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Abstract—Clinical observations indicate that during critical
care at the hospitals, a patient’s sleep positioning and motion
have a significant effect on recovery rate. Unfortunately, there
is no formal medical protocol to record, quantify, and analyze
motion of patients. There are very few clinical studies that use
manual analysis of sleep poses and motion recordings to support
medical benefits of patient positioning and motion monitoring.
Manual processes do not scale, are prone to human errors,
and put strain on an already taxed healthcare workforce. This
study introduces Multimodal, Multiview Motion Analysis and
Summarization for healthcare (MASH). MASH is an autonomous
system, which addresses these issues by monitoring healthcare
environments and enabling the recording and analysis of patient
sleep-pose patterns. MASH uses three RGB-D cameras to monitor
patients in a medical Intensive Care Unit (ICU) room. The
proposed algorithms estimate pose direction at different tempo-
ral resolutions and use keyframes to efficiently represent pose
transition dynamics. MASH combines deep features computed
from the data with a modified version of Hidden Markov Model
(HMM) to flexibly model pose duration and summarize patient
motion. The performance is evaluated in ideal (BC: Bright
and Clear/occlusion-free) and natural (DO: Dark and Occluded)
scenarios at two motion resolutions and in two environments:
a mock-up and a medical ICU. The usage of deep features
is evaluated and their performance compared with engineered
features. Experimental results using deep features in DO scenes
increases performance from 86.7% to 93.6%, while matching
the classification performance of engineered features in BC
scenes. The performance of MASH is compared with HMM and
C3D. The overall over-time tracing and summarization error
rate across all methods increased when transitioning from the
mock-up to the the medical ICU data. The proposed keyframe
estimation helps achieve a 78% transition classification accuracy.

Keywords—Healthcare, sleep poses, multimodal sensor network,
ICU monitoring, patient motion analysis, summarization, hidden
markov models, time-series motion interference, M.A.S.H.

I. INTRODUCTION

While receiving care in hospitals, ICU patients are contin-
uously monitored by healthcare staff; however, there are no
clinical procedures to reliably analyze and understand pose
variations from observations (e.g., videos) or the effects of
time-based pose patterns on patient health. The recovery of
ICU patients varies largely and often inexplicably [8], even
for patients with similar initial health conditions. A small
number of clinical studies [21] suggests that patient therapies
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based on body positioning and controlled motion can enhance
patient recovery, while inadequate positioning can have nega-
tive effects and aggravate patient health. This study attempts
to address this crucial healthcare deficiency by introducing
MASH’s algorithms and multimodal multiview (mm) camera
network. MASH combines keyframes extracted from mm video
data with Hidden Semi-Markov Models (HSMM) to represent
poses, analyze motion patterns, and model pose duration. The
MASH summarization methods enable the following health-
care applications: (1) methods to estimate rate and range of
motion to aid the analysis and prevention of bed sores (long
periods of time); (2) tools for the analysis of erratic and
distressed motion (short periods of time) that can be used
to prevent patients from, for example, falling off the bed or
accidentally removing intra-venous lines; and (3) historical
summarization of pose sequences (short and long periods time)
to unobtrusively evaluate sleep hygiene.

The MASH architecture analyzes input videos from multi-
views and modalities to deal with variable scene conditions
from a purely observation approach. Motion quantization is
performed to remove depth’s sensor noise and threshold ob-
servable levels of detectable motion. After noise and motion
thresholding, features are extracted to represent the various
poses and pseudo or transitory poses (deep and/or engineered
features). MASH uses keyframes because collecting, storing,
and processing video data from the six sources becomes a
hefty task on its own. This problem is more manageable
using keyframes across all views and modalities, which can be
considered as the frames that are informative and discriminant
(i.e., pose and pseudo-pose centroids). Pose patterns and pose
transitions can span seconds, minutes, or hours, so we use
a modified HMM to flexibly model state or pose duration.
Finally, the summary can tell us whether the observation was
a sequence of poses seen over an extended period of time
(i.e., hours) or the same sequence of poses a transition (i.e.,
seconds). With these considerations, the workflow shown in
Fig[I] consists of six major blocks: (1) data collection regarding
sleep poses and pose transitions; (2) motion thresholding,
which uses optic flow vectors to remove noise from the depth
cameras and subtlety distinguish between small and large
movements; (3) features extracted from the last layer of the
Inception architecture [34] to represent body configurations as
a numerical vector, (4) keyframe extraction to identify pseudo
poses that best represent a transition; (5) time-series analysis
via HSMM to identify the most likely sequence and model
pose duration; and (6) output summary.

The performance of MASH is evaluated in ideal (BC:
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Fig. 1. MASH framework blocks. The process starts with Block #1 and flows
clock wise: data collection, motion threshold, deep feature extraction, mm
keyframe selection, time-series modeling, and inferred summarized results.

Bright and Clear/occlusion-free) and natural (DO: Dark and
Occluded) scenarios in a mock-up and a medical ICU using
two motion speeds (fast and slow). Experimental results in-
dicate that using Inception features [34] to represent poses
helps MASH match the static classification performance of
engineered features in BC scenes, and increases the classifica-
tion performance in DO scenes from 86.7% using engineered
features to 93.6% by using Inception features (an additional
7%) in the mock-up ICU. Pose history summarization shows
that the average MASH trace overlap is 83.2% in the mock-
up ICU and 80.1% in the medical ICU, which approximately
doubles the performance of using conventional HMM. Experi-
mental results indicate that the proposed multimodal multiview
keyframe estimation algorithm achieves a mean transition
classification accuracy of 78% using five keyframes (or pseudo
poses). The keyframe approach avoids using complete videos
and provides robustness to variation in transition speeds.

