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Abstract. Coastal marine ecosystems are highly productive and di-
verse, but biodiversity of underwater habitats is poorly described due to
logistical and financial limitations of diving and submersible operations.
Imagery is a promising way to address this challenge, but the complex-
ity of diverse organisms thwarts simple automated analysis. We consider
the problem of automated annotation of complex communities of ses-
sile marine invertebrates and macroalgae in order to automate percent
coverage estimation. We propose an efficient fusion technique amongst
diverse classifiers based on the idea of “dropout" in machine learning. We
use dropout technique to weight each classifier implicitly and for each
specie we optimize the size of the region of interest (ROI) for highest
accuracy. The preliminary results are promising and show 20% increase
in average accuracy (over 30 species) when compared with the best base
performance of Random Forest classifiers. The dataset along with human
“ground truth” annotations are available to the public.

Keywords: Image Classification, Ensemble Methods, Underwater Im-
agery, ROI

1 Introduction
Evidence of the positive relationship of species diversity and ecosystem function
in the marine environment is mounting [1]. Ecological mechanisms contributing
to this effect include complementarity in resource use among species, positive
inter-species interactions, and functional redundancy that provides biological
insurance against changes in ecosystem function. Ensuring the continuity of ma-
rine ecosystem diversity and functioning requires information on the numbers
of species and their abundance in marine habitats over large scales in time and
space. Quantifying the diversity and abundance of organisms in sub-tidal ma-
rine ecosystems involves long and challenging hours of deep sea diving, counting
and identifying plants and animals. Imagery has long been used by sub-tidal
ecologists and deep-sea biologists to record biodiversity in marine habitats in an
attempt to simplify and formalize the process.

In this study we examine a large image dataset collected in sub-tidal habitats
of Santa Barbara, California. The objective of this study is to examine the distri-
bution of an invasive species, the Bryozoan Watersipora Subtorquata, on offshore
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Fig. 1: The complexity of underwater image acquisition and the photographic setup
are presented in the first row. The second row shows exemplar images with overlayed
percent coverage annotation grid.

oil platforms and natural reefs, Fig 1. In addition to the abundance of the in-
vader, the diversity and abundance of native species of sessile invertebrates and
algae are also quantified to examine whether native communities may provide
biotic resistance to the invasion. The proposed solution is to automate the com-
mon percent coverage technique using supervised machine learning and computer
vision. We use manual percent cover annotations to train the automated classi-
fiers. In order to robustly classify a wide range of species with different visual
characteristics we use a set of diverse (14) computer vision feature descriptors.
Our goal is to arrive at a consensual decision between predictors quickly and
accurately. We introduce a new regularization technique for K-nearest neighbor
(K-NN) that identifies a subset of more robust/reliable features for classification.
Once the predictions are pruned, final decisions are made with a simple majority
vote. The main contributions of this paper include:

– Implicit modeling of mutual dependencies among classifiers with “drop-out”
regularization with K-NN.

– Fast and automatic classification with an optimized ROI.
– Introducing a new manually annotated high resolution underwater data set.

2 Related Work

Dropout techniques have recently generated much interest in the machine learn-
ing community as an alternative to the regularizers used in neural networks such
as [2,3,4]. These are designed to achieve the effect of training a massive number
of neural networks and then averaging over their decisions [4]. Dropout achieves
this by training a single massive neural network for which sub-networks are used
during training. Dropout has also been applied to K-NN classification [5]. The
bagging technique [5] uses neural networks and genetic algorithms to train a
boosted set of classifiers that together are more accurate than any single classi-
fier. Each of these classifiers is defined over a distance metric. These metrics are
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Fig. 2: Each classifier uses one unique feature descriptor independently and individual
predictions are obtained with K-fold cross validation.

constructed by ignoring certain entries in the data vectors when selecting the
neighbors.

There are multiple ways of parameterizing dropout. The simplest way is to
ignore a random portion (say 50%) of the inputs on each metric. Other methods
of regularizing K-NN have also been studied [6,7] to be highly robust in removing
a portions of the data.

3 Base Level Feature Classifiers

The base level (weak) classifiers work on a diverse set of image derived features.
We first partition each image si into J blocks so that each segment si,j corre-
sponds to the j-th patch of the i-th image. Each segment si,j can only take one
label from a label set L where lk ∈ {l1, ..., lN} and N indicates the total num-
ber of species including the empty class (water background). The total number
of images in the data set is denoted by Q, hence a total of Q × J annotated
segments in our data set. Therefore,

∀si,j ∃! lk s.t. i ∈ {1, ..., Q}, j ∈ {1, ..., J}, and k ∈ {1, ..., N}
We choose the random forest classifiers to construct the weak classifiers on each
of the M computed features for each segment.

fffm
i,j ∈ {fff1

i,j , ..., fff
M
i,j} where fffm

i,j ∈ �dm (1)

Each weak classifier produces a regression vector cccmi,j of size N indicating the
likelihood of a given segment belonging to each class label.

cccmi,j = [cm,1
i,j , ..., cm,k

i,j ], where cm,k
i,j = P (lk | m, i, j) (2)

Using MAP inference with K-fold cross validation, we generate a vector xxx for
each segment si,j .

xm
i,j = argmax

k
{cm,k

i,j }, and xxxi,j = [x1
ij , ..., x

M
ij ] (3)

These preliminary decision vectors are then aggregated to obtain the final
prediction yij .
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Fig. 3: Overview of the aggregation technique using dropouts. Classifiers are randomly
dropped from both training and test sets. Selected classifiers are then aggregated with
KNN and majority vote. This process is repeated and the final decision is achieved
with majority vote.

