
SACCADE GAZE PREDICTION USING A RECURRENT NEURAL NETWORK

Thuyen Ngo, B.S. Manjunath

Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA
{thuyen, manj}@ ece.ucsb.edu

ABSTRACT

We present a model that generates close-to-human gaze se-
quences for a given image in the free viewing task. The pro-
posed approach leverages recent advances in image recogni-
tion using convolutional neural networks and sequence mod-
eling with recurrent neural networks. Feature maps from con-
volutional neural networks are used as inputs to a recurrent
neural network. The recurrent neural network acts like a vi-
sual working memory that integrates the scene information
and outputs a sequence of saccades. The model is trained end-
to-end with real-world human eye-tracking data using back
propagation and adaptive stochastic gradient descent. Over-
all, the proposed model is simple compared to the state-of-
the-art methods while offering favorable performance on a
standard eye-tracking data set.

Index Terms— Eye tracking, scanpath, gaze, fixations

1. INTRODUCTION

Due to sensory and computational limitations, humans and
many other animals employ visual attention as the strategy
to actively explore the environment. Human visual system
only has high visual acuity in a small region, the fovea, and
the photoreceptor density drops rapidly when moving away
from the fovea. When a human observer gazes at a point, the
fixated region is projected onto the fovea and sampled with
highest density. The peripheral on the other hand is perceived
with low resolution. This helps reduce the amount of informa-
tion the brain needs to process at a given time but it requires
the eyes to move constantly to integrate the information of
the entire scene. The mechanisms which control such eye
movements have been extensively studied in psychology and
neuroscience [1].

A similar computational bottleneck exists in computer vi-
sion where processing the entire image might be prohibitively
expensive. For example, the popular deformable part model
for object detection [2] takes a few seconds to process a sin-
gle image as it uses scanning windows over the whole im-
age. In face recognition or image classification with con-
volutional neural networks, the input image normally needs
to be cropped so that objects are aligned roughly at the cen-
ter of the image. It could be advantageous in these cases to

have an attentional model to select meaningful regions to pro-
cess. Toward this, recent work in computer vision has fo-
cused on (1) saliency models, which predict the probability
map of fixations (a comprehensive review of saliency mod-
els can be found in [3]); and (2) objectness measures [4, 5],
where potential regions containing objects are selected. How-
ever, these models ignore the sequential nature of visual atten-
tion, which could be valuable information for visual search
and large scale image analysis.

Predicting the fixation sequence is quite challenging and
has not received much attention in computer vision. The first
model [6] simply uses winner-take-all and inhibition of re-
turn schemes to output a sequence of winners from a static
saliency map. In [7, 8] authors use stochastic models for scan-
path based on Levy distribution of saccades magnitudes. [9]
exploits three factors that might guide sequential eye move-
ments: reference sensory responses, fovea periphery resolu-
tion discrepancy, and visual working memory. The first learn-
ing based method is introduced in [10] by integrating seman-
tic information along with Levy flight and saliency map into a
Hidden Markov Model. And recently reinforcement learning
has been applied to learn the induced reward function [11] or
the fixation policy [12] to obtain state of the art performance.

In this work, we utilize both CNN and RNN’s power and
simplicity to model fixation sequences. Compared to the state
of the art [12] and other previous work [10, 3], our model of-
fers several advantages. First, it does not assume any prior
knowledge about the data. Most previous works integrate
some understanding about eye tracking data in the models.
For example, the center bias and Levy flight distribution of
eye movements have been used either as features or priors in
[12, 10, 3]. The model in [12] is even trained with different
set of features for different eye tracking datasets. Thanks to
end-to-end training, we expect our model to learn such knowl-
edge from the data itself. Second, the proposed method uni-
fies the feature extraction steps into a single pass through a
CNN. Other methods normally need to extract low level fea-
tures such as edges or color features and then compute seman-
tic features using object detectors.



RN
N

RN
N

RN
N

RN
N

RN
N

p

z

ℎ"

p p p p

z z z z

#"

Unrolled	RNN

16x16

Input	Image CNN Feature	maps

Fig. 1. The overall of our model. Given an image, feature maps from CNN are extracted to feed into a RNN.

2. APPROACH

The overall approach is shown in Figure 1. Given an image,
we first extract features from a pretrained CNN. These fea-
tures are then used as inputs into a RNN to make predictions
about the fixation locations. We now will discuss in detail
each component of our model.