Medical Background. Harvard Medical School reported in
August 2016 that monitoring ICUs can save up to $15 billion
by saving $20,000 in each of the 750,000 ICU beds in
the U.S. by reducing the effect of preventable ICU-related
conditions such as poor quality of sleep and decubitus ulcers
(DUs) [23]]. For instance, ICUs in the U.S. receive about five
million patients per year, each with an average stay of 9.3
days and with a mortality rate that ranges from 10 to 30%
depending on health conditions. MASH sample applications
focus on developing solutions to help understand and address
sleep analysis and incidence of DUs. These applications are
selected due to their pervasive nature in medical ICUs and the
opportunity to improve the quality of care provided to patients.
For example, sleep hygiene is correlated to shorter hospital
stays, increased recovery rates, and decreased mortality rates.
The findings of [3], [13], and [42] correlate sleep positions
with sleep hygiene and its various effects on patient health.
DUs are preventable, soft tissue wounds that appear on bony
areas of the body and are caused by continuous decubitus
positions. There is little understanding about the set of poses
and pose duration that cause or prevent DUs. MASH enables
the inception of required clinical studies that analyze pose
duration, rotation frequency and range, and the duration of
weight/pressure off-loading, as well as serving as the non-
obtrusive measuring tool to collect and analyze pose patterns.

Technical Background. The analysis of human motion dy-

namics has captured the attention of researchers in the en-
gineering and health communities. In particular, the ailing
healthcare system in the U.S. continues to degrade. This
degradation requires that engineers and health professionals
join forces to develop new efficient therapies and optimize
care techniques and workflows. The latest techniques using
convolutional neural network (CNN) architectures achieve
impressive classification performance. However, CNN-based
techniques require large data sets [2], [4], [39], and [41]. In
[28]], the authors introduced a CNN-alternative method for
action representation via sequential deep trajectory descriptors.
The previously cited works recognize actions centered on the
camera plane. An exception is the work from [32], which
uses stationary cameras and allows off-center actions and is
limited to scenes with good illumination that are clear of
occlusions (i.e., BC). A supervised method for learning local
feature descriptors is introduced in [48]]. Best practices for
human action and activity recognition are outlined in [44]] and
[25] with benchmarks described in [[16]. The spatio-temporal
evolution of features for action recognition is explored in [[17]
and [15]. A multimodal bilinear method for person detection
is explored in [40]. Although these methods are innovative,
they tackle conventional activity and action motion dynamics
observed, for example, in walking and running, making them
inadequate for sleep-pose pattern analysis. Sleep-pose patterns
are different; they are subtle, non-continuous, non-sequential,
and abrupt. Although effective, the method requires controlled
scenes, which are not possible in healthcare. A discriminative
multi-instance multitask method to recognize actions in 3D
spaces is proposed in [46]]. However, the proposed method is
unable to distinguish between similar actions, for which their
only distinction is their duration. The ICU scenes and bed
setting disqualify techniques based on skeletal estimation and
tracking [1]] and pure RGB data for human body orientation
[L8]. Although promising, the work described in [19] is limited
by partial occlusions and challenging ICU bed configurations,
which are tackled using multimodal multiview data.

Analysis of realistic human motion is a challenging prob-
lem with intra-class and inter-class variations and similarities
that require deep appearance and kinetic analysis [31]. Also,
the summarization via camera networks enables systems to
represent and analyze environments from multipleviews via
hypergraphs [33]], motion patterns represented as salient motifs
[S] and using graphs [45]]. These methods, however, are limited
to smooth sequential motion in scenes with relatively good
illumination and cannot be applied to the ICU. The work
in [30] surveys multimedia methods for large-scale data re-
trieval and classification using multimedia data. The objective
of the survey is to highlight an in-depth understanding of
multimedia methods for data analysis and understanding. This
will be relevant as more data is collected by MASH. A
true multimedia method to summarize events in videos via
audio, visual, and textual saliency is introduced in [6], and
a multiview method for surveillance video summarization via
sparse optimization are presented in [24]. Although interesting,
these methods analyze motion dynamics with less subtlety than
the motion of patients in the ICU. Also, these studies analyze
scenes with better illumination and are not representative of
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the ICU environment. In addition, multimedia methods may
expect speech or text information as input, which cannot be
recorded in the ICU (or hospital space). These infrastructural
and privacy limitations thwart the implementation and de-
ployment of the existing methods in healthcare applications.
The studies from [11]] and [43]] use multiview systems and
methods for smart environments. Unfortunately, these methods
require modifications to existing infrastructure. These studies
are limited to ideal scenes because they cannot overcome
illumination variations and occlusions. They do not account for
subtle motion, which can be non-uniform and non-sequential;
therefore, these cannot be deployed in a medical ICU.

The authors from [12] introduced an RGB-pressure system
for sleep pose classification. Their technique uses geometric
features to represent poses extracted from the pressure array
and the static RGB image. However, the system requires
complex calibration and a top clear view of the patient’s
body configuration. Pose classification is also tackled in [38]
using RGB, depth, and pressure sensors in simulated healthcare
environments. The authors combine RGB, depth, and pressure
modalities with room sensors to weight modality reliability.
The study in [9] uses bed aligned maps (BAMs) composed of
pressure arrays and a single depth camera. Although the BAMs
method outperforms previous static sleep pose classification
techniques, it does not consider motion. The authors from [36]
use convex coupled-constrained least-squares optimization to
remove the cumbersome pressure array and create a purely
observational system. This latest technique increased the clas-
sification accuracy by integrating multimodal sources from
multiple views and creating a truly multiview multimodal sleep
pose classification system. Unfortunately, no previous method
incorporates time to analyze the sequence of poses, pose
transition, or pose motion dynamics. The work in [22]] tackles
a rehabilitation application via pose detection and tracking;
however, its applications are limited to ideal scenarios.

Previous Work. In [37] we introduced the time-series repre-
sentation of sleep-pose patterns using HHMs and deep features
to represent sleep poses. Although this improves the static pose
classification, the methods are limited by lack of flexibility in
modeling state duration and the inability to identify key poses
across multiple modalities and views. MASH addresses these
limitations by introducing a flexible framework to model state
duration using time segments and HMM-modified inference.
In addition, MASH introduces a keyframe algorithm to iden-
tify discriminant and informative frames (i.e., pseudo-poses),
which replaces the conventional K-means method used in [37],
and improves the overall summarization performance.
Extensive literature search indicates that MASH and its
contributions may be the first of its kind. It analyzes patients’
sleep-pose patterns and motion dynamics in a simulated and a
medical ICU. Also, it observes the environment from multiple
modalities and multiple views to account for challenging
natural scene conditions. Two distinctive aspects of MASH
include incorporation of variable time information and ability
to deal with subtle motion patterns using principled statistics.

