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Abstract This work addresses the problem of optimally solv-
ing Markov Random Fields(MRFs) in which labels obey
a certain topology constraint. Utilizing prior information,
such as domain knowledge about the appearance, shape, or
spatial configuration of objects in a scene can greatly im-
prove the accuracy of segmentation algorithms in the pres-
ence of noise, clutter, and occlusion. Nowhere is this more
evident than in the segmentation of biomedical images, where
typically the spatial relationships among the image regions
inherently reflect those of the anatomical structures being
imaged. In this work, we propose a new methodology to
segment a special class of images, which exhibit nested layer
topologies often encountered in biomedical applications. The
segmentation problem is modeled using multi-label Markov
Random Fields with an additional label adjacency constraint
(LAC). The multi-label MRF energy with LAC is transformed
via boolean variables encoding into an equivalent function
of binary variables. We show this boolean function is sub-
modular, graph representable, and can be minimized exactly
and efficiently with graph cut techniques. Our experimental
results on both synthetic and real images demonstrate the
utility of the proposed LAC segmentation algorithm.

Keywords Markov random fields · graph cuts · nested
layer segmentation · label constraint

1 Introduction

The segmentation of a typical image, such as one depict-
ing an office desk or outdoor scene, tends to produce junc-
tion points where three or more regions with different labels
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Fig. 1 Images with nested layer topologies.(a,b) Each intensity value
in (1-highest, 4-lowest) indicates a distinct label (4 labels total). (c)
Image of jejunum cross-section. (d) Confocal image of a mammalian
retina.

touch. This is not surprising since there are no restrictions
on the spacial layout of the different objects or regions in
the scene. However in many biomedical applications, the
spatial relationships among the image regions inherently re-
flect those of the anatomical structures being imaged. For a
special subclass of these images, the regions exhibit a nest-
ing relationship where it is possible to partition the image
regions such that no junctions exist. That is, given an or-
dered set of labels, it is possible to assign labels to the image
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regions such that adjacent regions have consecutive labels
from the set. Such a segmentation prevents junctions where
three or more regions with nonconsecutive labels touch.

Images with nested regions are uncommon in natural
or uncontrived scenes (Martin et al (2001)), but occur fre-
quently in biomedical datasets. The images in Fig. 1 illus-
trate some common nested regional relationships often ob-
served in the biomedical image domain. The regions in Fig. 1(a)
exhibits an “inside-outside” nesting relationship where one
label can be said to encapsulate another label. An the ex-
ample of this type of layer nesting is shown in Fig. 1(c).
Fig. 1(b) shows an example of a “before-after” nesting re-
lationship that is frequently observed in images of tissue
cross-sections, such as the skin epidermis or the mammalian
retina, e.g. Fig. 1(d). Images with nested layers are not solely
restricted to the biomedical domain, but can also be found in
other areas, such as the geosciences.

Since segmentation is an ill-posed problem in general,
we propose to use the nested layer relationship to improve
the segmentation accuracy. Previous works have shown that
incorporating domain priors, such as an object’s shape, can
dramatically enhance an algorithm’s ability to correctly seg-
ment the image (Leventon et al (2000); Rousson and Para-
gios (2002); Tsai et al (2003)). As our results demonstrate,
utilizing the nested layer relationship will greatly improve
the segmentation. An additional benefit of using this prior
information is that we are able to constrain the segmentation
to return only those results that are structurally or anatomi-
cally feasible.