2.1. CNN Feature extraction

Many recent works exploited transfer learning or domain
adaptation using pretrained CNNs. The idea is that knowl-
edge gained from training millions of images for classification
could be used for different tasks with limited labeled data.
The pretrained features from convolutional neural network
have been shown to be effective for many different tasks
ranging from fine-grained image classification [13], image
segmentation [14] to image caption generation [15]. These
features contain not only the semantic information of the im-
ages as a whole, but also the locations of such information
[16], which is a desirable property for our model. We modify
the original 16-layer VGG network [17] to retain only con-
volutional and pooling layers. This helps maintain the spatial
information in the extracted feature maps and allows to run
the network with different image sizes. In our experiments,
we use input size of 512x512 and the resulting output feature
maps are of size 16x16.

2.2. Spatial Quantization

In line with the CNN feature extraction, we spatially quantize
the input image into 256 regions by a 16x16 grid. Each re-
gion could be represented by a 512-dimensional feature vec-
tor from the CNN feature maps. At the same time eye track-
ing fixation data are binned into those regions. Each fixation
is now represented by the center of the region it is in, and a
sequence of fixations is a sequence of jumps from one region
to another. This greatly simplifies the modeling process com-
pared to other models where fixation locations are at super-
pixel level [10, 12].

+h

input gate output gate

forget gate

LSTM block

Fig. 2. Illustration of a LSTM block. The green connections
are feedforward with associated weight matrices. The blue
are feedback weight connections. Best viewed in color.

2.3. Long Short Term Memory (LSTM)

LSTM [18] is designed to mitigate the vanishing and explod-
ing gradients during training of recurrent neural networks,
and has been widely used for sequential modeling [19, 15].
Training a traditional RNN could be difficult because the gra-
dient signal is multiplied many times by the recurrent weight
matrix during back propagation. If the weights are small, the
resulting gradient signal could be so small that learning will
become either too slow or even stop working (vanishing gra-
dients). On the other hand, if the weights are large, the gradi-
ent signal could end up being too big and cause the learning to
diverge (exploding gradients). LSTM aims to fix these issues
by introducing a modular structure, referred to as a memory
cell. A memory cell includes an input gate, an output gate, a
forget gate and a self-recurrent connection. The gates control
how the cell modulates its dynamics and its interactions with



the input and the output. The forget gate modulates whether
the cell should remember or forget its previous state. The in-
put gate controls how much of the input would have an effect
in the cell, and the output gate controls the effect of the cell at
the output (on other neurons).

An example of a LSTM block is shown in Figure 2 and its
main computations with input xt, output ht and its recurrent
cell ct are as follows:

it = σ (Wixt + Uiht−1 + bi) (1)
ft = σ (Wfxt + Ufht−1 + bf ) (2)
ot = σ (Woxt + Uoht−1 + bo) (3)
c̃t = tanh (Wcxt + Ucht−1 + bc) (4)
ct = ft � ct−1 + it � c̃t (5)
ht = ot � ct (6)

The gates {it, ft, ot} are perceptron units with sigmoid
activation σ. {Wi,Wf ,Wo,Wc} and {Ui, Uf , Uo, Uc} corre-
sponds to the weight matrices for the feedforward and feed-
back connection; {bi, bf , bo, bc} are biases. The gates’ mod-
ulation operator � is element-wise multiplication.

2.4. Scanpath Model with LSTM

The key observation is that saccade planning is not memory-
less, i.e. it is influenced by the gaze history [20]. Such visual
working memory could be naturally modeled using an LSTM.
In our case, the LSTM models the conditional transition prob-
ability of the next fixation given the current fixation and the
history of information it has seen so far. The history is ex-
pected to be remembered in the state vectors ct and ht. The
transition probability pt is computed as follows:

zt = CNN(St) (7)
xt = FFx(zt) (8)
ht = LSTM(xt, ht−1, ct−1) (9)
yt = FFy(ht) (10)
pt = softmax(yt) (11)

Here we use CNN to extract the feature zt at the current
location St. FFs are one-layer perceptrons: the first one is
used to map the dimension of zt to the number of LSTM hid-
den units and the second is used to map LSTM output to the
distribution over possible locations:

P (St+1|St, ct−1, ht−1) = pt (12)

In order to predict the first fixation, the initial states of the
LSTM is also computed from the CNN features using one-
layer perceptrons:

ho = FFh(CNN), co = FFc(CNN) (13)

2.5. Learning

We aim to estimate parameters θ of the model, including all
weight matrices and biases, from eye tracking data. The log-
likelihood of one fixation sequence S = {S2, S3, . . . , Sn+1}
given an image I:

L(S|I; θ) =
n∑
t=1

logP (St+1|St, ct−1, ht−1) (14)

=

n∑
t=1

log pt(St+1) (15)

The model is optimized so that the log-likelihood over all
training samples is maximized:

θ? = argmax
θ

∑
(I,S)

L(S|I; θ) (16)

The equivalent form of this is the minimization problem on
traditional log loss (negative log-likelihood). From Figure 1
we can see that the computation flow of equation 15 for each
sequence is actually a DAG and thus the learning can be per-
formed using standard back propagation.