Proposed Approach. MASH is a new multimodal multiview
framework to monitor patients in healthcare environments

independent of motion rate and range. Its elements include
a multimodal multiview (mm) data collection camera network,
a mm keyframe extraction algorithm, and a mm time-series
analysis algorithm to model variable pose duration and distin-
guish between sleep poses and transitory (or pseudo) poses.
The views and modalities are shown in Fig. [T Block #1 with
sample motion summaries shown in Block #6. The two reso-
lutions are based on two of the most common ICU conditions:
sleep hygiene and DU analysis. Pose history summarization is
the coarser resolution. It provides a pictorial representation of
poses over time. The applications of the pose history include
prevention and analysis of DUs and analysis of sleep-pose
effects on quality of sleep. The pose transition summarization
is the finer resolution. MASH looks at the pseudo-poses that
occur while a patient transitions between two poses. Appli-
cations of pose transition summarization include analyzing
and quantifying physical therapy and distressed sleep motion
quantification and analysis.

Contributions. The technical contributions of MASH are:

1) An adaptive framework capable of monitoring patient
motion at various resolutions.

2) A non-disruptive and non-obtrusive monitoring system
robust to natural healthcare scenarios and conditions
such as variable illumination and partial occlusions.

3) An algorithm that effectively compresses sleep pose
transitions using a subset of the most informative and
most discriminative keyframes.

4) A fusion technique to incorporate observations from
multiple modalities and views (complementary data)
into emission probabilities to estimate intermediate
poses and pose transitions over time.

Organization of the Manuscript. The MASH system com-
ponents are described in Section [lI} which includes modalities,
views, and temporal characteristics. Section [[TI] describes the
protocols for data collection and feature extraction and selec-
tion. The description of the problem including the temporal
analysis, inference, and keyframe extraction procedures are
discussed in Section Thorough experimental results re-
garding the historical summarization of poses (coarser motion
resolution) and the rate and range of motion during pose
transitions (finer motion resolution) are shown in Section [V]
Conclusion and future work are discussed in Section
Supplemental materials including: larger figures, datasets, and
deployment details can be found online at vision.ece.ucsb.edu.

II. THE MASH SYSTEM
The MASH system is composed of three nodes. They are

battery powered, enclosed by aluminum cases, controlled by
Raspberry Pi3 [35] ARM-computers running Ubuntu 16.04 (to
record video using a Carmine RGB-D sensor), and synchro-
nized using TCP/IP communication, which are shown in Fig. 2]

Multiple Modalities (Multimodal). Multimodal studies use
complementary modalities to classify static sleep poses in
natural ICU scenes with large variations in illumination and
occlusions. MASH leverages the findings from [36] and [27]
as evidence of the benefits of multimodal systems. The RGB
and Depth views are shown in Fig. [1| Block #1.
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Fig. 2. Elements in one MASH node: Raspberry Pi3 B+, Carmine RGB-
Depth sensor, 24000 mAh battery, and aluminum enclosure used to deploy
MASH in the mock-up and the medical ICU rooms.

a) RGB (R): Standard video data provides information
to represent and classify human sleep poses in scenes with
relatively ideal conditions. However, most people sleep in
imperfectly illuminated scenarios, using sheets, blankets, and
pillows that block and disturb sensor measurements. The sys-
tem collects RGB frames of dimensions 640 x 480 pixels. Pose
appearance features representing human body configurations
are extracted from these videos in BC and DO scenes.

b) Depth (D): Infrared depth cameras are resilient to
illumination changes. The MASH sensor network uses Prime-
sense’s Carmine devices to collect depth data. The devices
acquire images of dimensions 640 x 480 and use 16 bits
to represent pixel intensity values, which correspond to the
distance from the sensor to a point in the scene. Their operating
distance range is 0.8 m to 3.5 m; and their spatial resolution
for scenes 2.0 m away is 3.5 mm for the horizontal (x) and
vertical (y) axes, and 30 mm along the depth (z) axis. The
system uses the depth images to represent the 3-dimensional
shape of the poses. However, depth information alone is not
sufficient since it requires depth contrast, which is negatively
affected by the deformation properties of mattresses, pillows,
and blankets in the ICU. The work in [47]] surveys methods
using depth cameras for semi-controlled scenarios.

Multiple Views (Multiview). The studies from [36] and [27]
show that analyzing actions from multiple views and multiple
orientations greatly improves detection. These studies indicate
that the analysis of multiple views yield algorithms, which
are independent of view and orientation. The positions of the
cameras in the medical ICU are shown in Fig. 4] (see Fig. ?? in
Appendix ?? for the mock-up ICU views and node locations).

Time Analysis. ICU patients move subtly and slowly, very dif-
ferent from active motions like jumping or walking, which are
easier to detect. MASH effectively monitors subtle and abrupt
patient motion by breaking the motion cues into segments to
flexibly model pose and pseudo-pose duration. The variable
pose duration is modeled via HSMM, which uses segments
and is derived from conventional HMM.

Motion Quantization The optic flow estimation is computed
using the OpenCV [14] implementations of Lucas-Kanade
[20] and Farneback [7]. Implementation and experimental
results indicate that Lucas-Kanade led to faster results, while
Farneback’s led to higher accuracy in the detection of the most
subtle pose transitions. Such pose transition is observed when
transitioning from the left-yearner to the left-log positions
without rotating. The two poses and their transition are shown
on the bottom row of Fig. [f] in green. From left to right, the
second and third pose are yearner-left and log-left.

Inception CNN Feature Extraction Deep feature extraction

of using Google’s Inception architecture required sizing the
frames the appropriate image dimensions of 224 x 224 pixels.
The offline analysis and approach uses Inception features due
to the infrastructure restrictions, which prohibit the use large
computation equipment. The deployed RPi3-based system can-
not compute Inception features. Instead, the deployed system
uses the online feature extraction method from [36].