1.1 Nested Layer Segmentation Formulation

Given an image with pixel set P = {1, 2, . . . , N} and an
ordered label set L, we seek a labeling y that minimizes the
MRF (Geman and Geman (1984)) energy

E(y) =
∑
p∈P

Vp(yp) +
∑

p∈P,q∈Np

Vpq(yp, yq) (1)

subject to the Label Adjacency Constraint (LAC) to prevent
junctions

|yp − yq| ≤ 1, ∀yp, yq ∈ L. (2)

Here Np denotes the set of pixels that are neighbors of p,
and without loss of generality, we specify the label set to
be L = {1, 2, . . . ,K}. The term Vp(yp) is the unary po-
tential associated with labeling p with yp, and Vpq(yp, yq) is
the pairwise potential associated with labeling neighboring
pixel pair p and q with labels yp and yq , respectively. Our no-
tation do not explicitly indicate the dependency of the MRF
energy on image data, but it is assumed that this dependency
exists. Notice condition (2) restricts neighboring pixel pairs

from having labels that differs by more than one. This con-
dition effectively forces the regions in the final segmentation
to have a nested relationship. The problem of solving the en-
ergy in equation (1) has been extensively researched using
graph cuts (Boykov et al (2001); Boykov and Kolmogorov
(2004)), message passing (Kolmogorov (2006); Wainwright
et al (2005)) and annealing (Geman and Geman (1984)). Our
work specifically focusses on optimally solving the energy
in equation (1) constrained by LAC in equation (2) using
graph cut techniques.

The primary contributions of this work are:

– Globally Optimal Solution to the Nested Layer Segmen-
tation (NLS) Problem

– Memory and Computationally Efficient Graph Construc-
tion for NLS

– Identification and Experimental Validation of several NLS
scenarios

1.2 Related Works

The work by (Chung and Vese (2005)) is most relevant in
terms the problem of segmenting images with nested layers.
In (Chung and Vese (2005)), the authors proposed a mul-
tilayer level set approach motivated by island dynamics in
epitaxial growth. In traditional level set methods, the zero
level set is used to embed an evolving front or curve that
divides the image into positive and negative regions (two la-
bels). The multilayer level set method uses multiple level
lines of a single level set function to represent the bound-
aries separating regions with adjacent labels. This is anal-
ogous to using the contour lines of a topographic map to
indicate the elevation levels. Effectively, the different re-
gions are implicitly nested, and this relationship is main-
tained throughout the level set evolution. An advantage of
using the multi-level formulation is that only one level set
function is needed to represent multiple (> 2) labels, unlike
multiphase approaches, which require more than one level
set function and is less efficient (Zhao et al (1996); Vese and
Chan (2002)).

Yet, the multilayer level set approach has several limita-
tions. As pointed out by the authors, the algorithm does not
guarantee a globally optimal solution and is sensitive to the
initialization. Since this method relies on performing gradi-
ent descent on an energy functional, these limitations are to
be expected. Secondly, the user manually specifies the lev-
els used for embedding the boundaries. While this task may
not pose a problem for images with few labels, it may poten-
tially become difficult to choose the right set of values when
the number of labels becomes large.

In the graph cut formulation, Ishikawa presented a method
to find the exact minimizer of equation (1) given that the
label set is ordered and the pairwise clique potential is a
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convex function of the label difference (Ishikawa (2003)).
While it appears that this framework would be applicable
to the nested layer problem, it remains a challenge to find a
practical convex function that also satisfies the LAC condi-
tion. For example, we can use the convex function

Vpq(yp, yq) = c · f(yp − yq) = c · |yp − yq|γ , (3)

for γ → ∞ and c a quantity that depends on the image
data. Yet in the implementation, there are limitations that
affect the efficiency and accuracy of the segmentation. The
most noticeable issue is the scalability of the graph required
for optimization. When γ ≥ 2 in equation (3), the num-
ber of edges in the graph is on the order of O(NK2), as-
suming the total number of neighborhood edges is O(N).
Even for modest image sizes (2562), the graph size can grow
quickly as the number of labels increases. As we will show,
the graph construction for our method reduces the number
of edges to be on the order of O(NK). A second limita-
tion deals with the numerical overflow of the energy cal-
culation during graph cut optimization. In the graph struc-
ture of (Ishikawa (2003)), the edge weights between neigh-
boring nodes are proportional to the second difference of
f(yp − yq), i.e. f(yp − yq + 1) − 2f(yp − yq) + f(yp −
yq − 1), and as a result, the majority of these edge weights
have very large values. Most feasible minimum cost cuts
will inevitably sever a large number of these edges, and con-
sequently the energy computation suffers from numerical
overflow and returns suboptimal results.

