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Abstract. We present an unsupervised three-dimensional feature clus-
tering algorithm to gather the mTOP2016 challenge data into 3 groups.
We use the brain MR-T1, diffusion tensor fractional anisotropy, and dif-
fusion tensor mean diffusivity images provided by the mTOP2016 com-
petition. A distance-based size constraint method for data clustering is
used. The proposed approach achieves 0.267 adjusted rand index and
0.3556 homogeneity score within the 15 labeled subjects, corresponding
to 10 correctly classified data items. Based on visual exploration of the
data, we believe that a localized analysis of the lesion regions, using the
computed tractography data, is a promising direction to pursue.

1 Introduction

This paper addresses the challenge of feature detection and classification of sub-
ject data based on brain imaging, as described in the mTOP challenge. The
imaging data include the MR-T1 and diffusion weighted images (DWI). While
there is extensive work on applying unsupervised learning to clustering 2-D image
features [1–3,6], the problems posed by the mTBI data set are particularly chal-
lenging since the features of interest are likely very localized. Furthermore, the
subject categorization is derived not necessarily from the image data but from
other observations, making this problem very distinct from the traditional works
in natural image processing.

We propose a fully unsupervised methodology to learn the 3-D features from
the data, a 3-D convolutional network to extract the feature representation for each
subject, and a distance-based size constraint methodology for data clustering.

2 Unsupervised 3-D Feature Learning

Our proposed workflow includes four stages. The first stage performs data prepa-
ration and pre-processing on mTOP 2016 data set. The second stage performs
learning 3-D features from brain MR-T1, diffusion tensor fractional anisotropy
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(DT-FA) and diffusion tensor mean diffusivity (DT-MD) images from 27 sub-
jects of mTOP2016 data set. The third stage performs feature representation for
each subject, and the last stage performs group clustering based on these feature
representations.

2.1 Data Preparation and Pre-processing

The mTOP data consists of MR-T1, DT-FA and DT-MD images, see Fig. 1.
This data set contains 27 subjects belonging to 3 different categories (healthy,
patient category 1 or patient category 2) each consisting of 9 subjects. mTBI
Patients are categorised into one of two groups based on their long term recovery
status following the injury. The imaging data includes for MR-T1 image at 182×
218× 182 voxels, with 1 mm × 1 mm × 1 mm voxel resolution, and the dimension
for DT-FA and DT-MD image is 91 × 109 × 91 with 2 mm × 2 mm × 2 mm voxel
resolution.

Fig. 1. Left: MR-T1 image, Middle: DT-FA image, Right: DT-MD image

Data preparation for MR-T1 images is shown in Fig. 2. For MR-T1 images,
we consider 8 × 8 × 8 voxel volume represented as a 512 dimensional vector of
voxel values, x̃

(i)
T1 ∈ R

512, where i indexes the 3-D patch. The overlap between the
volumes in a sliding window is 50%, and those volumes that have more than 75%
zero values are discarded. Thus, a large number of data vectors are generated
that are the organized as column vectors in a matrix.

Moreover, these vectors are normalized to zero mean and unit standard devi-
ation:

x(i) =
x̃(i) − mean(x̃(i))

std(x̃(i))

where x̃(i) is a unnormalized column vector and “mean” and “std” are the mean
and standard deviation of the element of x̃(i). Let XT1 represent this matrix
that includes data from all of the 27 subjects. Similarly, two other matrices XFA

and XMD are constructed. However, since the spatial resolution of the data for
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Fig. 2. Data preparation for MR-T1 images

these two cases are different from the MR-T1, we use a 4 × 4 × 4 voxel volume.
Therefore, the data vectors all represent a 512 mm3 spatial volume.

After normalization, we apply the standard Zero Component Analysis (ZCA)
whitening transform [5] on each of the datasets XT1,XFA, and XMD. This
helps minimize the correlation among the components of the column vectors.
For contrast-normalized data, we set the whitening parameter εzca to 0.01 for
8 × 8 × 8 voxel patches and 0.1 for 4 × 4 × 4 voxel patches.

