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ABSTRACT
�is work introduces a multimodal multiview camera network for
role identi�cation and re-identi�cation in an Intensive Care Unit
(ICU) room, where identifying individuals is not permi�ed. �e
analysis challenges include imaging conditions such as medical
isolation (where all visitors wear scrubs), poor and non-uniform
illumination, or variable camera views. We propose a role rep-
resentation, which combines static appearance features such as
texture and color, together with a dynamic quanti�cation of hu-
man locations and interactions that results in a semantic map. �e
proposed representation is easy to compute and robust to varying
ICU conditions and network con�gurations, which make the meth-
ods suitable for low-power distributed sensor network deployment.
�orough evaluations and comparisons with competing methods
are performed. �e �ndings from this approach enable the com-
pliant analysis of work�ows in healthcare, while protecting the
privacy of patients and medical sta�.
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1 INTRODUCTION
Person identi�cation, re-identi�cation, and tracking are essential in
many healthcare se�ings. However, collecting and using such iden-
ti�able information is prohibited in most cases by the �e Health
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Figure 1: Views of the mock-up ICU room (top two rows) and
the medical ICU room (bottom). �e columns are the input frames
(le�), the detected objects (center), and the detected roles in the color
bounding boxes (right).

Insurance Portability and Accountability Act (HIPAA) [7]. To ad-
dress this limitation, this work introduces a novel framework for
Role Representation and identi�cation from Appearance and Ac-
tivity Maps (RAM). We demonstrate its application in an Intensive
Care Unit se�ing in a real hospital environment where RAM learns
ICU-associated roles. RAM combines static appearance features
(texture and color) with quanti�ed dynamic human locations and
interactions (semantic maps) to describe these roles.

�e proposed representation is simple, easy to compute, and
robust to natural conditions, which makes it suitable for low-power
distributed network deployment. �e semantic maps make RAM
independent of network con�guration. �e performance of RAM is
evaluated on 11 days of multimodal multiview data and compared
with the latest methods. �orough evaluation of RAM is performed
to justify its components and to compare its performance with
competing appearance-based and tracking-based methods. �e
�ndings from this approach will enable the privacy-compliant anal-
ysis of work�ows in healthcare and other areas where identifying
individuals is not permi�ed. RAM identi�es roles (not individu-
als), protecting patient and sta� privacy, while ensuring work�ows
remain una�ected by surveillance mechanisms. Figure 1 shows
sample inputs, detected relevant objects, and estimated roles in a
mock-up and a medical ICU room.

Medical Background. �ere is an increasing interest in role identi-
�cation and analysis in healthcare [24], due to its potential bene�ts
in improving and optimizing care. One major gain from role identi-
�cation and analysis is in de�ning each person’s responsibilities,
ensuring appropriate implementation of each professional’s role,
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optimizing professional scopes of practice, and thereby ensuring
e�cient patient management [3]. Although clinicians agree that
detailed understanding of work�ows is essential to quality of care,
healthcare restrictions prohibit the use of people’s identi�able in-
formation. To circumvent these data restrictions, RAM introduces
methods for role representation and role identi�cation based on
appearance features (for training and system initialization) and
semantic activity maps (location and interactions).�e idea behind
semantic maps is that di�erent roles interact with di�erent ob-
jects, visit di�erent locations, and maintain a certain distance from
certain objects in the ICU. �is is further enhanced by observing
subjects over time. For example, a patient might walk past a venti-
lator, but a medical practitioner will spend more time in that area.
Similarly, visitors spend more time close to the patient si�ing in
chairs, while sta� mostly avoids chairs. Although semantic map
features alone can be used to infer roles, their combination with
appearance information achieves greater accuracy.