Another notable graph cut approach with label constraint
was proposed by (Liu et al (2008)), where a pair of order-
preserving moves are used for geometric class scene label-
ing. Their algorithm uses a series of horizontal and verti-
cal moves to iteratively segment the image into five regions:
center, top, bottom, left, and right. Though each horizontal
or vertical move is optimal, the final result is not guaranteed
to be globally optimal. Note also that this approach is not
directly applicable to the task of nested layer segmentation.

In essence, our work formally proposes the problem of
nested layer segmentation and identifies it as a subclass of
problems that can be solved using (Ishikawa (2003)). Sub-
sequently, an efficient graph construction for circumventing
memory and overflow issues arising from the construction
in (Ishikawa (2003)) is proposed.

Recently, (Felzenszwalb and Veksler (2010)) proposed
a tiered scene labeling construction that exactly solves the
labeling problem for images having a tiered structure. By
their defenition of tiered structures, each column has a top,
bottom and middle layer. In this work, we impose no such
restrictions on the number of labels a column can occupy. It
is also known that (Felzenszwalb and Veksler (2010)) slows
down considerably as the number of tiers increases. We used
the source code provided by (Felzenszwalb and Veksler (2010))

and confirmed the high running times of tiered scene label-
ing in comparison to our formulation. (Zheng et al (2012))
extend the tiered scene labeling problem to multiple tiers by
proposing a fast approximate inference scheme. In contrast,
the formulation proposed in this work can solve multiple
tiered scene labeling problems that obey LAC exactly! It is
useful to note that all visual results demonstrated in (Zheng
et al (2012)) obey the LAC.

Further, (Garvin et al (2008)) model intra retinal layer
segmentation as a graph search problem. While their work
focussed primarily on retinal image segmentation, our work
attempts to solve a generic layer constrained segmentation
problem using graph cuts.

Finally, while we have identified many more NLS sce-
narios where the technique proposed in this work has been
applied, they are not included in this draft due to space con-
straints and to primarily focus on the problem formulation.
A discussion of other applications considered, along with
the source code is downloadable at
(http://vision.ece.ucsb.edu/segmentation/nls/).

1.3 Paper Outline

In the remainder of this paper, we will show that the glob-
ally optimal solution for equation (1) subject to equation (2)
can be found efficiently via graph cut techniques. In section
2, we review some graph cut preliminaries and provide an
important theorem in section 3, which states the condition
for optimizing equation (1) exactly. Then using the boolean
encoding scheme described in section 3, we transform the
original multi-label MRF energy into an equivalent function
of boolean variables in section 4. We show that the result-
ing boolean energy is submodular, graph representable, and
can be minimized exactly and efficiently with graph cut. In
section 5, we show experimental results on both synthetic
and real images to demonstrate the utility of our algorithm,
and briefly describe potential future extensions to this work
in section 6. We would like to mention that a preliminary
version of this work appears in (Vu (2008)).

2 Optimization with Graph Cuts

Solving for the exact minimizer of the multi-label MRF en-
ergy in equation (1) is NP-hard in general (Kolmogorov and
Zabih (2004)). However there exist certain forms of the en-
ergy function that allow for an exact solution. In this section,
we discuss several cases where exact solutions can be found
and the subsequent section provides a useful theorem, which
states the conditions for exact minimization via graph cut
techniques. We start by briefly describing some necessary
background on graph cut.
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2.1 Graph Cut Preliminaries

A weighted directed graph G(V, E) is composed of a set of
nodes V and a set of directed edges E ⊂ V × V connecting
the nodes. The node set includes two special terminal nodes,
the source s and the sink t, and the remaining nodes are
considered neighborhood nodes. A directed edge (p, q) ∈ E
connects node p ∈ V to node q ∈ V and has nonnegative
capacity or weight wpq . Note that because the graph is di-
rected, (p, q) 6= (q, p).

