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ABSTRACT

Location traces are becoming fairly abundant with the in-
troduction of various mobile devices such as smartphones,
in-car navigation units, and video cameras. Each individual
type of device generates different features about a mobile
entity along with the location of that entity itself. For ex-
ample, the smartphone can provide the motion (using ac-
celerometer) of an individual, whereas a video camera can
identify what type of clothing the person is wearing. A key
challenge is to be able to fuse the data across different data
sources and generate a unique view for each entity. This pa-
per tackles a slice of this larger problem, which is to reconcile
entities across a multi-camera network and a GPS trace from
a smartphone and proposes a novel algorithm that can scale
horizontally to adapt to new age distributed systems such
as Apache Spark and IBM’s InfoSphere Streams. We show
through extensive experiments on a real-world dataset that
our algorithm outperforms existing approaches and adapts
to horizontally scalable distributed environments.

CCS Concepts

•Information systems→Data analytics; •Computing
methodologies → Distributed algorithms;
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1. INTRODUCTION
Various types of sensors that sense the environment around

us are increasingly becoming common and the data from
these are readily available for consumption. Some of the ex-
amples of such sensed data is call-detail records from telecom-
munication companies, GPS data from various social media
apps (e.g., Twitter, Facebook, Google maps) and in-car nav-
igation units, and video data from camera networks. Con-
sumption of this data for single-track applications is already
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quite prevalent, for example, traffic analysis from location
data generated by mobile devices, crowd identification from
call-detail records [8], and security and surveillance from
multi-camera networks [22]. However, data fusion across
these various sources is a problem that has received inad-
equate attention in the past. This paper tackles the prob-
lem of data fusion across multiple sources of sensors, specif-
ically across a multi-camera network and a telecommunica-
tion company’s call-detail records. In particular, we address
the problem of being able to fuse these data sources using
location traces identified in the multi-camera network with
that of those available from mobile phones.

A simple approach to this problem, which is based on
past work [17, 15, 23], would be to reconcile the entities
across multiple views (or cameras) using unique features of
the entities. For example, spatiotemporal patterns are used
in [17] to reconcile entities across multiple cameras, whereas
colors are used in [15]. The basis of such an approach is to
do matching across multiple cameras. Our focus is on loca-
tion in this paper and we will use the well known mix-zone
based entity matching across multiple cameras. However,
the lack of fusing other sources of data, such as the mo-
bile phone location traces reduces the effectiveness of this
approach (which we show later gives accuracies of < 25%).

Data fusion approaches are usually more effective in this
regard as they take into consideration diverse data sources
and combine them based on commonalities. In this paper,
we use location traces as the common measure to combine
multi-camera video feeds with that of mobile phone records.
The fusion problem can be framed as follows - consider that
the multi-camera feed generates tracklets for each camera
view and our goal is to combine these tracklets from mul-
tiple views based on a single track generated by the mobile
phone records. This problem can be formulated as classical
alignment of two time-series such that a cost metric between
these time-series is minimized. This is a classical Dynamic
Time Warping problem [13], which has a slow optimal solu-
tion and fast sub-optimal variants (Itakuara parallelogram
and Sakoie-Chiba). We show how these algorithms can be
applied for fusing data across multiple sources in the con-
text of our problem. Finally, we develop a novel technique
that has its roots in computing what are called as space-
time boxes and generating track signatures based on these
space-time boxes to fuse data across multiple cameras and
mobile phone records. The key novelty of this approach is
its ability to horizontally scale to new age distributed sys-
tems such as Apache Spark [1] and InfoSphere Streams [10],
where the location and timestamp data are hashed to main-



tain key properties for achieving scalability, which include
(i) Determinism, (ii) Extensiblity, (iii) Uniform density, and
(iv) Fast. Extensive experiments performed on a real-world
dataset shows that the STB technique is much faster (2-
6x) than the existing approaches while being as accurate as
these approaches.

The rest of this paper is divided into five sections, Sec-
tion 2 describes the data characteristics used in this paper,
the problem is formulated and different solutions are pre-
sented in Section 3, the algorithms are evaluated from a
performance and accuracy standpoint in Section 4, related
work is presented in Section 5, and finally, we present the
conclusions and future work in Section 6.

2. DATA CHARACTERISTICS
We will explain the characteristics of the data that will be

used in the rest of this paper. Our base mobility traces are
obtained from a telecommunications company operating in
a densely populated region in an Asian country. The dataset
consists of Call Detail Records (popularly known as CDRs)
from about 10 million unique users over a period of one
week. These CDRs are generated by a voice-call or an SMS
and include information such as IMEI, cell tower location
associated with the call, and the duration of the call.

