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ABSTRACT
There is an alarming increase in the amount of malware that is gen-
erated today. However, several studies have shown that most of
these new malware are just variants of existing ones. Fast detection
of these variants plays an effective role in thwarting new attacks.
In this paper, we propose a novel approach to detect malware vari-
ants using a sparse representation framework. Exploiting the fact
that most malware variants have small differences in their struc-
ture, we model a new/unknown malware sample as a sparse linear
combination of other malware in the training set. The class with
the least residual error is assigned to the unknown malware. Ex-
periments on two standard malware datasets, Malheur dataset and
Malimg dataset, show that our method outperforms current state of
the art approaches and achieves a classification accuracy of 98.55%
and 92.83% respectively. Further, by using a confidence measure to
reject outliers, we obtain 100% accuracy on both datasets, at the ex-
pense of throwing away a small percentage of outliers. Finally, we
evaluate our technique on two large scale malware datasets: Offen-
sive Computing dataset (2,124 classes, 42,480 malware) and Anu-
bis dataset (209 classes, 36,784 samples). On both datasets our
method obtained an average classification accuracy of 77%, thus
making it applicable to real world malware classification.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND INFORMA-
TION SYSTEMS]: Security and Protection—Invasive software;
I.5.4 [PATTERN RECOGNITION]: Applications—Signal Pro-
cessing

Keywords
Malware Variant Classification, Sparsity based classification, Ran-
dom Projections, Compressed Sensing

1. INTRODUCTION
Antivirus (AV) software vendor Kaspersky recently reported that

they process on average 315,000 samples per day [1]. The main

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IH&MMSec’15, June 17–19, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-4503-3587-4/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2756601.2756616.

0 2000 4000 6000 8000 10000 12000 14000
0

50

100

150

200

250

300

Byte Index
B

y
te

 V
a
lu

e

(a) Variant 1
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(b) Variant 2

Figure 1: Byte plots of the recently exposed Regin malware vari-
ants [3]. Variant (b) is created by making small change to Vari-
ant (a). They differ only in 7 bytes out of 13,284 bytes (0.0527
%).

reason for such a deluge is malware mutation: the process of creat-
ing new malware variants from existing ones. Variants are created
either by making changes to the malware code or by using exe-
cutable packers. In the former case, simple mutation occurs by
changing small parts of the code. In the latter case, a more com-
plex mutation occurs by encrypting (usually with different keys)
the main body of the code and appending a decryption routine,
which during runtime decrypts the encrypted payload. The new
variants perform the same function as the original malware but their
attributes would be so different that AV software, which use tradi-
tional signature based detection, would not work on them. Based
on their function, these variants are classified into different mal-
ware families. Identifying the malware family of an unknown mal-
ware can play an important role in understanding and thwarting
new attacks.

Although mutation techniques create a large number of malware
variants, these variants have very small changes in the overall mal-
ware structure. Fig. 1 shows one such example of two malware
variants of the recently exposed Regin malware [3], which has been



described as one of the most sophisticated malware discovered in
recent times, and termed on par with Stuxnet, Flame and other ad-
vanced malware. In Fig. 1, variants are represented as byte plots
where every byte is represented as a number. Despite their sophis-
ticated design, the variants only differ in a few bytes (0.0527 %).
Reports further observe that variants of Regin malware were used
for diverse tasks such as cyber-espionage and secret surveillance
against countries, companies and individuals. Although this ex-
ample shows a case of simple mutation, this phenomenon is also
true for variants created using executable packers, which are more
common nowadays.

In this paper, we explore Sparse Representation based Classifi-
cation (SRC) methods to classify malware variants into families.
Such methods have been previously applied to problems where
samples belonging to a class have small variations in them, for
example, face recognition [31], iris recognition [27], background
subtraction [6], and tracking [21]. We model a malware variant be-
longing to a particular malware family as a sparse linear combina-
tion of variants from that family using Random Projections. Since
variants of a family have small changes in the overall structure and
differ from variants of other families, projections of malware in
lower dimensions preserve this “similarity”.