Related Technical Work. Studies analyzing healthcare environ-
ments include using a single RGB-D sensor, RFIDs, and proximity
sensors to record activities in a neo-natal ICU as in [12] Work�ows
in an operating room are analyzed in [18] and the analysis tasks
are very complex. One signi�cant limitation is considering that any
activity can be performed by any individual. �is makes the action
space relatively large, which decreases accuracy. One helpful con-
cept in improving outcomes includes identifying roles who perform
distinctive and common activities and using this information to
identify roles (e.g., patient, doctor, or sta�). �e surveys from [25]
and [11] describe the challenges and most popular techniques in
person re-identi�cation. Existing methods for identi�cation and re-
identi�cation range from methods leveraging deformable parts [4]
to feature representation and metric learning [13] to video ranking
[26] (as an alternative to single-frame approaches). �e work in [15]
introduced a distributed network framework for node performance
comparison and person re-identi�cation that can be used to esti-
mate optimal camera topology. �e authors in [8] argue that most
existing methods depend on person pose and orientation variations
and introduce a technique to model such variations in the feature
space. Also, there are several feature representations that have
pushed the limits of performance to new levels. Appearance-based
representations such as the ensemble of local features (ELF) [9]
and symmetry-driven accumulation of local features (SDALF) [1]
encode color properties. Similarly, salience matching and learning
[28], [29] and mid-level �lters [30] depend on relative patch con-
trast and distinctiveness. Although the previously cited research
achieves impressive results, their appearance-based methods di-
rectly depend on proper imaging conditions, such as bright, and
uniform illumination, and view angle between the individual and
the camera. In addition, appearance-based role representation alone
is not su�cient. For instance, medical isolation procedures to pro-
tect compromised patients require that all people entering the ICU
room wear disposable isolation scrubs, so all roles appear iden-
tical. Another limitation of these representations in real-world
applications, such as healthcare, is their inability to evolve over
time (i.e., to consider temporal information) and to integrate in-
teraction information. �e proposed approach introduces a novel
role representation; a semantic activity abstraction and extraction
algorithm to identify; and a method for role identi�cation based on

the sequence of observed activities, visited locations, and detected
interactions (cones for orientation and proximity). �e proposed
methods are capable of dealing with cases when role-based visual
features are obfuscated by extreme scene and appearance changes.

�e main contributions of RAM are:
• A simple, novel, and e�ective hybrid method for role rep-

resentation, combining visual appearance (static) and se-
mantic activity map (dynamic) features.

• A modular, non-disruptive, and inexpensive multimodal
sensor network controlled by Raspberry Pi3 devices [23].
�e network performance and ability to work with existing
hospital infrastructure is being tested in a medical ICU.

• An experimentally validated decentralized method for learn-
ing role representations and inferring unknown roles.

• A score aggregation method, which combines the decen-
tralized decisions to improve role identi�cation accuracy.

2 DATA COLLECTION
�e sensor locations and camera views are shown in Figure 2. �e
methods from [10] are used to calibrate the three cameras and
estimate the �oor plane of the ICU. A total of eleven days of video
data (approximately a total of 264 hours, 15, 840 minutes, or 950, 400
seconds) are collected covering six nurse assistants, four caterers,
�ve medical doctors, four facilities and janitorial personnel, ten
nurses, �ve patients, twelve visitors, and two days of isolation.

Recall that when the room is in isolation, all visitors as well as
hospital sta� are required to wear disposable scrubs, causing all
roles to appear identical. Multiple roles were observed manually
and added to the counts for these two days.

�e set of roles R and symbols representing each of the eight
observed roles are: nurse (A)ssitant, (C)aterer, medical (D)octor,
(F)acilities, (I)solation, (N)urse, (P)atient, (V)isitor. �e role set is
indexed by r , where Rr with r = 1 is used to indicate the role of
nurse assistant. Figure 3 shows samples of the various roles. �e
total frequency count of observed/collected instances for each role
(in number of minutes on the vertical axis) is show in Figure 4. �e
data also include three hours collected in a mock-up ICU room
with actors playing four patients, one nurse, one visitor, and one
nurse assistant. Note that about 30% of the data contains more than
one role, patient-visitor being the most common. �e scope of this
work is focused on role representation and identi�cation. A future
paper will describe the analysis of activities using the complete
anonymized (HIPAA compliant) and fully annotated dataset.