ITII. THE MASH DATASET

The MASH dataset is collected from two environments: the
mock-up ICU with views shown in Fig. [I| Block #1 and the
medical ICU with views shown in Fig. [ The fully annotated
dataset will be available online to researchers. The real patient
data is not controlled and only annotated after the fact. Fig.
[] shows the observed counts of poses in number of minutes.
Fig[5] shows the counts of pose transitions observed in the
medical ICU room. The cell colors indicate the transition is
not applicable (marked N/A), the transition includes no rotation
(gray), includes left (orange), or includes right (green) rotation.

DATA COLLECTION IN THE MEDICAL ICU: MINUTES PER POSE
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Fig. 3. Number of minutes for poses recorded in the medical ICU.

The mock-up ICU. This room allows researchers to collect
static and dynamic data, design and test algorithms, and
evaluate and refine the MASH system and algorithms.

1) Poses Static Data: The mock-up sequence is set at
random. All actors in the mock-up ICU are asked to assume
and hold each of the poses while videos are recorded. The
combination of two separate recording sessions of six actors
(three female and three male) yield a total of 24 sessions: 12
for BC and 12 for DO scene conditions. Each pose is recorded
for one minute, which makes each session 10 minutes long.

2) Pose Transitions Data: The actors start in the initial pose
and transition towards a final pose by rotating left or right. This
processes is repeated for all initial poses and until all possible
combinations between initial and final poses are covered. The
combination of ten poses, with two possible transition rotations
each generates a set of 20 sequences for each initial pose.
Each recording session includes ten initial poses and ten final
poses; therefore, each transition recording session generates
200 sequence pairs. A sample transition sequence with left
and right rotation directions is shown in Fig. [6] The initial
and final poses are Faller Up (falU) and Fetal Left (ferL),
respectively. The top sequence (orange) shows the left rotation
and the bottom sequence shows the right (green) rotation. A
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small (< 180°) rotation or a large (> 180°) rotation are the
possible transitions between the poses.

The medical ICU. The battery operated MASH network is
currently deployed in a local community hospital where it is
used to collect ICU data. The ICU patient dataset is thoroughly
anonymized to protect the privacy of patients and medical staff.
The dataset includes the video recordings of five consenting
patients from periods of time that range from one to five days.

Fig. 4. MASH node locations and views of the patient in the medical ICU.
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Fig. 5. Pose transition count recorded by MASH from the medical ICU. The
cell colors indicate the transition is not applicable (labeled N/A), the transition
has no rotation (gray), left rotation (orange), or right rotation (green).

MASH Feature Extraction and Validation. The methods
from [10]] are used to calibrate the cameras prior to background
subtraction and feature extraction. The background extraction
stage detects the bed using the depth modality (i.e., largest
square). The four corners of the depth-bed serve to estimate
the perimeter and surface plane elements, which are then used
to crop the camera views and remove the background as in
[38]. Camera-based sleep pose classification studies commonly
use geometric moments (gMOMs) and histograms of oriented
gradients (HOG) to represent poses. Feature extraction of
gMOM and HOG features is based on the parameters from
[38]]. Pose classification results (see Section suggest that
using Inception [34] outperforms gMOMs, HOG, and VGG
[29] features in pose representation and classification.

IV. THE MASH PROBLEM

In order to effectively analyze patient motion, the MASH
system and algorithms need to properly handle both motion
rates (speed) and motion range (rotation angle). The initial
assumption for all video frames is that they belong to pose
transitions (pseudo-poses), but if the motion rate is identified
as slow, these frames can be used to identify true poses,
which are needed to identify pose histories (i.e., the sequence
of poses). The pose transition involves identifying the set of
pseudo poses representing a transition between two poses, and
it quantifies the direction of rotation. The first challenge arises
because conventional algorithms are unable to model pose
duration effectively. The second challenges involves detecting

the direction of rotation when transitioning between poses. The
last challenge involves representing pseudo poses, for which
MASH uses keyframe estimation. The M multimodal cameras
are stationed at different locations to obtaining V' views of the
patients as shown in Fig. ] and estimate the pose transition
dynamics, such as the ones in Fig. [

The features extracted from video frames F = {f;}, for
1 <t < T to construct feature vectors X = Xj.7 are used
to represent non-directly observable poses (Y = Yi.7). The
first objective of MASH is to find the sequence of poses (Y =
Y1.7) that probabilistically can best represent the observations,
asin: Pr (Y, X) = Pr (Y1.7, X1.7). Temporal patterns caused
by sleep-pose transitions are simulated and analyzed using
Hidden Semi-Markov Modeling (HSMMs) technique, which
is described in Section [V-Bl The interactions between the
modalities for accurate pose representation are encoded into
the emission probabilities. Scene conditions are encoded into
the set of states (the analysis of two scenes doubles the
number of poses). Conventional Markov assumptions support
MASH and ideally fit most of its analysis. However, HMMS
are limited in their ability to distinguish between poses and
pseudo-poses based on pose duration. This is because, by
design, HMMs model the probability of staying in a given
pose as a geometric distribution Pr;(d) = (ai)" ' (1 — as),
where d is the duration in pose ¢, and a;; is the self-transition
probability of pose ¢. More details are discussed in Sections
[[V-Al and [V=B] Table [ describes the variables used in MASH.

(turning left): 180° < large rotation

w D1 W 1%
- >
fE M E

Green (turning right ):  0° < small rotation < 180°

Fig. 6. Pose transitions require patients to reconfigure their body. Transi-
tioning from the faller facing up (falU) position to the fetal laying on the left
(fetL) position. The transition is achieved by either a long rotation (180°; top
row) or by a short rotation (0 — 180°; bottom row).