The rest of the paper is organized as follows. The related works
in malware classification are briefed in Sec. 2. Sec. 3 details the
formulation of the sparse representation based classification frame-
work. Sec. 4 details the experiments on various datasets. The limi-
tations and conclusion are discussed in Sec. 5.

2. RELATED WORK
Typical malware features used for malware classification can be

broadly grouped into either static features or dynamic features As
the name suggests, static features are extracted from the malware
without executing it. Dynamic features, on the other hand, are ex-
tracted by executing the code, usually in a virtual environment, and
then studying their behavioral characteristics such as system calls
trace or network behavior. We will focus more on static analysis
which our proposed approach comes under. For more on dynamic
analysis based methods, the readers are referred to [5, 28, 10, 8].

The most common static analysis method is control flow graph
analysis [18, 11, 13]. After disassembling the code, the control flow
of the malware is obtained and graphs are constructed to uniquely
characterize the malware. However, these methods do not work
well on packed malware since the control flow of a packed mal-
ware reveals only the unpacking routine. In contrast, our proposed
method does not require any code analysis, unpacking or execution
of malware.

Other Static features are based on n-grams [4, 16, 12, 13, 26],
n-perms [14, 19], hashes [17, 30] and image similarity [22, 24, 23,
15]. The first two compute n-grams or n-perms on the binaries to
characterize the malware. Among hash based methods, ssdeep [17]
is a common technique to compute context triggered piecewise
hashes on raw binaries. Pehash [30], however, uses the Portable
Executable (PE) file structure to compute a hash. Image similarity
based methods [22, 24] convert a malware binary to a digital image
and apply image processing based techniques to compute features.
These features have been used for malware classification [22], de-
tection [15] and retrieval [23]. In contrast to these methods, we
compute random projections on malware represented as numerical
vectors. This results in compact features for malware classification.
Although random projections have been previously used in [10, 8],
these methods require dynamic analysis which is time consuming.

3. MALWARE CLASSIFICATION BASED ON
SPARSE REPRESENTATIONS

3.1 Approach
Given a dataset of N labeled malware belonging to L different

malware families with P malware per family, the task is to identify
the family of an unknown malware u. Similar to [22], we represent
a malware as a numerical vector x of range [0, 255], where every
entry of x is a byte value of the malware. However unlike [22], we
do not convert this vector to an image matrix. Since each malware
sample can have a different code-length, we normalize all vectors
to a maximum length (M ) by zero-padding.

The entire dataset can now be represented as an M × N ma-
trix A, where every column represents a malware. Further, for
every family k (k = 1, 2, ..., L), we define an M × P matrix
Ak = [xk1,xk2, ...xkP ] where xk{.} represents a malware sample
belonging to family k. Now, A can be expressed as a concatenation
of block-matrices Ak:

A = [A1A2..AL] ∈ RM×N (1)

Let u ∈ RM be an unknown malware whose family is to be de-
termined, with the assumption that u belongs to one of the families
in the dataset. Since variants in a family have small differences,
they will all be in the same linear span 1. Then, following [31], we
represent u as a sparse linear combination of the training samples
as:

u =

L∑
i=1

P∑
j=1

αijxij = Aα (2)

where α = [α1,1, ..., αL,P ]
T represents the N × 1 sparse coef-

ficient vector (N = LP ). α will have non-zero values only for
samples that are from the same family as u. The sparsest solu-
tion to (2) can be obtained using Basis Pursuit [27] by solving the
following l1-norm minimization problem:

α̂ = argmin
α′∈RN

‖α′‖1 subject to u = Aα′ (3)

where ‖.‖1 is the l1 norm.
Estimating the family of u is done by computing residuals for

every family in the training set and then selecting the family that
has minimum residue. Let Πk be the characteristic function that
selects the coefficients from α̂ that are only associated with family
k. Then the residual function rk can be expressed as:

rk(u) = ‖u−AΠk(α̂)‖2 (4)

c = argmin
k

rk(u) (5)

where c is the index of the estimated family associated with u.

