current clamp [5] attached to the positive wire of the TK1’s
power supply. By inducing a magnetic field on the conductor and
making use of a Hall effect sensor, we can compute the current
passing through. We use a DataQ DI-149 Data Acquisition Kit [6]
that samples at 80 Hz and allows us to save the readings in a file
for post-processing. We measure detection latency of the object
detector by CPU elapsed time, and detection accuracy by mean
average precision (mAP [9]), which captures false positives as well
as the false negatives.

5.2 Camera Path and Instance Path Accuracy
In this section, we evaluate Kestrel’s accuracy. Kestrel supports a
hybrid camera network, where videos captured on mobile devices
can augment an existing fixed camera deployment. We would like to
understand (a) how much the mobile cameras improve accuracy over
the existing fixed camera deployment, and (b) how well a hybrid
camera network performs relative to a fixed camera deployment of
the same size. To this end, we evaluate accuracy over our 17-camera
dataset by forming three topologies: a Mobile topology where the
mobile cameras run the Kestrel mobile pipeline, a Full topology
where all cameras are treated as fixed and run the cloud pipeline,
and a Partial topology, which consists only of the 11 fixed cameras.

Figure 13 shows the average camera path inference precision and
recall on these three different networks. To start with, with a Full
topology where every intersection is monitored, Kestrel achieves
a camera path precision of 99.2%, while Partial only infers two
thirds of the paths correctly. Interestingly, the presence of a mobile
camera enables Kestrel’s lightweight and efficient mobile pipeline
to effectively disambiguate path choices, achieving a precision of
97.7%. Recall results are qualitatively similar, but average recall
numbers are slightly lower (explained in the next paragraph), with
about 80% recall for Mobile vs. 90% for Full. Recall for partial
is significantly lower. These results suggest that a hybrid camera
network can approach the accuracy of an equivalently sized fixed
network, and the addition of mobile devices to an existing fixed
camera network can significantly improve performance.

For instance paths, Kestrel achieves good top-3 precision and
recall for the Mobile topology, whose performance is close to the
Full topology, and significantly better than Partial. In general, the
recall performance for Mobile is lower than the Full topology (both

for camera path and instance path accuracy) because of Kestrel-
Mobile’s energy optimization to avoid invoking the object detector
sometimes leads to missed detections. We explore the trade-off
between energy and recall below. Moreover, camera path accuracy
is higher than instance path accuracy. This is because Kestrel can
precisely infer direction of motion, but its association accuracy has
room for improvement.

Figure 14 shows Kestrel accuracy as a function of path length. Its
top 3 choices (k = 3) almost always (~90% precision and recall)
find the correct paths for up to three camera hops. Increasing k
to 4 or 5 provides marginal improvements, while reducing it to 1
gives a precision and recall of slightly less than 80% for up to 3
hops. Mobile has comparable performance to Full with less than
10% degradation. In subsequent sections, we discuss how much of
this performance can be attributable to object detection, attribute
extraction, and association.

This accuracy is significant, considering that, statistically, for
each hop, Kestrel has to find the correct instance among an average
of 20.38 candidates from 2.2 cameras. More important, the distri-
bution of the number of candidate paths increases exponentially as
the number of hops increases; at 5 hops, the number of candidate
instance paths in our data set ranges from 10,000 to over a million.
In this regime, a human operator can not manually identify the cor-
rect path just by visually inspecting pictures, but Kestrel can achieve
nearly 70% recall and 80% precision at 5 hops, despite only using
the color histogram descriptor, as a result of our techniques.

At 5 hops, the precision and recall might appear low, but Kestrel
could be practicable even in this range, with a little operator input.
Suppose that a user issues a path inference query and does not see
the right 5-hop answer. If there is a correct 3-hop instance, she can
re-issue a path inference query using as the starting hop instance the
last correct instance, and stitch together the returned results.

5.3 Energy and Latency
Kestrel significantly reduces the energy consumption on the mobile
device by only invoking the mobile device when presented with a
query (unlike Kestrel-Cloud, which processes every frame), and only
when Kestrel-Cloud has several high-ranked path candidates which
a mobile device can help disambiguate. In our dataset, 84.6% of the
queries require invoking a mobile device to resolve a path ambiguity.