3 DESCRIPTION OF THE PROBLEM
�ere are multiple problems and stages in role representation and
role identi�cation. At the high level, the objective can be described
as assigning roles to people observed in an ICU room using mul-
timodal and multiview videos. �e challenges come at the lower
levels of the analysis. For instance, what are good appearance role
representations, how do roles evolve over time, and how can one
infer roles when appearance features are not discernible. �ere-
fore, given a set of training multimodal multiview videos, the �rst
problem involves identifying a role using appearance features to
create an appearance dictionary (A). Nurses tend to wear unique
uniforms in order to keep a sense of their individuality in the work
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Figure 2: Location and views of the three nodes in the ICU room.
Each node is composed of an RGB-D sensor, a Raspberry Pi3, and a
battery, all inside an aluminum enclosure.

Figure 3: �e eight roles associated with the ICU room.

Figure 4: Number ofminutes each of the roles is observed, over the
11 days of data. Gray bars indicate that di�erentiating roles based
on appearance is possible, while blue bars indicate isolation scrubs
are used (hence no appearance di�erence). Note: isolation scrubs
were observed for a total of 2, 795.04 minutes or 1.91 days.

place [3]. �is makes identi�cation based on appearance alone
unreliable. �e solution is related to the second problem, which
corresponds to learning the semantic motion dynamics associated
with each of the observed roles and creating a dictionary of such
representations and roles (H ). �e last problem involves matching
an unseen video with information extracted at training to �nd the
best matching role R∗ by maximizing the combined score (SAr +SMr )
from matching appearance features (fA) to obtain the appearance
score SA and semantic activity features fM to obtain the semantic
score SM ) for all roles indexed by r , where 1 ≤ r ≤ R and R is the
number of roles under consideration in the set of roles R.

4 APPROACH AND METHODS
Consider the ICU rooms in Figure 1. Intuitively, hospital visitors
look di�erent from healthcare sta�, o�en dressing di�erently. In

addition, di�erent roles perform di�erent activities and visit dif-
ferent locations in the room. Some activities such as entering the
ICU are performed by all roles, while some social or medical ac-
tivities are performed only by speci�c roles. For example, nurses
check ventilators and janitorial personnel clean rooms and empty
trashcans, while visitors sit and interact with patients for longer
time intervals and in closer proximity. �e objective is to identify
the set of locations (corresponding to the various activities) that
each role visits along with the associated objects and interaction
cone con�gurations. �e interaction cones are used to quantify a
person’s relative distance and orientation to objects of interest. �e
variability of visit duration by a role and the set of observations
(semantic features) is unbounded and can be very short or very
large. A method to extract semantic features over time to deal with
the variability in visit duration by certain roles is also proposed.
�e features are discriminative and informative and their nature
allows them to be independent of their chronological order.

�e �rst step is detecting individuals in the scene via [5]. �e
set of semantic features representing the r -th role (Rr ∈ R ) at time
t is represented as fM,r,t = {дx ,дy ,Cq,d,o }r,t , where дx and дy
are the grid coordinates, Cq,d,o is the interaction cone vector for
quadrant (q), and interaction distance (d) in reference to objects
in the set O = {bed, chair, computer, doorway, person, sink, table,
trashcan, tray, and ventilator} indexed by o for 1 ≤ o ≤ 10. Object
detection for o ∈ O is applied to the RGB modality. �e semantic
features fM,r,t,v are extracted for each role r seen by each view v
(1 ≤ v ≤ V ) at time t (1 ≤ t ≤ T ) from a network withV views over
a duration T . �e fM,r,t,v vectors are used to build the dictionary
of semantic activity maps across all rolesM = {M}r,t,v ∈ RRTV.
�e RGB modality is used to perform the initial person detection,
which is used to initialize a blob tracker in the Depth modality. �e
variables дx and дy are used to impose smoothness and serve to
constrain the blob tracker.

4.1 Training
Training is split into two stages: static, where appearance features
fA are used to create a dictionary of roles A; and dynamic, where
a dictionary of semantic histogramsM for all roles is learned from
the semantic activity map features fM,r,t,v extracted for all roles,
over time, and across all views.