3.2 Random Projections
When a malware binary is represented as a numerical vector by

considering every byte, the dimensions of that vector can be very
high. For example, a 1 MB malware has around 1 Million bytes
and this could make the calculations computationally expensive.
Hence, we project the vectors to lower dimensions using Random
Projections (RP). This also removes dependency on any particular
feature extraction method. Previous works have demonstrated that
SRC is effective in lower-dimensional random projections as well,

1Linear span means that any linear combination of a vector will be
in the same subspace
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Figure 2: Overall Approach: Malware samples are represented as numerical vectors, projected to lower dimensions and then modeled using
the Sparse Representation based Classification (SRC) framework

see [9, 31, 27]. Let R ∈ RD×M be the matrix that projects u from
signal space M to w of lower dimensional space D (D << M ):

w = Ru = RAα (6)

The entries of R are drawn from a zero mean normal distribution.
The above system of equations is underdetermined and sparse so-
lutions can be obtained by reduced l1-norm minimization:

α̂ = argmin
α′∈RN

‖α′‖1 subject to w = RAα′ (7)

The overall approach is shown in Fig.2.

3.3 Modeling Variants
When a new variant is created from existing an malware by mak-

ing small changes, both variants share some common parts. The
new variant is modelled as:

u′ = u + eu = Aα+ eu (8)

where u′ is the corrupted vector representing the new variant and
eu is the error vector. This can be reduced to matrix form using
block matrices:

u′ = [A, IM ]

[
α
eu

]
= Bu su (9)

where Bu = [A, IM ] is a M × (N + M) matrix and IM is an
M × M Identity matrix and su = [α, eu]

T . This ensures that
the system of equations (9) is always underdetermined and sparse
solutions can be obtained. In lower dimensions, this reduces to:

α̂ = argmin
α′∈RN

‖α′‖1 subject to w′ = Bw sw

rk(w
′) = ‖w′ −Bw swΠk(α̂)‖2

c = argmin
k

rk(w
′) (10)

where w′ = w+ew, Bw = [RAα, ID] is aD×(N+D) matrix,
ID is aD×D Identity matrix and sw = [α, ew]T We will use (10)
to identify the malware family of an unknown test sample.

4. EXPERIMENTS
We test our technique on two public malware datasets: Malimg

Dataset [22] and Malheur Dataset [28]. On both datasets, we select

equal number of samples to reduce any bias towards a particular
family [20]. The data is converted to numerical form and repre-
sented as a matrix as defined in (1) and then projected to lower di-
mensions using Random Projections (RP). For comparison, we use
GIST features [25], which have been previously applied for mal-
ware classification [22]. We use the SRC framework (10) to iden-
tify the malware family of a test sample and compare with Nearest
Neighbors (NN) classification that was previously used in [22]. We
vary the dimensions from {48, 96, 192, 256, 384, 512}, which are
consistent for both RP and GIST. In our experiments, we chose
80% of a dataset for training and 20% for testing.

4.1 Classification

4.1.1 Results on Malimg Dataset
The Malimg dataset contains 25 malware families with 9,342

samples, which we obtained from the authors of [22]. The dataset
has a mixture of both packed and unpacked malware and the num-
ber of samples per family varies from 80 to 2,949. In our exper-
iments, we select 80 samples per family (the minimum number
present in all families). The size of the largest malware (M ) was
840,960 bytes and all samples were zero padded to this size. The
results are shown in Fig. 3a. First, we see that the classification
accuracy increases as the dimensionality increased from 48 to 512.
Beyond 512, there was no significant change in accuracy for both
GIST and RP. The best accuracy of 92.83% was obtained for RP
with SRC as the classifier. At the same dimension, the lowest accu-
racy was for RP with NN as the classifier (84.45%). The accuracies
for GIST for both classifiers were almost the same, in the middle
range (88-89%).