Kestrel-Mobile also reduces energy usage by careful design. The
bottleneck of the mobile pipeline is running the neural net for object

SenSys, November 6-8, 2017, Delft, The Netherlands Anon.

1 2 3 4 5

Path Length (Hops)

0

20

40

60

80

100

P
a
th

 I
n
fe

re
n
c
e
 R

e
c
a
ll

(%
)

F
u
ll

F
u
ll

F
u
ll

F
u
ll

F
u
ll

M
o
b
ile

M
o
b
ile

M
o
b
ile

M
o
b
ile

M
o
b
ile

Top 5

Top 4

Top 3

Top 2

Top 1

1 2 3 4 5

Path Length (Hops)

0

20

40

60

80

100

P
a
th

 I
n
fe

re
n
c
e
 P

re
c
is

io
n
 (

%
)

F
u
ll

F
u
ll

F
u
ll

F
u
ll

F
u
ll

M
o
b
ile

M
o
b
ile

M
o
b
ile

M
o
b
ile

M
o
b
ile

Top 5

Top 4

Top 3

Top 2

Top 1

Figure 14—Recall, Precision of Path Inference

0 2 4 6 8 10

Motion Threshold (Pixel)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
a
th

 I
n
fe

re
n
c
e
 E

rr
o
r

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

E
n
e
rg

y
 (

J
/F

ra
m

e
)

1-Precision

1-Recall

Energy

Latency

0.08

0.1

0.12

0.14

0.16

0.18

L
a
te

n
c
y
 (

S
e
c
/F

ra
m

e
)

Figure 15—Energy / Latency and Performance Trade-off

10
−2

10
0

10
2

10
4

10
6

10
1

10
2

10
3

10
4

10
5

Avg. Computation Latency (mSec)

A
v
g
.
S

iz
e
 /
 O

b
je

c
t
(B

y
te

s
)

CH

CLD

ORB

BRISK

SURF

SIFT

RAW

Figure 16—Feature Size vs Computation Latency

detection: on TK1, YOLO alone consumes 2.25 J/Frame whereas
attribute extraction only drains 0.42 J/Frame. In terms of latency,
YOLO takes an average of 0.259 Sec/Frame, while tracking only
takes 0.081 seconds. Therefore, the fact that the optical flow motion
filter can avoid running YOLO on every frame significantly con-
serves energy and reduces latency on mobile devices at a cost of
inference accuracy.

Energy and latency can be traded-off for higher accuracy by ad-
justing the threshold for the optical flow filter. Figure 15 quantifies
this tradeoff between energy / latency and the inference error. Intu-
itively, the higher the motion filter threshold, the fewer the YOLO
invocations, which result in less energy and lower latency. Com-
pared to YOLO running on every frame (motion threshold being 0),
a small motion filter of 4 pixels can almost cut the energy usage in
half, which can double mobile battery life, without significantly sac-
rificing path inference performance. On the contrary, if the motion
filter is too insensitive (larger than 6 pixels), Kestrel will miss a lot
of vehicles, which results in much lower recall.

Choice of Descriptor. To validate our choice of color histogram,
Figure 16 compares different features in terms of the average data
size and computation latency per object. Local features like SIFT
and SURF incur both high computation overhead and large size
(and we have earlier shown that they are sensitive to perspective
differences, and so not a good choice for Kestrel for that reason),
while the lightweight color histogram incurs minimal latency and
small size with reasonable performance.

5.4 Association Performance
In this section, we evaluate the performance of one-hop association.
Given one annotated instance at any camera, this component tries to
pick out the associated instance among all the instances from all the
neighboring cameras.

When conducting this evaluation, we also evaluate the efficacy
of each of the components of the association algorithm (§4.1). We
start with ranking the visual association score among all candidates
without any additional processing at all (NONE). Then we add
each component one by one in this order: preprocessing (PRE),
direction filter (DIR), spatio-temporal association (ET), background
subtraction (GrabCut). This process is cumulative: for example,
DIR also includes PRE and the visual association score components.