4.1.1 Role Representation. �e process of learning a role repre-
sentation starts with identifying the set of semantic states corre-
sponding to each role. Given a set of videos K , each with K = |K |
frames, the �rst step is to extract the appearance vectors fAk for
1 ≤ k ≤ K . At time t = 0, appearance vectors are extracted from the
detected person (given by the tracked blob form the depth modality).
�e vectors are composed of two elements: a 128-dimension GIST
vector (one scale) for texture [17], and the 96-dimension (�rst and
second order) color histogram vector [27]. �ese appearance vec-
tors serve to identify distinct visitor clothing pa�erns and generic
healthcare sta� uniforms. �e combination of appearance and se-
mantic map features yields a reliable role representation that is
easy to compute. �is gives a great advantage for deployment in
low-power distributed sensor networks.

Appearance Dictionary. GIST features [17] are used to represent
texture pa�erns in clothing corresponding to the various roles.
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Figure 5: Semantic activity map for the caterer role in a 16x16 grid
overlayed in black.

Color histograms are used to help characterize clothing styles such
as uniforms. A color variance threshold (th) is used to indicate a
person is wearing a uniform (e.g., janitorial or caterer uniforms).
�is information helps to distinguish between hospital sta� and
visitors. �e 96-element color histogram is computed based on
[27] by combining the �rst moment (mean) and second moment
(standard deviation) on the 16-bin histograms extracted from each
of the three channels in the HSV color space. �e texture and color
features are concatenated to form fA. �e fA vectors are used to
create the appearance dictionary ofA ∈ RAR , where A is the cardi-
nality of the appearance feature vector (A = 16) and R is the number
of roles (R = 8). �e dictionary of appearance features (A) is used
to compute Linear Discriminant Analysis (LDA) [19] boundaries
for each role in R and are represented by λr . �e hyper-planes
(decision boundaries) are used to score a new sample by computing
the distance to all, but selecting the closes one i.e., SA inversely
proportional to the distance to the closest LDA-hyperplane.

Semantic Activity Map. . �e semantic activity map corresponds
to the dynamic analysis of the roles. �e �oor plane is estimated
from the depth modality. A set of maps is computed for each of the
eight roles over time. A sample map for the caterer role is shown
in Figure 5. A dictionary of semantic features (M) is computed
for all role instances in the training set. �e semantic histogram
features fM are used to create a semantic action bag of visual words
based on [16]. Various object detectors are tested based on their
performance and complexity for o�ine and on-board processes.
Evaluation of object detectors is beyond the scope of this work;
however, the best performing detector for o�ine-ICU processes is
YOLO [22], which uses convolutional neural network architecture.
�e best performing detector capable of running on the Raspberry
Pi3 is [6], which detects objects from learned a�ributes.

Location and Interaction �anti�cation. �e interaction cones in
Figure 6 represent the 120-element vector Cq,d,o for 1 ≤ q ≤ 3 and
1 ≤ d ≤ 4, with shape [cq=1,d=1, . . . cq=1,d=3, . . . cq=4,d=3]. �e
feature vector is computed at each t with distance and orientation
relative to each of the objects in O. �e radius of each disk is
computed based on distances greater than the average adult arm-
length (outer disk:> 4�), between forearm and full arm’s length

Figure 6: Role interaction cones Cq,d for quadrant q and distance
d showing regions of highest interaction (green), mid interaction
(yellow), and lowest interaction (red). Darker disks indicate higher
interaction probability (closer), while lighter disks indicate lower
interaction (farther away). �e color and color scales are used to
indicate person orientation and proximity.

(middle disk:2 − 4�), and within forearm length (inner disk: < 2�).
�e poselets from [2], [14], and [21] are evaluated for usage in
the ICU. Experimentally, the poselet estimator from [21] is used
to compute the orientation cones, which is assigned to the closest
quadrant. �e poselets are given with respect to the camera that
detected the person and mapped across the ICU �oor plane. �e
distance (disk) is computed between detected objects and detected
individual’s blob centroids and assigned to the closest d .