4.1.2 Results on Malheur Dataset
The Malheur dataset consists of 3,131 malware binaries from

24 malware families, which we obtained from the authors of [28].
The malware binaries were labeled such that a majority amongst
six different antivirus products shared similar labels. The number
of samples per family varied between 20 and 300. We chose 20
samples from all families in our experiments. For this dataset, the
value of M was 3,364,864. The classification results are shown in
Fig. 3b. Here too, the best accuracy of 98.55% was obtained for
RP at 512 dimensions with SRC as classifier. However, unlike the
Malimg dataset, RP with NN as classifier also had a high accuracy
of 96.06%. This shows that the random projections of the variants
in Malheur dataset are closely packed in lower dimensions. On the
other hand, the accuracies for GIST features were around 93% for
both classifiers.
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Figure 3: Experimental Results on (a) Malimg Dataset and (b) Malheur Dataset with features using Random Projections (RP) and GIST, and
classification algorithm using Sparse Representation based Classification (SRC) and Nearest Neighbor (NN).

4.2 Comparison with Other Features
We compare our proposed approach with other relevant malware

similarity features: ssdeep [17], GIST [22] and n-grams [16]. For
n-grams, we chose n = 2 and computed a 216 dimensional feature
vector. The results are shown in Tab. 1. For both datasets, our
proposed approach outperformed ssdeep, GIST and n-grams based
features.

Table 1: Comparison of Classification Accuracies
Dataset ssdeep GIST n-grams RP

Malimg Dataset 67.63 89.08 91.75 92.83
Malheur Dataset 81.6 94.21 94.26 98.55

4.3 Rejecting Outliers
In order to reject test samples that do not belong to any family

in a dataset, the Sparsity Coefficient Index (SCI) of a coefficient
vector α ∈ RN is defined as:

SCI(α) =

L.max‖Πi(α)‖1
‖α‖1

− 1

L− 1
(11)

The value of SCI varies between 0 and 1, 1 being the test sample
can be represented as a linear combination of one family and 0
being the test sample is spread across all the families. It is common
to have a threshold τ ∈ (0, 1) and reject outliers that are below τ .

For the Malimg Dataset, we vary τ for a fixed dimension (D =
512) as shown in Fig. 4a. At τ = 0.1, the accuracy is 92.5%
with no samples rejected. Accuracy of 100% is achieved when
τ = 0.5, at which 25% of the samples are rejected from the dataset.
Similarly, for the Malheur dataset, we computed the accuracies and
the percentage of samples dropped while varying τ . In Fig. 4b, we
see that accuracy of 100% is reached when τ = 0.6, but with only
5% of samples rejected.

4.4 Approximate l1-norm
So far, we have used Basis Pursuit (BP) [7] for l1-norm min-

imization and to recover the sparse coefficients. However, BP is
computationally expensive and is not suitable for large scale data.
Here, we compare the computation time and accuracy obtained us-
ing BP with an approximate l1-norm minimization method, Or-
thogonal Matching Pursuit (OMP) [29]. OMP is a greedy algo-
rithm that works by iteratively selecting a subset of columns from

the training data matrix that are almost orthogonal. We repeat the
experiments on both datasets using OMP and report the time taken
to identify the families of all samples in the test set. The results
are shown in Tab. 2. We see that for both datasets, the computation
time decreased by a factor of 18 (Malimg) and 30 (Malheur) re-
spectively, at the cost of slight decrease in classification accuracy.
This makes OMP suitable for large scale malware classification.

4.5 Large Scale Analysis
We evaluated our technique on two diverse large scale datasets.

On both datasets, we randomly selected 20% of the data for test-
ing and used Orthogonal Matching Pursuit to find the sparse co-
efficients. The results on both datasets show that our technique is
applicable in large scale scenarios.