A. Hidden Markov Models (HMM:s)

HMM is a generative modeling approach that represents
pose history and transitions as states. The hidden variable
or state at time step k (i.e., t = k) is yj (statey or posey)
and the observable or measurable variables (x,(:zn, the vector
of image features corresponding to the k-th frame, using
modality m, and view v) at time t = k: x; such that
T = x,:) = {Ry, Dy, ... My}). The Markovian assumptions

indicate trﬁat at ¢, the hidden variable y;, depends only on the
previous hidden variable y;_1, and at ¢ the observable variable
z; depends on the hidden variable y;. These two assumptions

are used to compute Pr(Y, )g ) given by: .
Pr (Yl:T7 Xl:T) = Pr(y1) H Pr (xtlyt) H Pr (ytlyz—1), (D)

t=1 t=2
where Pr(y;) is the initial state probability distribution (IT).
It represents the probability of a sequence starting at (¢t = 1)
pose; (state;). Pr (z¢|y,) is the emission probability distribu-
tion (B) and represents the probability that at time ¢, y; (state;)
can generate the observable multimodal multiview vector x.
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MASH VARIABLES

[ SYMBOL ][ DESCRIPTION |
A Transition probability matrix A € RITTXTPT and A = {ai;}
ai,; Probability of transition from pose ¢ to j
B Emission probability matrix € RIF! and B = {pin }

b, Beginning of the u-th segment with b; = 1
Dy, k-th frame from the depth modality video
D Face-Down patient pose

d Segment duration

dy Segment duration for u-th segment

HMM Abbreviation for Hidden Markov Model

HSMM Abbreviation for Hidden Semi-Markov Model

K Data set size, K = |X|

k Data point index, 1 < k < K

KF Set of sequential keyframes representing a transition between
L Laying-Left patient pose

[, m, and n Dummy variables

Ry, k-th frame from the rgb modality video

R Laying-Right patient pose

i Probability that state ¢ generates the observation x at time ¢
T Initial state probability vector € RlP |and m; € 7

k The time step index (i.e., k = t)

P Set of patient poses P = {p; }

Prock Set of actor poses in the mock-up ICU room

Phicu Set of patient poses in the real medical ICU (micu) room
Pr(Y, X) The joint PDF: sequence of states and observations

S Set of time segments S = {s,} for 1 <u < U

s Segment element s € S

t Time tick with 1 < ¢t < T

Ttd Stores the estimated duration (1 < d < D) at time (t)

(2 HMM model with probabilities A, B, and IT

U Number of segments U = |S|

U Face-Up patient pose

u Segment index: 1 < v < U

\% View set V = {left, center, right}

\%4 Number of views V = |V|

v View index, 1 < v <V

Yk k-th hidden state y, € Y

Y Sequence of hidden states |Y| = T

X Dataset indexed by k (i.e., X%)

Xk k-th datapoint with {me }k = {fR7 o, fp}k

Th k-th observation feature vector
(v)

Xy The k-th observable variable from view v and modality m
Kroenecker delta function

Ot The maximum probability duration

6 Dummy variable used in inference

¢ Stores the state label (for a pose) of the previous segment
Stores the best duration

e (3) Stores the label with the best duration for state ¢ at ¢

TABLE 1. MASH VARIABLE SYMBOLS AND THEIR DESCRIPTIONS.

Finally, Pr (y;|y;—1) is the transition probability distribution
(A) and represents the probability of going from pose; to
pose, (state ¢ to o). The HMM parameters are A = {a;;},
B = {ptin}, and TI = {m;}, which are standard to HMM.

Modeling Limitations of HMM. One critical limitation of
HMM is its rigidity to model state duration. For instance, given
an HMM in a state ¢ (pose or transition), the probability that
it stays there for d time slices is: Pr;(d) = (aii)d_l(l — i),
where Pr;(d) is the discrete probability density function (PDF)
of duration d in pose ¢, and a;; is the self-transition probability
of pose 7, given by a geometric distribution [26]]. The inability
to flexibly model pose and transition duration is observed
when similar body positions can only be discerned by their
distinctive duration (pose vs transitory pose). This limitation
is tackled using HSMM and is described in section |[V-B;

B. Hidden Semi-Markov Models (HSMM:s)

HSMM serves to flexibly model state duration. It uses seg-
ments instead of time slices to sample observations. In HSMM,
hidden variables are segments, which have useful properties.

Fig. [T] Block #5 shows the HSMM trellis and indicates its
main components. For instance, the sequence of states y;.p is
represented by the segments (S). A segment is a sequence of
unique, sequentially repeated poses (symbols), which serves to
identify and track an observation’s first instance and the obser-
vation’s duration (based on the number of observed samples).
From the original sequence, the elements of the j-th segment
(S;) are the indices at which the observation (b;) is first de-
tected; the number of sequential observations of the same sym-
bol (d;); and the state or pose symbol (y;). For instance, the se-
quence y1.9 = {4,4,2,2,2,3,2,1} is represented by the set of
segments Si.py with elements Sy.;p = {571, 52, 53,54, 55} =
{(1,2,4), (3,3,2), (6,1,3), (7.1,2), (8,1,1)}. where U is
the total number of segments (i.e., state changes). The elements
of the segment S;—; = (b =1,d = 2,y = 4) indicate that the
segment started at the first observation, lasted for a duration
of two time samples, and was observed to be the fourth state.

HSMM components. In conventional HMM, the hidden vari-
ables are y, but in HSMM, the hidden variables are now the
segments S7.y, while the observable features are the same in
both methods (X;i.7). The joint probability of the segments
S1.y and the observable variable X;.7 is:

Pr (Sle7 Xl:T) =Pr (YIZUy bl:U; dl:U7X1:T)
bi+di+1
Pr (Sle,Xl;T) =Pr(y1) Pr(b1) Pr(di|y1) H Pr(ze|y1) x
t=by
U
[ Prulyu—1) Pr (bulbu—1,du-1)x
u=2
bi+di+1
Pr (du|yu) H Pr(zt|yu).
t=by,
2
Recall that U is the sequence of segments such that Si.; =
{81,83,...,8u} for Sy = (bu,du,yu), bu as the start po-
sition (a bookkeeping variable to track the starting point of
a segment), d, is the duration, and y, is the hidden state
(¢ {1,..,Q}). The range of time slices starting at b, and
ending at b, + d, have state label y,. All segments have a
positive duration, time-span 1 : 7T without overlap, and are
U

constrained by b; =1, > =T and b,41 = by + dy.

u=1
The transition probability Pr(y,|y,—1), is the probability of
going from one segment to the next via:

A Pr(yy = jlyu—r = 1) = ay )

The first segment (b,,) starts at 1 (u = 1) and consecutive
points are calculated from the previous point via:

Pr (bu =m|by—1 =n,dy_1 :l) zé(m—n—l) )

where 0(i — j) is the Kroenecker function with 1 for i =
j; 0 else (i.e., m = n + [). The duration probability is now
given by Pr(d, = lly, = i) = Pr;(l) with Pr;(l) as a free
parameter. This allows MASH to sample a distribution of the
form Pr;(l) = N'(u,0) in the implementation.