2.6. Sequence Prediction

There are multiple approaches that can be used to generate
a sequence from the trained model. The simplest prediction
scheme is to sample the most probable location given the cur-
rent location St and the states of the LSTM:

St+1 = argmax
Lt+1

P (Lt+1|St, ct−1, ht−1) (17)

We sample the first location according to p1. Given the feature
at that location we can sample from p2, and continue until we
reach some pre-defined sequence length. This, however, is far
from optimal since the error from one time step could easily
be propagated to the next.

The optimal strategy would be searching for the sequence
with maximum likelihood based on equation 15. However,
this is too expensive because of the exponential growth of the
search space with respect to sequence length. Instead we use
beam search to generate m best sequences with largest like-
lihoods. We do this by always maintaining m best candidate
sequences at each step. At the end of the step, each candidate
will have 256 children for the following locations. Among all
resulting sequences we choose m of them with the maximum
likelihood. Finally, we return the best among m candidates
as the predicted sequence. We use the beam search in the our
experiments with a beam of size 20.



3. EXPERIMENTS

3.1. Evaluation metric

We use the metric proposed by [3] to evaluate consistency of
eye tracking sequences. For each image, fixations from all hu-
man subjects are clustered using meanshift clustering with an
optimal bandwith that maximizes the interaction rate I among
clusters. Similar to [12], the interaction rate is defined as:

I =
Nb −Nw

C
(18)

Nb is number of fixation transition between clusters, Nw
is number of transitions within clusters and C is the number
of clusters. Each cluster is then associated with a character. A
sequence of fixations is now represented as a string of charac-
ters and Needleman-Wunsch string matching algorithm [21]
can be used to to compute the distance between any two se-
quences.

A predicted sequence is compared to data from all of the
human subjects and scores are averaged to obtain the final
score. We also compute scores between any two subjects and
average them to get the upper bound for the performance.

3.2. Dataset

We evaluate our model using the MIT [22] dataset. The
dataset contains 1003 images with various types of object
categories. Eye tracking data was collected during a free
viewing task with 15 subjects per image, with a total of about
15,000 sequences. This is currently the largest free-viewing
eye-tracking dataset available for natural images.

3.3. Training Details

Due to limited training data, the main challenge is to deal
with overfitting. To reduce overfitting, we only train the RNN
part of the model, leaving the CNN part untouched (no fine-
tuning). We do a simple data augmentation with horizontal
flipping to create more training examples. Even though eye-
tracking data are not absolutely invariant to this transforma-
tion (humans might not look at flipped texts for example), we
observe slight improvement in the results. We also try to keep
the number of model parameters small, limiting the number
of hidden units of the LSTM to only 64. The model is trained
with dropouts [23] using rmsprop [24], a variant of adaptive
stochastic gradient descent, without using momentum term.
The LSTM weights are initialized with random orthogonal
matrices, and the remaining weights are randomly initialized
with a small variance.

3.4. Results

It was first shown in [3] that when using winner-take-all
method (WTA) to compute fixation sequences, GBVS [25]

Fixation Stage

1 2 3 4 5 6

S
e

q
u

e
n

c
e

 S
c
o

re

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Inter Subject

LSTM

SVM

GBVS

Fig. 3. Evaluation of the RNN model (blue triangle) and base-
line models GBVS [25] (black cross) and Judd [22] (green
star) and inter-subject performance (red circle) on the MIT
dataset. Best viewed in color.

and Judd [22] saliencies perform significantly better than
other saliency models. Recently [12] has shown that SVM
saliency models like Judd’s with WTA fixations can perform
comparably with state of the art [12] itself. Since we were not
able to get access to the evaluation codes of the referenced
models [9, 10, 12], we only compare our models with WTA
using Judd and GBVS saliencies. We randomly split the data,
using 90% for training and 10% for testing. We retrain the
SVM saliency model using the same training data. The com-
parisons are limited to 6 fixations for each sequence (similar
to [12]). Figure 3 shows the performance of three models on
the test set. The inter-subject performance is calculated over
the whole dataset. Our method performs better than WTA on
SVM (Judd’s saliency).

4. CONCLUSION

We have presented a model to predict a sequence of fixations
that humans are likely to look at in a given image (in free-
viewing task). We present a simple framework to model se-
quences with recurrent neural networks using localized fea-
tures extracted from a pre-trained convolutional neural net-
work. The model is trained to maximize the likelihood of
fixation sequence given an image using free-viewing human
eye-tracking data. Despite its simplicity, we achieve favorable
performance compared to more complicated methods. With
recent advances in eye-tracking technology, we would ex-
pect better performance of our model when large eye-tracking
datasets become available in the future. Exploring a similar
framework to predict dynamic gaze in videos will have in-
teresting applications in video object tracking and human as-
sisted annotations of large data sets.