Figure 17 shows the precision and recall of each successive com-
bination. Generally, given an instance at any location at any time,
Kestrel can almost always (> 97%) find the same object in a neigh-
bor camera, if there were one to be found, within the top 3 returned
instances. Comparing the performance of each component combi-
nation, PRE effectively narrows down the search space and brings
precision and recall to nearly 90%. DIR further rules out false
positives, as cars moving in wrong direction can confound visual as-
sociation. Both DIR and ET increase recall and precision by moving
true positives higher in the rank (which increases Top 1 precision).
Grabcut also increases precision and recall noticeably.

Figure 18 shows an example of how various steps of the as-
sociation algorithm can reduce the number of candidates for the
association. In this specific query, Kestrel is able to filter down to
3 candidates from an initial set of 342, and finds the correct target
vehicle by ranking the histogram correlation offset from among these
three, even though the two cameras capture the vehicle from com-
pletely different perspectives. When averaged over all associations,
each target has an average of 385 candidates to match, PRE prunes
the search space to about 20, DIR removes about 8 cars on average
going in the wrong direction, ET is able to further narrow down
to 6 candidates. Finally, Kestrel ranks the correlation offset of the
remaining candidates.

5.5 Object Detection Performance

Performance of CPU offload. In Table 1 we summarize the tim-
ing results of running the various strategies for GPU memory opti-
mization. The Original network is already optimized (compared to
the original network that runs on server class GPUs) in that it does
not allocate memory for redundant variables not used in the testing
phase. Running the computation on the CPU takes close to half a
minute per frame, which is extremely slow, so it is imperative to
leverage the GPU cores on the board for accelerated computation.
Moreover, we see that for the original network, memory constraints

Kestrel SenSys, November 6-8, 2017, Delft, The Netherlands

NONE PRE DIR ET GrabCut
0

20

40

60

80

100

Components

P
re

c
is

io
n

 (
%

)

Top 3
Top 2
Top 1

NONE PRE DIR ET GrabCut
0

20

40

60

80

100

Components

R
e

c
a

ll
(%

)

Top 3
Top 2
Top 1

Figure 17—Precision and Recall Performance of the Semantics Association between Neighboring Cameras using
Different Kestrel Component Combinations

Target

…

…

PRE

DIR

ET

Histogram

Corr Offset

 0.45329 0.31745 0.22681

Avg

Cand. #

6.77

12.23

20.38

385.75

-

Candidate

Search

Space

Wrong

Direction

Wrong

Direction

Out of

Bound

Out of

Bound

Figure 18—Shrinking the Candidate Size at Each Step
Matching a Target

Memory
Requirement

FC layer: resulting size of
matrix multiplication

CPU GPU Split CPU Offload Pipeline

Original 2.8 GB 1 × 50176 * 50176 × 4096 25.026524 N/A 10.249577 0.703449 0.416910
Medium 1.6 GB 1 × 25088 * 25088 × 2048 24.315950 0.272191 0.573386 0.400366 0.261985

Small 1.3 GB 1 × 12544 * 12544 × 1024 24.003447 0.259000 0.394960 0.299940 0.261144
Table 1—Average Time Taken to Run Detection per Image (seconds).

do not allow running it on GPU at all; our subsequent optimizations
to reduce the memory footprint make this possible.

CPU offload brings the computation time to under 1s. Using the
CPU for the FC layer allows us to read the weight file only once for
all the frames and store the weights in CPU memory (which supports
demand paging). Finally, CPU offload along with pipelining gives
the best results; it brings down the computation time to about 0.42s or
almost 60 times faster than running it on the CPU. We see this speed
up because although the FC layer is memory intensive, the running
time even on the CPU is not a bottleneck—in other words, the CPU
processing completes within the time that the GPU is processing the
convolutional layers of the next frame. This is interesting because it
is achieved without compromising accuracy.

Other optimizations. Other optimizations are less effective. Split
allows running original network on GPUs but it is still slow as it
incurs a weight-file read overhead every frame. Reducing the size of
the network, by reducing the size of the weight matrix in the FC layer
to one fourth of the original size (Medium network) and 1/16 the
original size (Small network), enables YOLO to run faster and follow
similar trend as Original network, with one exception: for Small
network the GPU is the fastest alternative as the FC layer is small
enough that overhead of pipelining negates its benefit. However,
these networks incur accuracy loss. On the Pascal VOC 2012 test
dataset [13], we lose about 2-3% in mAP at each step of the reduction
from Original to Medium to Small.