A normal distribution allows computing the duration prob-
ability of the i-th state and distinguishing between slow
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and fast pose duration/transitions. The estimation of MASH
parameters, Viterbi, and inference are described as follows.

MASH Parameter Estimation. HSMM estimation of param-
eters is based on maximum likelihood (MLE). The training
sequence of keyframes is fully annotated, including the start
and end index frames for each segment X;.r, Y7.r. To find
the parameters that maximize Pr (Y1.7, X1.7(6), the likelihood
parameters of each of the factors in the joint probability
must be maximized. In particular, the observation probability,
Pr(z"|y = i), is a Bernoulli distribution whose maximum
likelihood is computed as follows:

ZTTL=1 xil‘s(ym Z)
22:1 5(%7 Z) 7

where T is the number of time-series data points, §(¢, j) is the
Kroenecker delta function, and Pr (yt = Jlys—1 = z) is the
multinomial distribution of the form:

Qi = ZRNZQ 6(y’ﬂ7¢7)6(yn71) l)
! 27]7,\[:2 5(yn—17j)

Viterbi for MASH. The segment notation is used to represent
state sequences in HSMM modeling. The objective behind
the inference is to find the state sequence that maximizes
P (51:U,X1:T|9), for a new sequence of observations with
unknown duration. The sequence corresponding to the duration
with the highest probability is determined at each time step
by iterating over all possible duration values from 1 to a
predetermined duration D. This data is stored in:

(6)

mai = max Pr(Xisip = (t-d+1,d.0)), )

S1,..038k—1
which represents the highest probability of a sequence of K
segments, where the final segment starts at ¢t — d + 1 and has
duration d and label <.
Note: in conventional HMMs, to compute the maximum
probability of ending up in state sy, it is sufficient to only keep
track of the maximum probability of ending in state sj_.
The label for a pose or state of the previous segment is
stored in (;(d, ). The max probability duration () is:

0:(i) = max Pr (acl;t, S1.p = (t —d*+ 1,d*,i)|9), 8)

81538k —1
where d* is the duration with the highest probability at time
t for state 7. The best duration is stored in ¢;(¢) and the label
of the previous segment is stored in ¢ (%).

Inference for MASH. Four steps for finding the best sequence:

1) Initialization. The label probability of the first segment
is given by the initial state distribution 7 and computed
via 7,4 = m; Pri(d) []}_, Pr (z¢ye) and Ca(d, i) = 0.

2) Recursion. Iterate over all possible duration values in

Tt,d = r<n'L<xQ [5t a(i )’177} Pr; (d) Hm my Pr ('Zm Ym = .7) with

mi=t—d+1 and (q(d,i) = argmax[ét a(t )au]
<Q

The duration with max probablhty is (i) =

max [6¢—a(i)ai;], which represents the best segment.

The best duration for state ¢ at time f is given by

¢:(i) = argmax 7q.(i). Finally, ¢;(i) = Ct(d)t(z)a@)

1<d<D
represents the label of the best duration at time t for

state 1.
3) Termination. Estimate the state with the highest prob-
ability in the last timeslice from Pr* = 1r<n_a<xQ[5T(i)},
7

where y% = argmax[dr(i)], t =T, and v = 0.

4) Backtracking. From the termination, look up the dura-
tion and previous states stored in variables ¢ and
given by dj = ¢t(y2‘) and s}, (t —di +1 dt,yt)
witht =t —df, u=u—1, and Yy = ¢t+d(yt+d)

Note: negative indexing is used for the segments because the
number of segments is not known in advance. This is corrected
after inference by adding |S*| to all indices.

Keyframe (K F) Selection. Datasets collected from pose
transition are very large and often repetitive, since the motion
is relatively slow and subtle. The pre-processing stage incorpo-
rates a keyframe estimation step that integrates multimodal and
multiview data. The algorithm used to select a set (K F') of K-
transitory frames is shown in Fig.[/| and detailed in Algorithm

The size of the keyframe set is determined experimentally

(K = 5) on the feature space using Inception vectors.

Input: X, set of mm features and dissimilarity threshold th;
Result: KF = {Keyframes}x, K > 1

Initialize: K F' = {empty}x, K > 1 and count =0 ;
Stage 1: Modality (m) and View (v) Selection;

for 1 <v<Vand1l<m< M do

| DY = euclid(z\oh,, 20, ), ni = 1,n0 = N;

end

b, = max DY) > th;

{0 20V FK
mny mnN

Stage 2: Find Complementary Frames to KF' ;
for 1<v<Vandl<m<Mand1l<n<N do

D, = Dm)nl = euclld(q:"ml,wg;;;)
D2 = D'Sn,)nN = euchd(ajs,‘{le,mgr‘l’zl)

end
Sort Dy = {d1 > d2 > ... > dy—2} descending;
Sort Do = {d1 > d2 > ... > dn_2} descending;
di — KF if % > th, for 1<i,j<N-2:
Stage 3: Flnd Center Frame (i.e., Motion Peak);
for KFy and KFx_1 do
Use Stage 2 to compute D3 and Dy;
if max(Ds, D4) > 0) then
| max (D3, Ds) — KF;
end
end
Algorithm 1: Multimodal multiview keyframe selection us-
ing euclidean dissimilarity measure. The algorithm is applied
at training with labeled frames to estimate the number and
indices of keyframes across views and modalities.

Let X = {a:,(ﬁ)n} 7 be the set of training features extracted
from V' views and M modalities over IV frames and let P; and
P, represent the initial and final poses. The transition frames
are indexed by n, 1 < n < |N|; views are indexed by v,
1 < v < |V| and modalities are indexed by m, 1 < m <
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|M|. Algorithm [I| uses this information to identify keyframes.
Experimental evaluation of |K F| is shown in Fig. [9]

Modality N-Frames Identified

10 N=18' K-keyframes

vmw'rmﬁ EEEEEEE

E oEPTH -7,{/’ DKF‘
'ropoen O

Fig. 7. Keyframe extraction for pose transition representation. The keyframe
selection is based on Algorithmm This figure shows MASH’s keyframe extrac-
tion process from three views and two modalities. The first two keyframes are
extracted from the first camera’s RGB modality (Views 1 and 2). Subsequent
keyframes are selected from the View 2’s depth, and from View V’s RGB.