We will provide some brief characteristics of mobility per-
taining to this dataset. We consider one day’s worth of data
and plot the histogram of number of samples for each indi-
vidual, this will give us a basic understanding of how often
location samples are obtained from an individual. We il-
lustrate this histogram in Figure 1. We observe from this
figure that the number of samples per individual for the
CDR dataset for about 30% of the population is around 20
samples/day. This observation is in line with typical mobile
phone usage, where calls and SMSes require manual involve-
ment.
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Figure 1: Number of samples per user for CDR
dataset

We summarize the data characteristics in Table 1.

3. ALGORITHMS
In this section, we present three different types of algo-

rithms for reconciling entities across a multi-camera net-
work. The problem formulation across the three different

Characteristic CDR
Number of users 10m
Time duration 1 week
Data types Call/SMS

Median samples/day 8

Table 1: Summary of characteristics of the CDR
dataset

algorithms is the same, i.e. to check if two entities’ trajec-
tories match. First, we assume that there are two sources of
location information - one is from a video camera and the
other is from a GPS device (e.g., the GPS on the mobile
phone, call-detail records generated by telecommunication
companies). On a single camera, the identifier of a single
entity is constant and is assumed to be identifiable - i.e., in-
dividual entities can be differentiated across the time-period
in which the entities dwell in the given camera’s view. How-
ever, this entity identity is lost across multiple cameras. Our
aim is to correlate the location sequence generated by the
GPS device with that of the trajectories generated by the
multiple cameras and reconcile the identities of the entities
across these multiple cameras.

The first approach is to use only features of the objects
and match them across different cameras, this is based on
the concept of mix zones and relies on weighted bipartite
matching. The second is to compute an optimal alignment
between trajectories generated by the GPS device and those
generated by the cameras using Dynamic Time Warping.
Finally, the main contribution of this paper is to apply the
notion of space-time boxes to generate track signatures and
compare these across the trajectories from the cameras to
that of the GPS devices. We will explain each of these ap-
proaches in further detail and show that the space-time box
approach allows for distribution across a cluster of nodes
and hence is amenable to horizontal scaling when compared
to other approaches.

3.1 Mix Zones
The concept of a mix [4] was introduced by Chaum in

1981. Since then several authors have used mixzone as a
network routing element to construct secure networks such
as Onion routing [9] and Tor [6]. In recent years, the same
technique was used in the context of location privacy [16, 11].
Figure 2 illustrates the notion of a location based mixzone.
The figure shows a mixzone (typically a region) wherein
three entities {a, b, c} enter the mixzone and three entities
{q, r, s} exit the mixzone. In the context of entity recon-
ciliation across multiple cameras, the idea is to determine
which entities are linked to each other. However, an ideal
mixzone erases all mapping information between the entities
{a, b, c} and {q, r, s}. Indeed, a third party that has access
to only the mixed data would only know that three entities
entered a mixzone and three exited the mixzone − however,
any of the 3! = 6 mappings between the ingress and egress
pseudonyms is plausible. One possibility to address this is-
sue is to keep track of features of each entity and try to
associate these features based on some distance metric. For
example, camera A that captures the locations of entities
in mixzone 1 can use the features of the entities to relate
entities captured by camera B. Typical ways to tackle such
entity reconciliation problem is to use a weighted bipartite



matching algorithm, which will be our first approach.

Figure 2: Mixzones in Location-based Regions

3.2 Dynamic Time Warping
Dynamic Time Warping (DTW) is an algorithm that mea-

sures similarity between two temporal sequences which may
vary in time or speed. Consider two sequencesX = (x1, x2, . . . , xN)
and Y = (y1, y2, . . . , y − M) of lengths N and M , respec-
tively. Let us fix a feature space F , then xn, ym ⊂ F for
n ⊂ [1 : N ] and m ⊂ [1 : M ] and a local cost measure (or
local distance measure), c(x, y). c(.) is low if x and y are sim-
ilar to each other and high if they are different from each
other. The goal of a DTW algorithm is to find an alignment
between X and Y which has minimal overall cost. Intu-
itively, such an optimal alignment runs along the “valley” of
low cost within the cost matrix defined by c(.). Comput-
ing the optimal DTW requires O(NM), which is computa-
tionally expensive. In our case, we need to find the optimal
alignment between traces generated across multiple cameras
and the traces from other location data sources (e.g., GPS,
mobile call detail records). A common technique to speed
up DTW computation is to impose global constraint condi-
tions on the admissible warping paths. Mathematically, if
R ∈ [1 : N ]X[1 : M ] is a subset referred to as global con-
straint region, then a warping path relative to R is a warp-
ing path that entirely runs within the region R. The opti-
mal warping path is relative to R. Two well-known global
constraint regions are the Sakoe-Chiba band and the Itakura
parallelogram, which are shown in Figure 3. More informa-
tion on DTW and the different global constraint regions can
be found in [13].