A subset of edges Ec ⊂ E is called an st-cut if the ter-
minal nodes are completely separated in the induced graph
G′ = (V, E − Ec). That is there are no forward paths from
source s to sink t when all edges in the cut are removed.
Hence, the cut partitions the nodes into disjoint subsets S
and T where s ∈ S and t ∈ T . In our convention, an edge
(p, q) is in the cut if p ∈ S and q ∈ T . For simplicity,
we will refer to the st-cut simply as a cut. The cost of the
cut is the sum of all the edge weights in Ec. For a given
graph, the minimum cost cut (mincut) can be found by solv-
ing an equivalent maximum flow (maxflow) problem (Ford
and Fulkerson (1962)).

The goal of using graph cuts for energy minimization is
to construct a graph such that there is a one-to-one mapping
between cuts in the graph and labelings of the image pixels.
Moreover the minimum cut cost should equal to (up to a
constant) the minimum energy labeling. As mentioned, not
all energy functions are graph representable, but below we
discuss several forms that allow for optimization via graph
cut.

2.2 Energies with Exact Solutions

There are several unique forms of equation (1) where the
exact solutions can be found. The most common case is
when L = {0, 1} and the second order potential Vpq(yp, yq)
is submodular (Greig et al (1989); Kolmogorov and Zabih
(2004); Freedman and Drineas (2005)). For |L| > 2 and
L an ordered set, Ishikawa gave conditions for the pairwise
cost Vpq(yp, yq) to be exactly minimized (Ishikawa (2003)).
Along the same line, using pseudo-boolean optimzation (Boros
and Hammer (2002)), Schlesinger and Flach also showed
that multi-label MRFs with convex energy functions of order
two can be minimized exactly in polynomial time (Schlesinger
and Flach (2006)). Subsequently, Ramalingam et al. out-
lined a more extensive set of conditions for exactly mini-
mizing multi-label MRF energies with higher order poten-
tials (Ramalingam et al (2008)). In addition, they described
a principled framework for transforming the class of sub-
modular multi-label kth order functions into an equivalent
class of submodular second order boolean functions, which
can be solved exactly using graph cuts. We will discuss their
framework in more detail in section 3.

3 Boolean Encoding of Multi-label Variables

In this section, we then review the boolean transformation
techniques presented in (Ramalingam et al (2008)), which
we use to transform the LAC formulation in the next sec-
tion. The key idea in transforming a multi-label function
into one of binary variables is to use two or more boolean
variables to encode the states of a single multi-label vari-
able. The transformation is accomplished by defining a set
of encoding functions, which replace all occurrences of the
multi-label variable with that of the encoding boolean vari-
ables. For a given multi-label kth order function E(y) with
y ∈ Y , the transformation T : Y → Z will result in a
boolean kth order function Ebin(z), where z belongs to the
space of boolean labelings Z . In addition, the transforma-
tion must be bijective and the minimum value of E(y) over
y must equal to the minimum value of Ebin(z) over z. Re-
fer to (Ramalingam et al (2008)) for more details on these
conditions.

3.1 Encoding Unary Multi-label Variables

The unary potential in equation (1) can be rewritten as

Vp(yp) =
∑
i∈L

θp;iδ(yp, i), (4)

where θp;i is the potential for assigning label yp = i to pixel
p, and

δ(yp, i) =

{
1 if yp = i

0 otherwise.
(5)

In order to make equation (4) a function of boolean vari-
ables, the multi-label terms δ(yp, i) should be replaced with
boolean functions fyp;i(zp). Here zp = {z1p, z2p, . . . , zMp },
with zip ∈ {0, 1}, and M is the number of boolean variables
used to encode one multi-label variable.