4 Implicit Aggregation Technique with Dropout

4.1 K-NN + Dropout

The classical K-NN [8] is defined by i) a training data set, ii) a parameter K
that acts as a regularizer, and iii) a distance metric. The regularizer K is a small
positive integer for which larger values refer to greater regularization. Choosing
a distance metric used for K-NN can be posed in various learning frameworks [9].
Selecting K can be done efficiently given a distance metric by computing the
classification error for various settings of K.

We iteratively dropout number of classifiers and keep a fraction D of the
classifiers to compute the K-NN. Each iteration is essentially a new predictor,
hence it implicitly creates a new metric p ∈ 1, ..., P with a random subset of
classifiers. At test time, for a given test image xxxi,j , we search the entire training
set for the K most similar images. We collect each predictor’s decision and
sort them by their similarity scores. As shown in Fig. (3) we reach the final
consensus by taking the majority vote over the labels of top K predictors. Here
D is exhaustively searched, while P is set to a sufficiently large value. We show
later in the paper why selecting as large a P as possible is ideal. Ideally, we
would use all possible metrics P but that is often prohibitively expensive.

The decisions of the predictors for a given test point is denoted as y. We
denote a new similarity measure v indexed by p and l based on the distance
between the test sample and all training samples.

y = argmaxl
∑

p vpl (4)

Here vpl = 1 if label l has the plurality of the K nearest neighbors according
to a given predictor p and vpl = 0 otherwise. Given v a decision yi,j is produced
by determining which label is most common amongst the predictors as indicated
in (4).
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Fig. 4: Comparison of manual (left) and automated (right) annotation of Anemone
(Metridium senile) on a photograph taken at approximately 10 meters below the sur-
face. This figure is best viewed in color.

4.2 Justification for the K-NN+Dropout Approach

As in random forest methods, the decision of each predictor is of equal impor-
tance. We should understand the effect of using different dropout fractions. If we
use predictors that have low dropout then we are likely to have nearest neigh-
bors that are very close (in the feature space) to the test point and likely to be
uninformative. In the extreme case of dropping out all values but one is akin to
Naive Bayes. The number of predictors with a given amount of dropout M is(
N
M

)
. This quantity is maximized by setting M = N

2 . Having very low dropout
may not provide the diversity in the space of predictors needed to make an
accurate classification.

We now describe why having more predictors helps. Consider that the aver-
age predictor is only slightly better than chance. The output of a single random
predictor follows a multinomial over N possible classes. The multinomial distri-
bution is described by vector cccmi,j where cm,k

i,j is the probability that a random
predictor produces a label lk. Given P random predictors, the empirical aver-
age value has a gaussian distribution with mean cm,k

i,j and standard deviation√
PFl(1−cm,k

i,j )

P . Notice that as P goes to ∞ the difference between cm,k
i,j and the

empirical mean goes to zero. Thus, in the case where the largest element of cm,k
i,j

for a given example tends to be the correct one, and in which the predictors make
different types of mistakes, then having large numbers of predictors is beneficial.

5 Results
5.1 Dataset and annotations

We analyzed underwater photographic images of surfaces covered with marine
invertebrates and algae on oil platform support structures and natural reefs at
depths of 5-20m off the coast of Santa Barbara, California. Thus far our analysis
has focused on the oil platform images. Images are taken by SCUBA divers
(Figure 1) using a housed SLR camera (Canon 6D) fitted with a 14mm lens
and two strobes (Nikonos SB-104) mounted to a rigid quadrapod designed to
capture an image of a fixed area of 0.25m2. We use Bisque [10,11] to organize
and annotate the datasets used in the experiments. Bisque is a distributed, web
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Species Anemone Echinodermata Bryozoa Barnacle Sponges

Extracted ROI (pixels) 128× 128 64× 64 128× 128 256× 256 128× 128

Pixel resolution (cm) 1.4× 1.4 0.7× 0.7 1.4× 1.4 2.8× 2.8 1.4× 1.4

F-Score 0.75 0.36 0.21 0.38 0.17

Table 1: Estimated optimum image resolutions for five different species. We exper-
imented with image resolutions by extracting different block sizes: 64, 128 and 256
pixels. All feature descriptors were computed using 64x64 pixel blocks thus downsizing
larger blocks. Although, the original pixel resolutions were the same, features computed
from larger blocks were effectively using lower pixel resolutions.

based platform for scientific image management and analysis, offering web-based
annotation tools for multi-dimensional (2D-5D) imagery.