�e semantic map features M are composed of [G,C], where
G = {д}x,y and C = {c}q,c,o . During implementation G is only
used to track the various individuals and enforce smoothness and
C is used to create semantic activity distance histograms (fM for
r ∈ R) each with a voting power of 1

q+d . �e histograms are
combined to create the semantic dictionary (M).

4.2 Testing
�e objective at testing is to �nd the role R with the maximum score
across all views over time (0 ≤ t ≤ T ). �e static scores (t = 0) are
computed from appearance features alone as follows:

SAr =
1
V

V∑
v=1
(SA)r,v (1)

where SAr is the average score of role r for an individual seen
through camera view v using appearance features fA given by:

SA = min
r

D(fA, λr ) for 1 ≤ r ≤ R, (2)

where λr is the Linear Discriminant Analysis (LDA) boundary for
role r . �e method from [20] is modi�ed to use scores as the distance
(D(·)) to the LDA boundary (λr ) for role r .

�e dynamic scores (1 ≤ t ≤ T ) are given by:

SMr =
V∑
v=1

T∑
t=1

min D(fM,t,v ,Mr ) for 1 ≤ r ≤ R. (3)

�e operator D(·) represents the computation of Earth Mover’s
Distance (EMD) between the observed instance fM,t,v and the
role-histograms Mr ∈ M at time t from view v .

Finally, the role with the maximum score is found via:

R∗ = arg max
1≤r ≤R

(SAr + SMr ) (4)
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�is approach has the additional advantage of ignoring the se-
quence of activities, which are not required to be sequential.

5 PERFORMANCE
�e performance of RAM is evaluated under di�erent camera views
for accurate role identi�cation using a strati�ed 10-fold cross-validation
evaluation scheme. Average results across all folds are presented.

5.1 Non-Isolated and Isolated Environments
�is experiment contains two parts. �e �rst part uses appearance
features and semantic maps for role identi�cation in non-isolated
environments. �e confusion matrix in Figure 7(a) shows the quali-
tative performance of the proposed role representation. �e second
part of the experiments takes place in an isolated environment,
where individuals have to wear blue disposable scrubs and appear-
ance features are informative but non-discriminative. �is means
that appearance is used to detect the blue scrub but not to identify
roles. In such case, the semantic features become the relevant input
for classi�cation and identi�cation of roles. �e confusion matrix
for classi�cation in isolated scenarios is shown in Figure 7(b).

(a) (b)

Figure 7: Role identi�cation confusion matrices (a) confusion ma-
trix of non-occluded identi�ed roles. (b) Confusion matrix of the
identi�ed roles for individuals wearing isolation scrubs. All roles
have the isolation pseudo-label, hence the symbol N/A on the row
and column corresponding to the isolation role (I).

�e role classi�cation accuracy as a function of the number of
semantic features observed over time (t > 0) is shown in Figure
8. �e traces represent a one-vs-rest scheme for each role. �e
contribution of appearance features (fA), semantic features (fM ),
and their concatenated version (fA + fM ) for identi�cation of each
of the roles is shown in Figure 9.

5.2 Decentralized Process: Camera Views
�is experiment evaluates individual views and combinations of
views by modifying equations 1 and 3. It serves to identify optimal
views for accurate role identi�cation. Obtaining a clear (unob-
structed and direct) view of the activities and roles directly a�ects
the role identi�cation results shown in Figure 10. Camera locations
and views are shown in Figure 2. �ere are two objectives behind
this experiment: the �rst is to show that the decisions can be made
at the individual nodes; and the second is to explore the best and
worse case scenarios and to simulate the e�ects on identi�cation
performance due to sensor failures or sensor occlusions (i.e., in the
ICU, views can be blocked by privacy curtains).

Figure 8: Mean role classi�cation accuracy is based on the number
of extracted semantic features. �e duration of the observations
helps to identify roles. Overall, roles observed for shorter periods
of time are harder to identify. �e vertical dashed line indicates that
74 observations is on average the best number for all detections. Al-
though (I)solation is a scene condition, not a role, its identi�cation
accuracy is shown here as well.