(a) Sakoe-Chiba band (b) Itakura parallelo-
gram

Figure 3: Illustration of global constraint regions

3.3 Space Time Boxes
Our final approach and the main contribution of this pa-

per is to use the notion of space-time boxes (STB). We note

that a significant drawback of the above approaches – Mix
zones (Section 3.1) and DTW (Section 3.2) is that the op-
erations are not easy to parallelize to accommodate for new
age distributed systems such as Spark [1] and InfoSphere
Streams [10]. In order to discretize the problem and enable
parallelizable operations, we introduce the notion of a space-
time box, which discretizes a location and timestamp into a
2-D box and a time range. In the case of a GPS generated
location in latitude/longitude, this 2-D box is a bounding
box. Our approach involves the generation of a hash that
has certain key properties (enabling uniform scaling in a
distributed environment):

Deterministic hashing: An object’s location and times-
tamp are deterministically mapped to a small set of keys.
In general, each hash value h covers a region such that all
points within that region are mapped to the same value h.
This yields keys that can be directly used in a distributed
environment for horizontal scaling

Extensible/telescopic hashing: An object’s location
and timestamp are mapped to an extensible key such that
mapping at different spatial resolutions result in consistent
key assignment. An example of extensible hashing over two
dimensional coordinates with gradual precision loss is as fol-
lows:

hash(40.00105,−78.30105) = dr07d1yzj21 (1)

hash(40.001,−78.301) = dr07d1yy

hash(40.01,−78.2) = dr07se

hash(40,−78) = dr0e

Uniform density: The hash technique must support a
choice of keys such that given any set of points, the number
of points mapped to a given key is nearly equal for all of the
keys. This requirement must hold independent of the distri-
bution of the points in the spatial domain, i.e. even if the
points occur in clusters they need to be mapped uniformly
to keys. This property is essential to avoid “hot spotting”
in distributed systems wherein a node in a compute cluster
may get overloaded because a disproportionately large num-
ber of points are mapped to that node. Avoiding hotspots
is essential to get linear scalability with respect to compute
cluster size.

Bit Arithmetic: This enables for manipulation of keys
and performing various operations on these keys such as
truncate, distance between keys, and identifying neighbors
in the 3D space in an extremely fast manner.

The STB is realized as a combination of a geohash [14]
and a time range, where the location in latitude/longitude
is first mapped to coordinates in [−1,+1] range, followed by
interleaving the bit representation of each of the mappings
to generate an interleaved bit representation of the mapped
location. The discretization depends on the granularity of
the space box, the coarser the granularity, the larger the
space box. Two entities that map to the same space box
will be within the specified distance.

Track Signatures and Reconciliation
Now, that we have described how to generate space-time

boxes given a location and timestamp (which is the funda-
mental representation of a trajectory), we will explain how
the entity reconciliation works. We generate track signatures
given a sequence of locations and timestamps. This track
signature is generated by concatenating the STBs across se-



quential locations (and their corresponding time stamps).
The algorithm to reconcile two tracks is then rather simple,
it is done by checking if two entities have the same signature
(i.e., same hash across a sequence of timestamps).

4. EVALUATION
We will evaluate the algorithms presented in the previous

section from a run-time performance and accuracy stand-
points. The algorithms that will be evaluated are (i) Mix-
zone weighted bipartite matching, (ii) STB track signature,
(iii) Itakura parallelogram, (iv) Sakoe-Chiba, and (v) opti-
mal DTW. The mix-zone based algorithm is a baseline as
it does not do fusion across multiple data sources, whereas
the others fuse multiple data sources. Since, it is extremely
difficult to obtain real data for evaluating these algorithms,
we generate fake traces from the data that was described in
Section 2 as follows. We consider a large area that covers a
populated portion of the city from which the data was col-
lected and select about 50 entities. For each entity, we chose
the longest track in that region. We perturb each entity’s
track and create tracklets that signify the location traces for
each view of a multi-camera network. Further, we assume
that location of entities from video frames can be extracted,
which has been addressed in the past [5].