4.5.1 Results on Offensive Computing Dataset
We downloaded more than 1.4 Million malware from the Open

Malware sharing platform [2] (formerly known as Offensive Com-
puting). The samples were fed to different Antivirus software for
labeling and the software that had minimum number of unknown
labels was selected. This resulted in 2,124 malware families and
we randomly selected 20 samples from each family to obtain a
dataset of 42,480 samples (20 was the minimum number of samples
present in some families). The size of the largest malware was 9.3
MB. We repeated the experiments using OMP and obtained an aver-
age classification accuracy of 66.34%. The overall testing time was
approximately 4 hours on a standard desktop machine. This time
can further be reduced by using parallelization techniques. Out of
2,124 families, 927 families had an accuracy of 100%. The aver-
age SCI value for these families was 0.97, with most values being
1. This shows that SCI can be used as a confidence measure dur-
ing testing. At an SCI threshold of 0.6, 24.78% of the test samples
were rejected and the classification accuracy was 77.08%.

4.5.2 Results on Anubis Dataset
Next, we evaluated our technique on another large scale dataset

that we obtained from the authors of Anubis [5]. The Anubis dataset
had 36,784 samples divided into 209 clusters, with 176 samples per
cluster. The clusters were labeled according to the behavioral pat-
tern of a malware upon dynamic analysis [5]. This dataset is dif-
ferent from the Offensive Computing dataset in two aspects. First,
the number of samples in a family/cluster is higher. Second, the
labeling of clusters is based on dynamic analysis. This means there
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Figure 4: Rejecting outliers based on Sparsity Coefficient Index (SCI). Higher the value of SCI, higher the classification accuracy. Both
datasets achieve 100% accuracies at an SCI value of 0.6. For the Mallheur dataset, only 5% of samples are rejected to achieve this accuracy.
However, for the Malimg dataset, nearly 32% of samples are rejected for the same.

Table 2: Basis Pursuit (BP) vs Orthogonal Matching Pursuit (OMP)
Dataset BP Accuracy OMP Accuracy BP Computation Time (secs) OMP Computation Time (secs)

Malimg Dataset 92.83 89.25 420 24
Malheur Dataset 98.55 97.39 180 6

is a possibility that two samples that have very different structure
but similar behavior can be assigned the same cluster, and our tech-
nique will not work on such samples. For this dataset, the max-
imum size of the malware was 8.1 MB. On repeating the experi-
ment, we obtained an average classification accuracy of 57.36%.
This is much lower than the accuracy obtained for the Offensive
Computing dataset, which had more number of classes (by a factor
of 10). This perhaps shows that our method is better applicable to
malware datasets that have finer labels. The overall testing time
was approximately 3 hours on a standard desktop. For this dataset,
27 clusters had an accuracy of 100% and 50 clusters had an accu-
racy of more than 90%. On setting the SCI threshold to 0.6, 34.64%
of the test samples were rejected and we obtained an accuracy of
77.12%.

5. DISCUSSIONS AND CONCLUSION
Our approach works well mainly on malware variants that have

similar structure. However, we observe that most variants are those
that are structurally similar (for example, Regin variants in Fig. 1).
This is also evident from our large scale experiments. Further, pre-
vious works such as [24] have shown that the performance of struc-
turally similar features and behavior based features are almost the
same.

In future, we will explore using Random Projections as malware
signatures and distinguish them from benign samples. While our
current approach estimates the family of a malware, we will also
focus on identifying the exact source from which a malware variant
evolves.

In this paper, we proposed a novel method to identify families
of malware variants using a combination of Sparse Representation
based Classification (SRC) and Random Projections (RP). Experi-
ments on two standard malware datasets, as well as large scale data
showed promising results. We believe that our approach, that is
based on representing malware binaries as numerical signals, will
open the scope of malware analysis to broader fields.
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