Power measurement. Interestingly, we found that CPU offload-
ing based schemes are also the most energy-efficient. This is because
these schemes optimize speed and so the circuitry is used for much
shorter duration. They reduce the energy requirement by more than
95% for Original network (107J/frame for running on CPU, 3.78J
with CPU offload, 3.95J with CPU Offload + Pipelining). Smaller
CNNs do save energy (2.25 J/frame on Medium network for CPU
Offload + Pipelining) but at the expense of accuracy.

5.6 Attribute Extraction

Tracking Accuracy vs Processing Latency. Most existing state-
of-the-art multi-object tracking techniques assume offline processing
for stored video and can incur significant overhead. To demonstrate
this, we pick a representative of this class, MDP [66], which is
regarded as the algorithm with the best accuracy with reasonable
processing overhead. Also, we extend a robust single-object track-
ing tool, OpenCMT [52] to perform multi-object tracking for the
comparison with Kestrel.

We use a standard multi-object tracking benchmark [41] to com-
pare our tracker against these approaches. To level the playing field,
we use YOLO for detection for all three approaches. In addition to
precision, recall, and false negatives, we use a metric called MOTP
[41] that measures the tightness of the bounding boxes generated by
the tracking algorithm.

Method Rcll Prcn FN MOTP TM TD
Kestrel 76.4 88.2 152 76.4 0.081 0.057
MDP 70.1 87.1 192 75.4 N/A 0.146
CMT 75.9 88.6 155 76.3 1.599 0.907

Table 2—Tracking Accuracy and Latency on TK1 and Desktop

We run the trackers on our vehicle dataset to compare the tracking
performance as well as the average processing latency per frame,
both on the TK1 (TM) and a desktop server (TD). Table 2 shows that
Kestrel can achieve a slightly higher recall, comparable precision,
lower false negatives and a comparable MOTP score compared to
more sophisticated algorithms, while incurring an order of magni-
tude lower processing latency on the TK1 (one of the algorithms,
MDP, cannot even be executed on TK1). The primary reason for the
improved tracker performance is our design choice to periodically
invoke YOLO, which can refine the box generated by the tracker.
Between two YOLO frames, tracking and association is easier than
the kinds of continuous tracking performed by modern trackers.

We also measure the energy consumption on TK1 using the
same setup, and we find that our tracking requires 0.42 J/frame,
but OpenCMT requires energy as high as 8.4 J/frame.

SenSys, November 6-8, 2017, Delft, The Netherlands Anon.

Period Rcll Prcn TTRK TYOLO TTOT
1 76.4 88.2 0.081 0.259 0.340
3 74.7 82.5 0.081 0.086 0.167
5 64.4 74.2 0.081 0.051 0.132

Table 3—Tracking Performance and Latency Tradeoff on TK1

Next, we explore the tradeoff between tracking accuracy and total
latency by calling YOLO every 1, 3, 5 frames, and tracking only
on non-YOLO frames. This evaluation uses a series of consecu-
tive frames that have moving objects and pass the motion filter. In
other words, we try to examine the best performance when every
frame has objects to detect and track. Intuitively, the more frames
between YOLO detection, the larger chance that the tracker may
be led astray. As shown in Table 3, less frequent YOLO detection
effectively reduces the total average processing latency (TTOT) per
frame, while maintaining a reasonable precision and recall (in some
cases, even better than MDP and CMT, not shown) for attribute
extraction. Specifically, when YOLO is invoked every 3 frames,
Kestrel’s mobile pipeline can sustain about 6 fps without noticeable
loss in tracking performance. With further optimization, and on
more recent GPUs [12], we believe we can get to 10 fps, thereby
reducing query latency. Finally, our camera movement compensa-
tion algorithm has nearly identical tracking precision and recall at
walking speeds, when compared with a stationary camera.