V. MASH RESULTS AND ANALYSIS

MASH is evaluated using a five-fold cross-validation ap-
proach. The results indicate that deep features increase
MASH’s classification accuracy over engineered features by
7% in DO scenes (from 86.7% to 93.6%), while matching the
performance of engineered features in BC scenes. The overall
time tracing and summarization error rate between HMM
and the proposed MASH approach increased from 46.4% to
83.2% in the mock-up ICU and from 35.8% to 80.1% in the
medical ICU. In addition, the proposed keyframe transition
representation achieves a classification of 78%.

Static Pose Analysis - Feature Validation. Static sleep-
pose classification analysis is used to compare the MASH
method to previous studies. Couple-Constrained Least-Squares
(cc-LS)[36] and MASH are tested on the dataset from [36].
Combining the cc-LS method with deep features extracted
from two common network architectures improved classifica-
tion performance over the HOG and gMOM features in DO
scenes by an average of eight percent with Inception and four
percent with VGG. Deep features matched the performance of
cc-LS (with HOG and gMOM) for a BC scenario. Results for
both scenes are shown in Table ??. Similarly, the contribution
of each of the multimodal and multiview sources is analyzed
and evaluated. The plot in Fig. [§]shows the contribution of each
MASH sensor modality and view to the mean classification
accuracy of static poses using cc-LS from [36].

Keyframe Performance. The effect of |KF| (= 5) and
keyframe dissimilarity threshold ¢h (> .8) on pose transition
classification accuracy is shown in Fig. 0] The traces indicate
the portion of transitions correctly identified by MASH.

Summarization Performance. Pose history summarization
is important to decubitus ulceration prevention and analysis.
An example of the objective behind history summarization is
shown in Fig. [T0] where the sequence of poses is identified as
A or B. History summarization is the coarser time resolution.
The mock-up ICU enables staging the motion and scene
condition variations necessary to carry out this experiment.
In particular, it avoids disturbing real patients in the medical
ICU. Table |V| contains the numerical symbols of the various
poses and the names used in the summarization traces.

POSE CLASSIFICATION: SENSOR CONTRIBUTION TO MEAN ACCURACY

Bright-Clear m Dark-Occluded
R{1} =
R —
D {2} e
R(12) ——
R(23) ——
D{1,2}
D{2,3}
R-D {1}
R-D {3}
R-D{1,3}
R-D{1,2,3}
0.5 0.6 0.7 0.8 0.9 1
Mean Accuracy

Modality {View #}

Fig. 8. Sensor contribution to mean classification of sleep poses. MASH
performance is evaluated in BC (yellow) and DO (blue) scenes. RGB and
Depth are R and D, while {view #} is the camera view.

Keyframe Set ([KF|): Mean Transition Classification Per
100
—— th>80%  —— 50<th<80% —@— th<50%

Mean Accuracy
2 o 9«
s 28 8

N
S

5 10 15 20 25
Number of Keyframes

Fig. 9. Motion summarization performance for pose transition classification
as a function of the number of keyframes used to represent transitions and
rotations between poses. The best set uses th = 0.80.

MASH: Pose History Summarization

Symbol Pose Name

0 Aspiration
+1/-1 Soldier (+Up / -Down)
+2/-2 Yearner (+R / -L)
+3/-3 Log (4R, -L)

+4 /-4 Faller (+Up / -Down)
+5/-5 Other / Background
+6 /-6 Fetal (+R / -L)

TABLE II. POSE SYMBOLS AND DESCRIPTIONS USED FOR ICU POSE
HISTORY SUMMARIZATION IN THE MOCK-UP AND THE REAL
ENVIRONMENT.

Pose History Summarization in the ICU. Summarization
history results are shown in Fig. [TT|for the mock-up ICU room
in (a) and for the medical ICU room in (b). The accuracy is
computed as the percent overlap between the trace representing
the true poses and the traces representing MASH and HMM in
orange and gray, respectively. The pose history summarization
experiments are staged using a sampling rate of one second
and an pose duration of 10 seconds, with a minimum average
detection of 80 percent. A pose is assigned a label if it is
consistently detected (i.e., 80% of the time), including the
label “other”. Poses that are not consistently detected are
ignored. The system is tested in the mock-up setting using
a randomly selected sequence of ten poses starting with a
randomly selected scene condition. The duration of the poses
is also selected at random with one scene transition (from
BC to DO or from DO to BC). The history summarization
performance is shown in Table [T

Pose Transition Dynamics: Motion Direction. The detection
and quantization of transitions and directions of rotations is
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MASH: Pose History Summarization

Scene Average Detection Rate
BC 85
DO 76

TABLE III. POSE HISTORY SUMMARIZATION PERFORMANCE

(PERCENT ACCURACY) OF THE MASH FRAMEWORK IN BRIGHT AND
CLEAR (BC) AND DARK AND OCCLUDED (DO) SCENES IN THE MOCK-UP
ICU. THE SEQUENCES ARE COMPOSED OF 10 POSES WITH DURATION
THAT RANGES FROM 10 SECONDS TO 1 MINUTE. THE SAMPLING RATE IS
ONE SECOND.

History
Patient A

=D
Fig. 10. Sample pose history summarization log of patient motion in medical
ICUs over a 4hr span.

POSE SUMMARIZATION OVER 10-MINUTES (15-sec TICKS) IN THE MOCK-UP-ICU

7 @ TRUE = = HMM == C3D

MASH (HSMM),

Pose Symbol

Second Tick (1:15)

(a)

POSE SUMMARIZATION OVER 2HOURS (1-min SAMPLING) IN THE MEDICAL ICU

7 ® TRUE — — HMM -- G3D

MASH (HSMM)

Pose Symbol

Minute Tick

(b)
Fig. 11. History summarization traces of HMM, C3D, and MASH in (a) the
mock-up ICU under BC conditions on a 10-minute video and (b) in medical
ICU under random scene conditions on a two-hour video with a reduced set of
poses due to patient immobility. The medical summary is based on a two-hour
medical round standard. The green solid traces represent the ground-truth.

important to physical therapy and recovery rate analysis.