2.2 Dictionary Learning via K-means Clustering

The next step is to learn a dictionary for each of the data matrices using the stan-
dard K-means clustering. A separate dictionary is learned for each of the three
matrices. Let the data matrix be X ∈ R

N×M and the corresponding dictionary
be D ∈ R

N×K . Then,

Loop until convergence:

c
(i)
j =

⎧
⎨

⎩

D(j)�x(i), if j = arg min
l

|D(l)�x(i)| ∀i, j.

0, otherwise.

D := XC� + D

D(j)/||D(j)||2 ∀j

where c
(i)
j is the code vector associated with the input x(i) (ith column of X),

and D(j) is the jth column of the dictionary D that is a 3-D feature we learned.
In the end, we will learn K 3-D features from a dataset (D ∈ R

N×K). Note that
C ∈ R

K×M . Let the three corresponding dictionaries be DT1,DFA, and DMD.

2.3 Feature Representation

Feature computation workflow schematic is shown in Fig. 3. Input data includes
the three types: brain MR-T1, DT-FA and DT-MD, for each of the subjects.
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Each of these datasets is first normalized by subtracting the mean voxel value
and dividing by the standard deviation within the brain region. The dictionary
code words learned from the K-means clustering above are used as the weights
for the first convolutional layer. The stride for MR-T1 is 2 voxels, and for DT-
FA and DT-MD is 1 voxel. This is followed by a 3-D max-pooling layer of size
3×3×3. The final merge layer concatenates the features from the three different
pooling layers, thus constructing a single feature vector for each of the subjects.
The dimensions of the resulting 3-D feature vector is 1536 × 25 × 32 × 23.

Fig. 3. 3-D Convolutional network for feature extraction

2.4 Group Clustering with Size Constraints

Ideally one would like to train the convolutional network to adjust the weights
for discriminating the three different classes. However, given the number of data
points, this is currently not feasible. We explored training an SVM with cross-
validation but the initial results were not promising. Instead, we now consider
this problem as one of unsupervised clustering in the feature space computed by
the above hand-tuned convolutional network.

For clustering, we use the standard K-means clustering with distance-based
size-constraint, building upon the method described in [8]. However, [8] does not
provide a unique solution as it only uses the cluster labels. Instead, we modify
the method to account for both labels and distances to the centroid as follows.

Given a dataset of N objects with P centroids (number of clusters), let Dist
be the N × P distance matrix,
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Dist =

⎡

⎢
⎢
⎢
⎣

d11 d12 . . . d1P
d21 d22 . . . d2P
...

...
. . .

...
dN1 xN2 . . . dNP

⎤

⎥
⎥
⎥
⎦

(1)

where dip is the distance between i object and p-th centroid. The objective is to
compute a constrained P × N binary label matrix L,

L =

⎡

⎢
⎢
⎢
⎣

l11 l12 . . . l1N
l21 l22 . . . l2N
...

...
. . .

...
lP1 lP2 . . . lPN

⎤

⎥
⎥
⎥
⎦

(2)

such that

P∑

i=1

lij = 1, j = 1, . . . , n, and
N∑

j=1

lij = Ni, i = 1, . . . , p (3)

where lij = 1 if the j-th object is assigned to cluster i, and cluster i is constrained
to have exactly Ni points. This results in the following problem statement:

minimize
n∑

k=1

Dist(k)L
(k) (4)

where Dist(k) is the kth row of Dist, and L(k) is the kth column of L. This
binary integer linear programming problem can be easily solved by any existing
solver. The mTOP2016 data set has 27 subjects which are belonged to three
different classes, and each class has nine subjects. Therefore, for this data set,
we set N = 27, P = 3, and Ni = 9 for each class.