Sensitivity to Camera Motion. To examine the tracking robust-
ness of Kestrel-Mobile for mobile cameras, we collected a set of
videos with a mobile camera while walking, biking, and driving on
our campus. In these videos, we manually annotated the bounding
boxes of vehicles appearing in every frame over nearly 6000 frames.
Then, we ran our camera motion compensation algorithm, and our
tracker, to evaluate its accuracy. Our results show a similar perfor-
mance to Table 2, with an average precision of 74.9%, an average
recall of 70.9%, and an MOTP of 78.7%. This indicates Kestrel-
Mobile’s algorithms can accurately track vehicles even when there
is significant camera motion, with an accuracy comparable to a fixed
camera.

Bandwidth. Kestrel architects the mobile and cloud pipeline to
be bandwidth-efficient. To quantify bandwidth-efficiency, in our
dataset a typical 10-minute video file recorded at 1920 × 1080 (30
fps) is around 1.4GB. Streaming every frame in real time requires
~20Mbps. Instead, Kestrel only sends attributes. In our dataset, after
the cloud pipeline, the average size of a query sent to the mobile is
only 1.52KB. The re-ranked result and its corresponding instance
metadata average 0.92KB.

6 RELATED WORK

DNNs for mobile devices. Recent work has explored neural nets
on mobile devices for audio sensing activity detection, emotion
recognition and speaker identification using an accelerometer and
a microphone [39, 40]. Their networks use only a small number of
layers and are much simpler than the networks required for image
recognition tasks. Another work [4] has benchmarked smaller Caffe-
generated CNN (AlexNet) [37], with 5 convolutional layers and 3
FC layers, for vision-based classification-only (no localization) on

the TK1. DeepX [38] is able to achieve reduced memory footprint of
the deep models via using compression, at the cost of a small loss in
accuracy. LEO [30] schedules multiple sensing applications on mo-
bile platforms efficiently. MCDNN [34] explores cloud offloading
and on-device versus cloud execution tradeoff. However, the models
they run are smaller than the ones required for our work, hence
requiring us to pursue the optimizations explained in the paper.

Object Detection. Early object detectors use deformable part
models [28] or cascade classifiers [64], but perform relatively poorly
compared to recent CNN based classification-only schemes which
achieve high accuracy at real time speeds [37]. However, top de-
tection systems like R-CNN [32], Fast R-CNN [31], and MSCNN
[21] exhibit less than real-time performance even on server-class
machines. YOLO [57] is a one shot CNN-based detection algorithm
that predicts bounding boxes and classifies objects, and we have
used a mobile GPU on a deep CNN like YOLO.

Object Tracking. Tracking objects in videos is a well researched
area. However, some tracking approaches like blob tracking [35, 62]
work well in static camera networks, but not for mobile cameras.
Many other trackers are targeted to single object tracking, e.g., KLT
[48] , OpenCMT [52]. Some work has gone into tracking multiple
objects [24, 50, 56, 66]. However, most of these trackers are not
targeted at execution on resource constrained devices. A recent
work, Glimpse [23], achieves tracking on mobile devices using a
combination of offloading and keeping an active cache of frames to
work on, once a stale result is received from the server. By contrast,
our tracking does not rely on offloading. We have compared the
performance of our tracker with OpenCMT [52] and MDP [66] and
the sensitivity to camera motion in §5.

Video Surveillance Systems and Object Association across
Cameras. Vigil [67] is a surveillance system for wireless cameras
that uses powerful edge devices at the cameras and performs
simpler tasks on the edge device while offloading the more complex
computations to the cloud. However, it does not specifically address
the re-identification problem we consider. Prior work [63] tries
to associate people etc. across different cameras using a query
retrieval framework by ranking nodes in their camera network.
Other work [49] proposes a centralized multi-hypothesis model to
track a vehicle through a multi-camera network. While Kestrel can
support such applications, our focus is to enable mobile camera
based surveillance, so our architectural and design choices are
different from this line of work.