First, we measure the run-time of each of the algorithms
to reconcile entities as the number of entities are varied (all
our experiments are performed on a x86 server with 64GB
RAM and no other workloads) and plot this in Figure 4.
We observe from this figure, which has y-axis as log scale
to show the DTW run-time, that the fastest execution time
is that of mix-zones and the slowest is that of DTW. The
STB approach is significantly faster than the Itakura par-
allelogram or Sakoe-Chiba approximations to DTW, which
can be as much as 6x faster when the number of entities
considered are around 40. We chose a track length of 3 and
a band size of 3 for the algorithms (ii), (iii), and (iv).
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Figure 4: Run-time performance as number of enti-
ties are varied

Next, we plot the accuracy, as a fraction of the number
of entities reconciled correctly, as the number of entities
are changed in Figure 5. A key observation is that even
though mix-zone algorithm was much faster than all the
other techniques (Figure 4), the accuracy is very poor (it

reduces to < 10% when the number of entities are 25 or
greater). Whereas, DTW optimal approach has the best
accuracy, which is to be expected, as the other approaches
are approximations. We can consider the STB track signa-
ture approach as a DTW approximation in that the global
constraints are flexibly chosen based on the granularity. Al-
though, we note that the accuracy loss due to these approx-
imations is not significant even when the number of entities
are increased.
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Figure 5: Accuracy - fraction of correct reconcilia-
tions as number of entities are varied

We modify the amount of noise added to the tracklets
and plot the accuracies for each algorithm in Figure 6. We
observe that the mix-zone based algorithm has very poor
accuracy as expected, with the other approaches gradually
decreasing in their accuracies as the noise added is increased.
We note that with noise as high as 800m, the accuracy loss
is about 20%. This suggests that the camera parameters
(e.g., field-of-view, features extracted) should be chosen in
such a way that the noise is within a given error margin.
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Figure 6: Accuracy - fraction of correct reconcilia-
tions as noise added is varied

Finally, we plot the accuracies, when the track length (for
the STB algorithm) or the band size (for Itakura paral-
lelogram and Sakoe-Chiba) are varied, in Figure 7. Since
this is not applicable to the mix-zone and DTW algorithms,



we will not show them in this Figure. We observe from
this that there is a significant jump in terms of accuracy
when the track length (or band size) is changed from 1 to 3,
whereas further increases do not effect the accuracy signif-
icantly. This suggests that a track length (or band size) of
about three should be sufficient for our purposes.
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Figure 7: Accuracy - fraction of correct reconcilia-
tions as track length (band size) is varied

We observe from the above experiments that the best al-
gorithm in terms of accuracy is DTW, but it takes a long
time to run. Our proposed approach is comparable in terms
of accuracy to that of the Itakura parallelogram and Sakoe-
Chiba algorithms, but outperforms them in terms of run-
time significantly. Moreover, our approach is amenable to
horizontal scaling, thus making the overall solution rather
attractive.

5. RELATED WORK
We divide the related work into two parts, one that uses

only video for object tracking and the other that uses other
forms of sensor data for object tracking. In the computer
vision literature, object detection is typically defined as de-
tecting instances of semantic objects of a given class (e.g.,
humans, buildings, and vehicles). On the other hand, ob-
ject recognition extends the object detection to identify the
particular object in an image or video sequence. For exam-
ple, identifying the person when a human is detected and
identifying the building once it has been detected. Several
algorithms have been developed for object detection [21, 7,
20] as well as object recognition [12, 3, 19]. These algorithms
are typically based on machine learning techniques combined
with image feature extraction. Our work differs from these
techniques in that we consider a distributed multi-camera
network and apply fusion based techniques that combines
location data from multiple sources to achieve object track-
ing.

Object tracking work has been extended to multi-camera
settings in [17, 15, 23], where the problem being addressed
is that of tracking a given object across multiple cameras.
These approaches focus on fusing data from multiple cam-
eras and identifying and tracking the object of interest across
these cameras. However, our approach is to combine non-
camera data sources with that of the camera to achieve ob-

ject tracking.
Tracking objects using other forms of sensor data has also

been explored in the past. For example, in [2], locations of
individuals inside a building were tracked using RF-signal
strength measurements. In a wireless sensor network, mo-
bile agents combined with sensor data from the deployed
sensor network are used to achieve location tracking [18].
Such location tracking techniques primarily rely on fusing
sensor data from distributed sensor networks, however there
have been no efforts in fusing images/videos with location
data from mobile devices. In this paper, we explore this
possibility and introduce the notion of combining location
from a distributed camera network with that from mobile
devices to achieve object tracking.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we developed a novel solution based on

Space-time boxes to reconcile entities in a multi-camera net-
work. We formulated the problem of fusing two diverse
sources of location data - a multi-camera network and mo-
bile phone records - as a time-series alignment problem. We
show that the existing optimal solution is too slow for prac-
tical use. Further, we show that the STB solution is much
faster than the sub-optimal solutions for DTW, the Itakura
parallelogram and Sakoe-Chiba algorithms. Also, we show
that the STB solution is amenable for horizontal scaling on
new age distributed system platforms such as Apache Spark
and InfoSphere Streams. We evaluated these algorithms on
a real-world dataset and showed that STB approach is 2-6x
faster than the state-of-the-art algorithms while preserving
the accuracy of reconciliation. As future work, we will ex-
plore algorithms for scaling out and improving video feature
extraction based on the reconciled entities.
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