Schlesinger and Flach (Schlesinger and Flach (2006))
proposed encoding aK-label variable yp usingK−1 boolean
variables {z1p, z2p, . . . , zK−1p } such that

{yp = i} ↔
{
z1pz

2
p . . . z

K−1
p = {0(i−1)1(K−i)}

}
(6)

where we use the notation

0(i−1) = 00 . . . 0︸ ︷︷ ︸
i−1

and 1(K−i) = 11 . . . 1︸ ︷︷ ︸
K−i

. (7)

It is fairly straightforward to deduce that the function fyp;i(zp)
satisfies

fyp;i(zp) =


z1p, i = 1

zip − zi−1p , 2 ≤ i ≤ K − 1

1− zK−1p , i = K.

(8)
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A more detailed derivation can be found in (Ramalingam
et al (2008)). To carry out the boolean transformation, fyp;i(zp)
can be substituted for every instance of δ(yp, i) in equa-
tion (4), thereby transforming the multi-label function Vp(yp)
into one of boolean variables.

3.2 Encoding Pairwise Multi-label Variables

Similar to the unary potential case, the pairwise potential in
equation (1) can be expressed as

Vpq(yp, yq) =
∑
i,j∈L

θpq;ijδ(yp, i)δ(yq, j), (9)

where θpq;ij is the potential associated with the pairwise
label assignments of yp = i and yq = j to neighboring
sites p and q, respectively. By substituting equation (8) into
equation (9), the pairwise multi-label potential becomes the
boolean potential

Vbin(zp, zq) =
∑

i,j∈L{−1}

αijz
i
pz
j
q + L1, (10)

with L{−1} = {1, 2, . . . ,K − 1} and the coefficients

αij = θpq;ij − θpq;(i+1)j − θpq;i(j+1) + θpq;(i+1)(j+1). (11)

The term L1 is the sum of the first order terms and constants.
The following theorem states the condition for an exact so-
lution of a second order boolean function via graph cuts. For
a proof, refer to (Freedman and Drineas (2005)).

Theorem 1 Let zi ∈ {0, 1} and let
E(z1, . . . , zn) =

∑
i,j aijzizj+L, whereL represents terms

that are linear in zi plus any constants. Then E can be min-
imized via graph cut techniques if and only if aij ≤ 0 for all
i, j.

As a consequent, as long as our boolean transformed energy
satisfies Theorem 1, we can use graph cut constructions to
exactly solve for the minimum energy labeling. In order to
minimize equation (10) exactly the coefficients must satisfy
αij ≤ 0 (submodular condition).

3.3 Graph Construction for Boolean Encoding

As an example (Ramalingam et al (2008)), for a 4-label vari-
able yp ∈ L = {1, 2, 3, 4}, the encoding is given by

{yp = 1} ↔ {z1pz2pz3p = {111}}
{yp = 2} ↔ {z1pz2pz3p = {011}}
{yp = 3} ↔ {z1pz2pz3p = {001}}
{yp = 4} ↔ {z1pz2pz3p = {000}}.

(12)

yp = 1
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∞
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p3
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Fig. 2 (a) Graph construction for unary variable encoding. (b) Exam-
ple of an infeasible cut (gray arrow). Blue nodes belong to the source
set S and red nodes belong to the sink set T . Edge (p3, p2) is in the
cut and has infinite weight, making the cut cost prohibitively high.

The graph construction corresponding to this encoding is
shown in figure 2(a). Each multi-label variable yp is encoded
by K − 1 nodes {p1, p2, . . . , pK−1}. Using the convention
that, after the cut, pi ∈ S implies zip = 0 and pi ∈ T implies
zip = 1, the cuts corresponding to yp = i for i ∈ L result in
the binary labelings in equation (6). Furthermore, to ensure
that each cut has a corresponding cost equal to the unary
energy in equation (4), the edge weights are assigned as:

ws,1p = θp;1 (13a)

wi,i+1
p = θp;i+1 (13b)

wK−1,tp = θp;K . (13c)

Here ws,1p , wi,i+1
p , and wK−1,tp are the weights of directed

edges (s, p1), (pi, pi+1), and (pK−1, t), respectively.
Notice that for the above example, the three boolean

variables can encode a maximum of 23 = 8 labelings. How-
ever, the labelings z1pz