7 CONCLUSION
This paper explores whether it is possible to perform complex visual
detection and tracking by leveraging recent improvements in mobile
device capabilities. Our system, Kestrel, tracks vehicles across a
hybrid multi-camera network by carefully designing a combination
of vision and sensor processing algorithms to detect, track, and
associate vehicles across multiple cameras. Kestrel achieves > 90%
precision and recall on vehicle path inference, and can do so while
significantly reducing energy consumption on the mobile device.
Future work includes experimenting with Kestrel at scale, extending
Kestrel to support more queries, and different types of objects, so it
can be used as a general visual analytics platform.

Kestrel SenSys, November 6-8, 2017, Delft, The Netherlands

BIBLIOGRAPHY
[1] Agent VI. http://www.agentvi.com/.
[2] Avigilon Video Analytics. http://avigilon.com/products/video-analytics/solutions/.
[3] BriefCam. http://briefcam.com/.
[4] Caffe on TK1. http://goo.gl/6hgbM6.
[5] Current Clamp. http://pdimeters.com/products/Accessories-Parts/PDI-CA60.php.
[6] Data Acquisition Kit. http://www.dataq.com/products/di-149/.
[7] Google Tango. https://www.google.com/atap/project-tango/.
[8] Google’s Pixel C. https://store.google.com/product/pixel_c.
[9] Mean Average Precision. http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_

voc09.pdf.
[10] Nexus 9. https://www.google.com/nexus/9/.
[11] nVidia Jetson TK1. https://developer.nvidia.com/jetson-tk1.
[12] nVidia Jetson TX1. http://www.nvidia.com/object/jetson-tx1-module.html.
[13] Pascal VOC. http://host.robots.ox.ac.uk/pascal/VOC/.
[14] Snapdragon 820 Benchmarks Match The Tegra X1. http://wccftech.com/

snapdragon-820-benchmarks/.
[15] Snapdragon 820 vs. Tegra K1. https://versus.com/en/

nvidia-tegra-k1-32-bit-vs-qualcomm-snapdragon-820-msm8996/.
[16] Unified Memory Architecture. http://devblogs.nvidia.com/parallelforall/

unified-memory-in-cuda-6/.
[17] WatchGuard: Law Enforcement Video Systems. http://watchguardvideo.com/.
[18] Asus ZenFone AR. Asus ZenFone AR.
[19] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded Up

Robust Features. In Proceedings of the 9th European Conference on Computer
Vision - Volume Part I (ECCV’06).

[20] Sourav Bhattacharya and Nicholas D. Lane. 2016. Sparsification and Separation
of Deep Learning Layers for Constrained Resource Inference on Wearables. In
Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems
CD-ROM (SenSys ’16).

[21] Zhaowei Cai, Quanfu Fan, Rogerio Feris, and Nuno Vasconcelos. 2016. A Unified
Multi-scale Deep Convolutional Neural Network for Fast Object Detection. In
ECCV.

[22] Guoguo Chen, C. Parada, and G. Heigold. Small Footprint keyword spotting
using deep neural networks. In Proc. of IEEE ICASSP ’14.

[23] Tiffany Yu-Han Chen, Lenin S. Ravindranath, Shuo Deng, Paramvir Victor Bahl,
and Hari Balakrishnan. 2015. Glimpse: Continuous, Real-Time Object Recog-
nition on Mobile Devices. In 13th ACM Conference on Embedded Networked
Sensor Systems (SenSys). Seoul, South Korea.

[24] Wongun Choi, Caroline Pantofaru, and Silvio Savarese. 2012. A general frame-
work for tracking multiple people from a moving camera. Pattern Analysis and
Machine Intelligence 99 (2012), 1–1.

[25] David Chu, Nicholas D. Lane, Ted Tsung-Te Lai, Cong Pang, Xiangying Meng,
Qing Guo, Fan Li, and Feng Zhao. Balancing Energy, Latency and Accuracy for
Mobile Sensor Data Classification. In Proc. of Sensys ’11.

[26] Heungsik Eom, P. St.Juste, R. Figueiredo, O. Tickoo, R. Illikkal, and R. Iyer.
Machine Learning-Based Runtime Scheduler for Mobile Offloading Framework.
In Proc. of UCC ’13.

[27] Every Chicago patrol officer to wear a body camera by 2018. Every Chicago
patrol officer to wear a body camera by 2018.

[28] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
2010. Object detection with discriminatively trained part-based models. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 32, 9 (2010), 1627–
1645.