5. REFERENCES

[1] Sabine Kastner Ungerleider and Leslie G, “Mechanisms
of visual attention in the human cortex,” Annual review
of neuroscience, vol. 23, no. 1, pp. 315–341, 2000.

[2] Pedro F Felzenszwalb, Ross B Girshick, David
McAllester, and Deva Ramanan, “Object detection
with discriminatively trained part-based models,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 32, no. 9, pp. 1627–1645, 2010.

[3] A. Borji, H.R. Tavakoli, D.N. Sihite, and L. Itti, “Anal-
ysis of scores, datasets, and models in visual saliency
prediction,” in ICCV, Dec 2013, pp. 921–928.

[4] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari,
“Measuring the objectness of image windows,” IEEE
transactions on pattern analysis and machine intelli-
gence, vol. 34, no. 11, pp. 2189–2202, 2012.

[5] Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, and
Philip Torr, “Bing: Binarized normed gradients for
objectness estimation at 300fps,” in CVPR, 2014, pp.
3286–3293.

[6] Laurent Itti, Christof Koch, and Ernst Niebur, “A model
of saliency-based visual attention for rapid scene analy-
sis,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, , no. 11, pp. 1254–1259, 1998.

[7] Dirk Brockmann and Theo Geisel, “The ecology of gaze
shifts,” Neurocomputing, vol. 32, pp. 643–650, 2000.

[8] Giuseppe Boccignone and Mario Ferraro, “Modelling
gaze shift as a constrained random walk,” Physica A:
Statistical Mechanics and its Applications, vol. 331, no.
1, pp. 207–218, 2004.

[9] Wei Wang, Cheng Chen, Yizhou Wang, Tingting Jiang,
Fang Fang, and Yuan Yao, “Simulating human saccadic
scanpaths on natural images,” in CVPR, 2011, pp. 441–
448.

[10] Huiying Liu, Dong Xu, Qingming Huang, Wen Li, Min
Xu, and S. Lin, “Semantically-based human scanpath
estimation with hmms,” in ICCV, Dec 2013, pp. 3232–
3239.

[11] Stefan Mathe and Cristian Sminchisescu, “Action from
still image dataset and inverse optimal control to learn
task specific visual scanpaths,” in Advances in neural
information processing systems, 2013, pp. 1923–1931.

[12] Ming Jiang, Xavier Boix, Juan Xu Gemma Roig,
Luc Van Gool, and Qi Zhao, “Learning to predict se-
quences of human visual fixations,” IEEE Transactions
on Neural Networks, 2015.

[13] Niko Sunderhauf, Christopher McCool, Ben Upcroft,
and P Tristan, “Fine-grained plant classification using
convolutional neural networks for feature extraction,” in
Working notes of CLEF 2014 conference, 2014.

[14] Jonathan Long, Evan Shelhamer, and Trevor Darrell,
“Fully convolutional networks for semantic segmenta-
tion,” in CVPR, June 2015, pp. 3431–3440.

[15] Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan, “Show and tell: A neural image cap-
tion generator,” in CVPR, June 2015, pp. 3156–3164.

[16] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann
LeCun, and Christoph Bregler, “Efficient object local-
ization using convolutional networks,” in CVPR, June
2015, pp. 648–656.

[17] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” in Proceedings of the International Conference
on Learning Representations, 2015.

[18] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[19] Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le, “Se-
quence to sequence learning with neural networks,” in
Advances in Neural Information Processing Systems 27,
2014, pp. 3104–3112.

[20] Paul M Bays and Masud Husain, “Active inhibition
and memory promote exploration and search of natural
scenes,” Journal of Vision, vol. 12, no. 8, pp. 8, 2012.

[21] Saul B Needleman and Christian D Wunsch, “A gen-
eral method applicable to the search for similarities in
the amino acid sequence of two proteins,” Journal of
molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[22] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio
Torralba, “Learning to predict where humans look,” in
CVPR, 2009, pp. 2106–2113.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfit-
ting,” The Journal of Machine Learning Research, vol.
15, no. 1, pp. 1929–1958, 2014.

[24] Tijmen Tieleman and Geoffrey Hinton, “Lecture 6.5-
rmsprop: Divide the gradient by a running average of its
recent magnitude,” in Coursera: Neural Networks for
Machine Learning, 2012.

[25] Jonathan Harel, Christof Koch, and Pietro Perona,
“Graph-based visual saliency,” in Advances in neural
information processing systems, 2006, pp. 545–552.