Figure 9: Mean role classi�cation accuracy using appearance fea-
tures (fA), semantic features (fM ), and their combination (fA + fM ).

Figure 10: Average classi�cation performance using all views and
various reduced camera-view combinations. Sensor locations and
views from right to le� in clock-wise direction are: v{1}, v{2}, and
v{3} shown in Figure 2. �e bar plots indicate that better views of
locations visited by speci�c roles help to better identify roles, while
the best performing combination is the complete set of views.

5.3 Multiple-Target Role Identi�cation
�is experiment uses the combined RAM elements to represent,
track, and identify roles in the ICU. �e experiment is performed
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on video instances with one or more people present in the scene.
�is experiment also validates the dimensionality of the semantic
map based on accuracy and complexity as shown in Figure 11.

Figure 11: Average role classi�cation accuracy as a function of se-
mantic map grid dimensions and number of people in the scene.
�e worst performing grid size is 8 × 8 due to the artifact in which
multiple people can occupy the same grid. �e best performing grid
size is 32 × 32; however, it is also the more complex.

5.4 Performance Comparison
�e performance of RAM is compared with competing state-of-
the-art methods as shown in Figure 12. �e contrast methods
are You-Only-Look-Once (YOLO) [22] and the method based on
deformable part models and appearance from [13]. However, the
competing methods only apply to the non-isolated environments,
where appearance can be used to identify roles. �e methods can
detect isolation scrubs but cannot identify the occluded role.

Figure 12: Performance contrast of four competing methods and
RAM for ICU role identi�cation in clear and isolation (I) conditions.

6 DISCUSSION AND CONCLUSION
�e classi�cation results indicate that roles can be identi�ed by
using a combined appearance and semantic activity approach. In
some cases, individuals can be identi�ed at the moment of �rst
detection (t = 0) based on appearance features only. Although
decentralized decisions are possible at the node level, the best indi-
vidual decisions depend on having the optimal view of the activities

in the room. �e best role identi�cation performance is achieved
when appearance and semantic data from all nodes are combined.

�e grid dimensions are evaluated experimentally. �e best
compromise between complexity and performance is met with the
16×16 grid size, as shown in Figure 11. In this case, each grid covers
an approximate area of one square foot, which coincidentally is also
the average area covered by a standing person (scene’s top-view).

Recall that the objective of RAM is to identify various speci�c
roles in the ICU. To reduce the study’s search space, re-ranking
was explored, but it was omi�ed due to its minimal impact. �e
intra-class similarities (e.g., among nurses, nurse assistants, and
doctors) are small, compared with the large inter-class di�erences
(e.g., between medical and non-medical sta�).

7 FUTUREWORK
Future work will explore the evolution of roles in healthcare. For
instance, due to the scarcity in the healthcare workforce, regular
ICU visitors are o�en trained on basic healthcare tasks, alleviating
some of the task load on the sta�. �is evolution can obfuscate
RAM’s re-identi�cation analysis and can have a negative impact
in its performance. In addition, future studies will investigate the
identi�cation of new roles based on anomaly detection.

Experiments involving object detectors and human poselet esti-
mators indicate that good object detectors and poselet estimators di-
rectly a�ect the performance of RAM. Although multimodal-based
detectors are still in their infancy, they are shown to outperform
unimodal (e.g., RGB-only) object detectors. One improvement in
the system and and future area of research would be the incorpora-
tion of object detectors and poselet estimators that combine RGB-D
data. RAM uses a prede�ned set of objects; however, these directly
depend on the speci�c environment and application. Future studies
will explore identifying relevant objects and estimating an object’s
importance in role representation and identi�cation. It is important
to note that not all roles are explored in this study due to the limited
number of observed instances. �e continuous expansion of this
study will allow the integration and analysis of additional roles.

High-level semantic activities are used in this study. However,
�ner analysis can be be used to be�er infer the roles. Potential
studies will explore a �ner level of dynamic motion information.
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