[29] Martin A. Fischler and Robert C. Bolles. 1981. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Automated
Cartography. Commun. ACM 24, 6 (June 1981).

[30] Petko Georgiev, Nicholas D. Lane, Kiran K. Rachuri, and Cecilia Mascolo. 2016.
LEO: Scheduling Sensor Inference Algorithms Across Heterogeneous Mobile Pro-
cessors and Network Resources. In Proceedings of the 22Nd Annual International
Conference on Mobile Computing and Networking (MobiCom ’16). 320–333.

[31] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision. 1440–1448.

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. In Proc. of IEEE CVPR
’14.

[33] Google Maps Directions API. Google Maps Directions API.
[34] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wol-

man, and Arvind Krishnamurthy. 2016. MCDNN: An Approximation-Based
Execution Framework for Deep Stream Processing Under Resource Constraints.
In Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’16).

[35] Marko Heikkila and Matti Pietikainen. 2006. A texture-based method for model-
ing the background and detecting moving objects. IEEE transactions on pattern
analysis and machine intelligence 28, 4 (2006), 657–662.

[36] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. CoRR abs/1404.5997 (2014). http://arxiv.org/abs/1404.5997

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Proc. of NIPS ’12.

[38] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A Software Accelerator
for Low-power Deep Learning Inference on Mobile Devices. In Proceedings of
the 15th International Conference on Information Processing in Sensor Networks
(IPSN ’16).

[39] Nicholas D. Lane and Petko Georgiev. Can Deep Learning Revolutionize Mobile
Sensing?. In Proc. of HotMobile ’15.

[40] Nicholas D. Lane, Petko Georgiev, and Lorena Qendro. DeepEar: robust smart-
phone audio sensing in unconstrained acoustic environments using deep learning.
In Proc. of UbiComp ’15.

[41] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler. 2015. MOTChallenge
2015: Towards a Benchmark for Multi-Target Tracking. arXiv:1504.01942 [cs]
(April 2015).

[42] Lenovo Phab 2 Pro. Lenovo Phab 2 Pro.
[43] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. 2011. BRISK:

Binary Robust Invariant Scalable Keypoints. In Proceedings of the 2011 Interna-
tional Conference on Computer Vision (ICCV ’11).

[44] Rachael Lindsay, Louise Cooke, and Tom Jackson. 2009. The impact of mo-
bile technology on a UK police force and their knowledge sharing. Journal of
Information & Knowledge Management 8, 02 (2009), 101–112.

[45] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Ben Zorn. Flikker:
Saving DRAM Refresh-power through Critical Data Partitioning. In Proc. of ACM
ASPLOS ’11.

[46] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proc. of IEEE CVPR ’15.

[47] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
Int. J. Comput. Vision 60, 2 (Nov. 2004).

[48] Bruce D. Lucas and Takeo Kanade. 1981. An Iterative Image Registration Tech-
nique with an Application to Stereo Vision. In Proceedings of the 7th International
Joint Conference on Artificial Intelligence - Volume 2 (IJCAI’81).

[49] B. C. Matei, H. S. Sawhney, and S. Samarasekera. Vehicle tracking across
nonoverlapping cameras using joint kinematic and appearance features. In Proc.
of IEEE CVPR ’11.

[50] A. Milan, K. Schindler, and S. Roth. 2016. Multi-Target Tracking by Discrete-
Continuous Energy Minimization. IEEE TPAMI (2016).

[51] Mohammad-Mahdi Moazzami, Dennis E. Phillips, Rui Tan, and Guoliang Xing.
ORBIT: A Smartphone-based Platform for Data-intensive Embedded Sensing
Applications. In Proc. of ACM IPSN ’15.

[52] Georg Nebehay and Roman Pflugfelder. 2015. Clustering of Static-Adaptive Cor-
respondences for Deformable Object Tracking. In Computer Vision and Pattern
Recognition. IEEE.

[53] NYPD Plans to Put Body Cameras on All 23,000 Patrol Officers by 2019. NYPD
Plans to Put Body Cameras on All 23,000 Patrol Officers by 2019.