The quadrapod eliminates variation in camera-to-subject distance as well as
camera movement. At each of 3 depths (≈ 6m,≈ 12m,≈ 18m), divers take at
least 16 photos distributed around the platform to capture spatial variability at
that depth, and an additional 16 photos on horizontal beams at the shallowest
depth where the bryozoan is typically most abundant. This growing dataset
currently consists of >1500 images from 14 platforms on which we identify 30
different species or categories of data. Images are stored in RGB Canon RAW
format, 5496× 3670 pixels at 14 bits per channel. We overlaid 100 small circles
on each image in a 10x10 grid. Each of these grid elements are then annotated
by marine biologists (by naming the species). Dataset and annotations are both
available on Bisque3.

Feature Extraction: We compute 14 visual descriptors: Haralick-Edge, Scal-
able Color Descriptor (SCD), Color Structure Descriptor (CSD), Color Lay-
out Descriptor (CLD), Homogeneous Texture Descriptor (HTD), Scale-Invariant
Feature Transform (SIFT), Speeded Up Robust Features (SURF), Pixel-Intensity-
Statistics-Hue, Edge Histogram Descriptor (EHD), Threshold Adjacency Statis-
tics (TAS), Local binary Patterns (LBP), GIST, Region-based Shape Descriptor
(RSD), and Brief (ORB).

Optimizing image resolution: We extracted ROIs as square regions centered
on an annotated point with sizes ranging over 64× 64, 128× 128 and 256× 256
pixels. These ROIs are then down-scaled to 64x64 pixels and followed by feature
extraction and classification. We thus obtain a sequence of M predictions for
each ROI (distinct feature descriptors) and apply our aggregation technique to
make the final prediction. Table 1 shows estimated optimum ROI sizes for five
species based on the classification performance.

5.2 K-NN with Dropout Regularization
Given the predictors we select a single value of K that produces the best results
on the data sets. We set K = 9 for this experiment and observed that as we
increase P we receive an increase in peak results but a broadening out of the
range of near optimal settings of dropout. We plot the performance as a function
3 http://bisque.ece.ucsb.edu/client_service/view?resource=http://bisque.
ece.ucsb.edu/data_service/dataset/6395104
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Over 30 Species Top 5 Species
Classifier AVG MV Proposed AVG MV Proposed

Random Forests 0.23 0.32 0.52 0.44 0.62 0.79
AdaBoost 0.2 0.29 0.51 0.49 0.54 0.68
SVM 0.23 0.27 0.48 0.52 0.61 0.73
Naive Bayes 0.11 0.14 0.23 0.37 0.57 0.61

Table 2: Classification performance (F-Score) comparison of the aggregation tech-
niques: proposed vs. majority vote (MV) and averaging (AVG). The results are aver-
aged over 30 species. We observed a significant variation in the overall classification
performance between the top 5 performing classes and the rest, though in each case
the proposed method outperforms traditional classifiers by a significant margin.
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Fig. 5: Comparison of the classification performance as a function of dropout. The peak
performance around 10 dropouts indicates that most classifiers are in fact making too
many mistakes. By selecting a large number of predictors over a small set of classifiers
we are able to select only the top K neighbors and ignore the rest implicitly.

of M (Figure 5). Notice that the optimal quantity of dropout is towards the
middle of the set of possibilities. This is a very promising result showing K-NN
plus dropout improves the result over simply using the mode decision of the
classifiers.

We also used a validation set to find the optimum dropout per species. The
final result of our classifier is shown in Figure 6. We compare our result with
two other cases. First, with the average performance of individual classifiers
(where, for every given species we compute the performance of each classifier
first and then average them to get the overall performance.) Second, with the
performance of majority vote aggregation. In this case we take the majority vote
classifier’s output and then evaluate the prediction with ground truth for each
species. Figure 4 compares manual annotation of Anemone vs. automated one
produced using our method.

6 Conclusion
We proposed an efficient aggregation method for correlated classifiers and showed
that we can remove outliers in prediction i.e. by estimating the ratio of good clas-
sifiers vs. bad ones. Once this ratio is known (dropout) we can use a combination
of K-NN and the dropout technique to optimize for the final decision. We showed
that the mode decision of the predictors did not perform nearly as well as the K-
NN+dropout. Finally, as noted in Table 2, the overall classification performance
varies significantly among the species. The top 5 species and their corresponding
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classifiers perform much better than the rest of the classes, and we speculate
that this is possibly due to the limitations of the visual features used and/or the
number of available samples in the training set. However, the proposed method
outperforms other classifiers that we have compared with in each of these cases.
The top 5 species also happen to be the more common ones in the database, and
even the current classification accuracy of 80% greatly facilitates expert assisted
annotation. Acknowledgments: This work is supported in part by the grants
NSF-III #0808772, ONR #N000141210503, and the Bureau of Ocean Energy
Management (Department of the Interior) Co-Op # M13AC00007.
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