2
pz

3
p = {010, 100, 101, 110} are un-

used, and cuts resulting in these labelings must be made
infeasible. This is accomplished by adding infinite capac-
ity edges (pi+1, pi) for i = 1, 2, . . . ,K − 2, which makes
the cuts corresponding to the unused labelings have pro-
hibitively high costs. These edges are shown as dashed ar-
rows in figure 2(a). Figure 2(b) shows an example of an in-
feasible cut, where according to our graph cut convention,
the edge (p3, p2) is in the cut, and the boolean encoding for
yp is z1pz

2
pz

3
pz

4
p = {0101}. However, since this edge has in-

finite weight, such a cut is prevented.
The graph structure for encoding a pair of variables {yp, yq}

for neighboring pixels p and q is dependent on the pairwise
potential θpq;ij . An example that satisfies the submodularity
condition is the potential given in (Ishikawa (2003)), i.e.

θpq;ij = c · |yp − yq|γ , for k > 0. (14)
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(a) Graph for γ = 1 in (14).
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(b) Graph for γ > 1 in (14).

Fig. 3 Graph constructions for the pairwise variable encoding accord-
ing to (Ishikawa (2003); Schlesinger and Flach (2006)). For simplicity,
a bidirectional edge connecting pi and qj is used to represent the two
directed edges (pi, qj) and (qj , pi). The number of edges grows ac-
cording toO(N ·K2) for γ > 1.

Figure 3 shows the graph construction for γ = 1 (left) and
γ > 1 (right). In each graph, the left and right columns
of nodes encode the variables yp and yq , respectively. The
nodes pi and qj are connected via two directed edges (pi, qj)
and (qj , pi), but for simplicity these edges are represented
by a single bidirectional edge. Refer to (Ishikawa (2003))
for more detail on the weight assignments.

The combined graph construction for the unary and pair-
wise potentials in the above examples allows for an exact
solution via graph cuts. With the appropriate weighting as-
signments, a feasible cut on the graph has a cost equal to the
sum of the unary and pairwise potentials of cut edges, and
the mincut corresponds to the labeling with lowest energy.
We would like to note that other boolean encoding schemes
are also possible (Ramalingam et al (2008)), but our results
rely on the one presented here.

Proposition 1 Given a constraint on labels of the form Cd :
|yp − yq| ≤ d,∀p, q ∈ V, {yp, yq} ∈ L, 1 ≤ d ≤ |L| − 1,
the set of edges each with infinite weight Ed =

⋃|L|−1−d
i=1

{(qi+d, pi), (pi+d, qi)}, guarantees resulting labels adhere
to Cd.

Proof Sketch: Consider two adjacent sites in the random
field p, q, which have edges (pi+d, qi) and (qi+d, pi) having
infinity costs. We now consider four cases.

Case 1: Cut entering through (pi−1, pi) and
exiting through (qj−1, qj), i+ d+ 1 ≤ j ≤ |L| − 1

These cuts are infeasible and are prevented by (qi+d, pi),
see second column Figure 4.

Case 2: Cut entering through (pi−1, pi) and
exiting through (qj−1, qj), i− 1 ≤ j ≤ i+ d

These are feasible cuts since they do not violate Cd, see
first column in Figure 4.
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Fig. 4 Illustration of various feasible and infeasible cuts for the generic
case for a label constraint of the form |yp− yq| ≤ d. Considering two
sites p and q and a specific label assignment i, there are two edges
having dark shades (pi+d, qi) and (qi+d, pi) that prevent infeasible
labelings that violate |yp−yq| ≤ d. The first column shows a feasible
cut since both edges with dark shades are not in the cut. However, in
the second and third columns one of the dark shaded edge switches
color to green if it is in the cut. Since the cost of cuts in the second and
third columns are exorbitantly high, they are infeasible solutions of the
energy minimization.