[54] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Architectural Support
for Address Translation on GPUs: Designing Memory Management Units for
CPU/GPUs with Unified Address Spaces. In Proc. ACM ASPLOS ’14.

[55] Jason Power, Mark D. Hill, and David A. Wood. Supporting x86-64 address
translation for 100s of GPU lanes. In Proc. of IEEE HPCA ’14.

[56] Vignesh Ramanathan, Jonathan Huang, Sami Abu-El-Haija, Alexander N. Gorban,
Kevin Murphy, and Li Fei-Fei. 2015. Detecting events and key actors in multi-
person videos. CoRR abs/1511.02917 (2015). http://arxiv.org/abs/1511.02917

[57] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
Only Look Once: Unified, Real-Time Object Detection. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[58] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. 2004. "GrabCut":
Interactive Foreground Extraction Using Iterated Graph Cuts. In ACM SIGGRAPH
2004 Papers (SIGGRAPH ’04).

[59] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International
Conference on Computer Vision (ICCV ’11).

[60] Jianbo Shi and Carlo Tomasi. 1994. Good features to track. In CVPR. IEEE,
593–600.

[61] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In Proc. of ICLR ’15.

[62] Chris Stauffer and W Eric L Grimson. 2000. Learning patterns of activity using
real-time tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 22, 8 (2000), 747–757.

[63] S. Sunderrajan, Jiejun Xu, and B. S. Manjunath. Context-aware graph modeling
for object search and retrieval in a wide area camera network. In Proc. of ICSDC

’13.
[64] Paul Viola and Michael J. Jones. 2004. Robust Real-Time Face Detection. Int. J.

Comput. Vision 57, 2 (May 2004).
[65] A. Viterbi. 2006. Error Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm. IEEE Trans. Inf. Theor. 13, 2 (Sept. 2006).
[66] Yu Xiang, Alexandre Alahi, and Silvio Savarese. 2015. Learning to Track:

Online Multi-Object Tracking by Decision Making. In Proceedings of the IEEE
International Conference on Computer Vision. 4705–4713.

http://www.agentvi.com/
http://avigilon.com/products/video-analytics/solutions/
http://briefcam.com/
http://goo.gl/6hgbM6
http://pdimeters.com/products/Accessories-Parts/PDI-CA60.php
http://www.dataq.com/products/di-149/
https://www.google.com/atap/project-tango/
https://store.google.com/product/pixel_c
http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
https://www.google.com/nexus/9/
https://developer.nvidia.com/jetson-tk1
http://www.nvidia.com/object/jetson-tx1-module.html
http://host.robots.ox.ac.uk/pascal/VOC/
http://wccftech.com/snapdragon-820-benchmarks/
http://wccftech.com/snapdragon-820-benchmarks/
https://versus.com/en/nvidia-tegra-k1-32-bit-vs-qualcomm-snapdragon-820-msm8996/
https://versus.com/en/nvidia-tegra-k1-32-bit-vs-qualcomm-snapdragon-820-msm8996/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://watchguardvideo.com/
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1511.02917

SenSys, November 6-8, 2017, Delft, The Netherlands Anon.

[67] Tan Zhang, Aakanksha Chowdhery, Paramvir (Victor) Bahl, Kyle Jamieson, and
Suman Banerjee. 2015. The Design and Implementation of a Wireless Video
Surveillance System. In Proceedings of the 21st Annual International Conference

on Mobile Computing and Networking (MobiCom ’15).
[68] Zhengyou Zhang. 2000. A Flexible New Technique for Camera Calibration. IEEE

Trans. Pattern Anal. Mach. Intell. 22, 11 (Nov. 2000).

	Abstract
	1 Introduction
	2 Architecture
	3 Mobile Device Pipeline
	3.1 Object Detection: Deep CNNs
	3.2 Attribute Extraction

	4 Cloud Pipeline
	4.1 Pair-Wise Instance Association
	4.2 Path Inference

	5 Evaluation
	5.1 Methodology
	5.2 Camera Path and Instance Path Accuracy
	5.3 Energy and Latency
	5.4 Association Performance
	5.5 Object Detection Performance
	5.6 Attribute Extraction

	6 Related Work
	7 Conclusion
	Bibliography