Transition Summarization in the Mock-Up ICU. The per-
formance of MASH summarizing fine motion to describe
transitions between poses is shown in Figs. [12] and [[3] for (a)
singleview and (b) multiview system configurations, while (c)
shows the scale and font legend.

Peak performance is attributed to the combination of mul-
tiple views and modalities. The contributions of each sensor
and view are shown in Fig. [T4]

logL |yeaR|
69
]

7
o

7
70

INPLACE

LEGEND

(©)
Fig. 12. MASH pose transition detection and classification mean accuracy in
the mock-up ICU under BC scene conditions. The detection scores are shown
for the singleview (a) and multiview (b) system configurations with the legend
in (c).
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(a) (b)
Fig. 13. MASH pose transition detection and classification mean accuracy in
the mock-up ICU under DO scene conditions. The detection scores are shown
for the singleview (a) and multiview (b) system configurations.
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Transition Summarization in the Medical ICU. Note that
it is logistically impossible to control ICU work flows and to
account for unpredictable patient motion in a medical ICU.
ICU patients do not have the same rotation range as the
patients/actors in the mock-up ICU. This mobility constraint
reduces the set of poses and pose transitions (unavailable
transitions are marked N/A). The timeline in Fig. shows
the overall clinical objective behind the pose history summa-
rization. Once in production, clinicians will be able to label
the pose history summaries correlate pose patterns with patient
health status (i.e., replacing the labels sequence A and B with
actual medically validated labels).

Views of the medical ICU room are shown in Fig. f] and
the traced detections are shown in Fig. [TT] (b). The green trace
represents the true transition labels and the red trace indicates
the predicted labels. Table [V] shows the pose descriptions used
in the summarization plots. MASH’s summarization results for
fast motion of four patients are shown in Fig. [I5[a) using
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TRANSITION CLASSIFICATION: SENSOR CONTRIBUTION TO
ACCURACY (OVER THE TWO ROTATION DIRECTIONS & |KF| =< 5)

Bright & Clear ® Dark & Occluded

R{1}
R{3)
D{2
R{1,2}
R{23}
D{1,2}
D {23}

Modality {View #}

RD {1}
R-D {3}
RD {13}
RD {123}

0 025 05 075 1
Mean Accuracy

Fig. 14.  Sensor contribution to the mean precision classification of pose
transitions. The MASH sensors and views are tested in BC (blue) and DO
(yellow) scenes. The RGB and Depth modalities are represented by R and D,
respectively. The views are marked {view number} shown in El

YR o 0n] 011 - [1ogR]iogL]year] yea | et ret | rart]
7 79 77

8 8
- |l £l 75 87176

8 81
79 82 8

| metace | 89

(b)

Fig. 15. Pose transition detection and classification in the medical ICU.
Mean accuracy scores are shown for the singleview (a) and multiview (b)
configurations. The set of poses is reduced due to patient’s constrained
mobility. Scenes are not controlled since the priority is patient care.

a singleview and (b) using a multiview configuration. Note
that overall, the performance of the MASH solution using
multimodal singleview in (a) is matched or outperformed by
the multmimodal multiview solution in (b).

Comparison with Popular Methods. The performance of
MASH is compared with C3D [39]] and the summarization
and detection performance is shown in Fig. [[1} The sequence
overlaps achieved by each method in the mock-up ICU and the
medical ICU are: 46.4% and 35.8% for conventional HMM,
70.5% and 63.3% for C3D, and 83.2% and 80.1% for MASH,
respectively. Using a combined average, MASH outperforms
HMM by 20% and C3D by 15% overlap.

Online and Offline Processing Speeds. The online perfor-
mance of MASH includes collecting data at 12 fps using the
RPi3 devices. Real-ICU data collection is very critical and the
main objective of the deployed system. Each device controls
two modalities and synchronizes the data collection over
the three views. RPi3s are incapable of extracting Inception
features; therefore, feature extraction is defaulted to gMOM
and HOG vectors as described in [36]. The performance is then
extrapolated from the data collection to optic-flow computation

and feature extraction. The average running speed is approx-
imately 6 fps: 12 fps for data collection (with pre-buffering),
a drop of 2 — 3 frames for optic-flow and a similar drop for
feature extraction, with a under one frame for inference. The
offline performance is extrapolated using desktop computers
with GPUs to process the data frames and extract capable
of extracting Inception features. The data collection in the
mock-up ICU achieves 30 fps (with pre-buffering). Offline run-
time performance is approximately 23 fps: 30fps video with
a drop of 3 frames for optic-flow computation and 3 frames
for Inception features and 2 fps for inference resulting in an
average performance 22fps, which is just under four times
faster than the simulated online approach using RPi3s. The
results in Fig. [TT] are obtained using the offline approach.

VI. CONCLUSION AND FUTURE WORK
Current computational abilities can help address the chal-

lenges of today’s healthcare system. The application have the
potential to improve patient care, develop new techniques, and
objective evaluate and validate medical treatments. The MASH
framework is such an example. It can analyze patient poses in
healthcare environments. Thorough evaluation highlights the
feasibility of the detection and quantification of patient poses
and motion dynamics for healthcare applications. The mm
sensor network is robust to variations in illumination, view,
orientation, and partial occlusions. MASH is non-obtrusive and
non-intrusive, but not without a cost, as the patient-motion
monitoring performance of MASH in dark and occluded scenes
is far from perfect; however, most medical applications that
analyze motion, such as physical therapy sessions, are carried
out under less severe conditions. Although the deployed ver-
sion of the system suffers slightly from under-powered devices,
the findings reported in this paper open up the door to new
studies and optimization opportunities.

Future studies will focus on system optimization. Also,
future studies will investigate the recognition and analysis of
activities and events in the ICU, such as hand sanitation. The
continuous growth of the MASH dataset will soon enable deep
learning analysis. An important future study will incorporate
additional modalities, such as thermography, to validate find-
ings and close the learning loop. Finally, effective medical
applications require generating semantically meaningful logs.
MASH will explore natural language understanding to create
such logs and narrate ICU activities and events.
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