Case 3: Cut entering through (pi+d, pi+d+1) and
exiting through (qj−1, qj), 2 ≤ j ≤ i− 1

These cuts are infeasible and are prevented by (pi+d, qi),
see third column in Figure 4.

Case 4: Cut entering through (pi+d, pi+d+1) and
exiting through (qj−1, qj), i− 1 ≤ j ≤ i+ d

These are feasible cuts since they do not violate Cd.
Since any cut can be classified into one of the four cases

and Cd is not violated in any of the above cases, thus verify-
ing the proposition.

The above proposition provides the intuition behind gen-
erating solutions that adhere to a label adjacency constraint.
In this context, the proposed approach can be viewed as a
restriction of the original Ishikawa construction. The above
proposition though intuitive, does not provide a concrete
way to map energies (specifically, the interaction terms while
feasible cuts occur) to cuts in the graph. We now turn our at-
tention to a formulation using pseudo-boolean optimization
that derives the above proposition and yields a graph con-
struction that exactly maps solutions in the energy to cuts in
the graph when |yp − yq| ≤ d, when d = 1.

4 Multi-label MRF with Label Adjacency Constraint

We now turn our attention to transforming the LAC in equa-
tion (2) for neighboring pairs of multi-label variables yp and
yq into an equivalent constraint for the corresponding pair
of boolean variables zp and zq . We will show that the MRF
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energy E(y), subject to condition (2), can be minimized ex-
actly when

θpq;ii− θpq;(i+1)i− θpq;i(i+1)+ θpq;(i+1)(i+1) ≤ 0, ∀i ∈ L.
(15)

Additionally, we will describe the graph construction, which
enforces the label constraint condition and for which the
mincut cost yields the minimum energy labeling.

4.1 Boolean Encoding of LAC

Recall that the set of labels is the ordered setL = {1, 2, . . . ,K}.
The constraint |yp − yq| ≤ 1 forces two neighboring sites
p and q to have either the same label or consecutive labels
from L. Without loss of generality, assume yp ≤ yq . As
an example for K = 4, the set of labelings {yp, yq} =

{(1, 3), (1, 4), (2, 4)} violates this constraint. The boolean
encodings using the scheme in equation (6) for these three
cases are:

{yp = 1, yq = 3} ↔
{
z1pz

2
pz

3
p = {111}, z1qz2qz3q = {001}

}
{yp = 1, yq = 4} ↔

{
z1pz

2
pz

3
p = {111}, z1qz2qz3q = {000}

}
{yp = 2, yq = 4} ↔

{
z1pz

2
pz

3
p = {011}, z1qz2qz3q = {000}

}
.

(16)

Observe that these infeasible labelings all have in common
at least one instance where a boolean variable pair {zip, zjq} =
{1, 0} for j ≥ i+1. In general for any boolean variable pair,
this assignment implies that if yp = i then yq > i+1. How-
ever it is clear that such an assignment violates the LAC.

We can state the LAC for the boolean variables more
precisely. Given the boolean encodings zp = {z1p, z2p, . . . , zK−1p }
and zq = {z1q , z2q , . . . , zK−1q } for the multi-label variable
pair yp and yq , the constraint in equation (2) is equivalent to

zipz
j
q + zjpz

i
q = 0 for i ∈ L{−2}, j > i, (17)

where z = 1 − z and L{−2} = {1, 2, . . . ,K − 2}. The
penalty for these infeasible pairwise boolean encodings can
be expressed as

P (zp, zq) =
∑

i∈L{−2},j>i

λ(zipz
j
q + zjpz

i
q), (18)

where λ → ∞. Combining the boolean transformations for
the multi-label MRF energy and the LAC, we arrive at boolean
energy

Ebin(z) =
∑
p∈P

Vbin(zp)+
∑

p∈P,q∈Np

(
Vbin(zp, zq)+P (zp, zq)

)
.