3 Experiments and Discussions

Experiments are carried out with the following parameter settings: (i) whether
to use whitening (ii) the size of 3-D patches (iii) the size of 3-D max-pooling
kernel (iv) the number of 3-D features. We use adjusted rand index (ARI) [4] and
homogeneity score (HS) [7] to measure the performance. The adjusted rand index
measures the similarity of two assignments (clustered labels vs. ground truth
labels), which is invariant to permutations and normalised to chance. Similarity
score is between 1.0 and −1.0. Random labelings have a ARI close to 0.0, and
1.0 stands for perfect match. Homogeneity score measures the purity of ground
truth labels within cluster. HS is between 1.0 and 0.0. 1.0 stands for perfectly
homogeneous labeling.
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3.1 Effect of Whitening

In general, the whitening transformation helps improve the accuracy. Figure 4
shows some example dictionary elements learnt from K-means clustering and
contrasts that to the original data. We observe that the ZCA transformation
results in a sharper dictionary kernel. Figure 5 shows the clustering performance
with and without whitening. The x-axis here shows the size of the dictionary.
With the ZCA transform the results improve considerably as evidenced by the
corresponding ARI and HS scores. This experiment used a stride size of 4 voxel
and 8 × 8 × 8 patch size for MR-T1 images, a stride size of 2 voxel and 4 × 4 × 4
patch size for DT-FA and DT-MA image, and a 25 × 32 × 23 kernel in the
max-pooling layers.

Fig. 4. 3-D features learned by K-means algorithm from MR-T1 images. Each row
stands for a 3-D feature and different columns stand for different axial planes. Left:
Learned from whitened image patches. Right: Learned from un-whitened image patches

3.2 Effect of 3-D Patch Size

We also computed features at different 3-D patch (volume) size settings and the
results are plotted in Fig. 6. Similar to the previous figure, the x-axis shows the
size of the dictionary. The 3-D feature size in the inset corresponds to the MR-T1
images. This experiment used ZCA transformed (whitened) data and 3 × 3 × 3
kernels in max-pooling layers, 2 voxel stride size for MR-T1 image and 1 voxel
stride size for DT-FA and DT-MD images. Overall, the 8 × 8 × 8 features for
MR-T1 image and the 4 × 4 × 4 features for DT-FA and DT-MD image worked
best. Therefore, increasing the max-pooling kernel decreased the classification
accuracy.

3.3 Effect of the Size of 3-D Max-pooling Kernel

In Fig. 7, we compared the results between 3× 3× 3, and 25× 32× 23 maximum
pooling kernel size. The x-axis also shows the size of the dictionary. In our
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Fig. 5. The effect of whitening

Fig. 6. The effect of 3-D features size

experiments we observe that 3 × 3 × 3 maximum pooling kernels have the best
performance. This experiment used whitened data sets, 8×8×8 feature kernels,
and a stride size of 2 voxel for MR-T1 image, and 4 × 4 × 4 feature kernels and
1 voxel for DT-FA and DT-MD images.
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Fig. 7. The effect of max-pooling size

3.4 Effect of Dictionary Size

We considered feature representations with 64, 128, 256, and, 512 3-D dictionary
items. Figures 5, 6 and 7 clearly show that a dictionary size of 512 gives the best
results. Going beyond 512 did not result in much improvement.

4 Conclusion

We explored unsupervised classification of the mTBI challenge data set. Given
the small number of samples, it is not feasible to train a deep learning network for
feature extraction and classification. Instead we focused on computing volume
features and using it for classification. In the end, the best classification results
correctly classified 10 out of 15 samples for which the labels are known, and the
corresponding unsupervised clustering scores are ARI = 0.267 and HS = 0.3556.
We are currently working on extending this to use the tractography data com-
puted from the DWI. Here we notice that there are significant discontinuities in
the computed tracks at several potential lesion locations. Future work includes
developing automated methods to detect such discontinuities and score them.
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