(19)

4.2 Conditions for Exact Solutions

In order to find the exact global minimum of equation (19),
we have to show that the second summation, expressed in
the form of equation (10), satisfies Theorem 1. That is, all
the second order terms involving zipz

j
q must have coefficients

αij ≤ 0. Observe that the boolean potential in equation (10)
can be reexpressed as

Vbin(zp, zq) =
∑

i∈L{−2},j>i

(
αijz

i
pz
j
q + αjiz

j
pz
i
q

)
+

∑
i∈L{−1}

αiiz
i
pz
i
q + L1

=
∑

i∈L{−2},j>i

(
α′ijz

i
pz
j
q + α′jiz

j
pz
i
q

)
+

∑
i∈L{−1}

αiiz
i
pz
i
q + L

′

1,

(20)

where α′ij = −αij and

L
′

1 = L1 +
∑

i∈L{−2},j>i

(
α′ijz

i
p + α′jiz

j
q

)
. (21)

With the reformulation above, exact minimization of equa-
tion (20) requires αii ≤ 0, α′ij ≥ 0, and α′ji ≥ 0. Exact min-
imization of L

′

1 is guaranteed since it is composed of first
order terms and constants (Freedman and Drineas (2005)).

The boolean pairwise potential Vbin(zp, zq) and the boolean
penalty P (zp, zq) can be combined to give

Vbin(zp, zq) + P (zp, zq)

=
∑

i∈L{−2},j>i

(
(α′ij + λ)zipz

j
q + (α′ji + λ)zjpz

i
q

)
+

∑
i∈L{−1}

αiiz
i
pz
i
q + L

′

1.

(22)

The next section provides a graph construction to ensure the
coefficients of zipz

j
q and zjpz

i
q satisfy (α′ij + λ) ≥ 0 and

(α′ji+λ) ≥ 0, guaranteeing that the first summation in equa-
tion (22) can be minimized exactly. Consequently, the only
requirement for the exact minimization of equation (22) is
for αii ≤ 0, i ∈ L{−1}. In summary, to minimize equa-
tion (19), we must define pairwise potentials to ensure

θpq;ii − θpq;(i+1)i − θpq;i(i+1) + θpq;(i+1)(i+1) ≤ 0. (23)

4.3 Label Adjacency Constraint Graph

Minimizing equation (22) with st-mincut techniques requires
that all occurrences of the label pairs zipz

j
q = {10} and

zjpz
i
q = {01}, where i ∈ L{−2} and j > i be made in-

feasible, since these labelings violate the LAC. Recall that
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t
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pi qi

qi+1

p1

pi+1

q1

pK−1 qK−1

∞

t

s

pi qi

qi+1

p1

pi+1

q1

pK−1 qK−1

∞qi qi

(a)

t

s

pi qi

qi+1

p1

pi+1

q1

pK−1 qK−1

∞

t

s

pi qi

qi+1

p1

pi+1

q1

pK−1 qK−1

∞qi qi

(b)

Fig. 5 (a) The constraint edges (pi+1, qi) and (qi+1, pi) have in-
finity weight and enforce the label adjacency condition. (b) Example
of an infeasible cut (gray arrow). The cut assigns zi+1

q = 0 and
zip = 1, which would violate the constraint in equation (2). The edge
(qi+1, pi) is in the cut, making the cut cost prohibitively high.

according our graph cut convention, zjq = 0 if node qj ∈ S
and zip = 1 if node pi ∈ T . Then to prevent the labelings
zipz

j
q = {10}, a set of directed edges (qj , pi) for j > i with

infinite weights should be added to the graph. Likewise, a
set of directed edges (pj , qi) for j > i with infinite weights
should be added to prevent labelings zjpz

i
q = {01}. However

observe that only the edge (qi+1, pi) is needed to prevent all
labelings zipz

j
q = {10} for j > i. This is due to the encoding

scheme in equation (6), where zjq = 0 implies that ziq must
also equal 0 for i < j. Therefore preventing the labeling
zipz

i+1
q = {10} will also prevent zipz

j
q = {10} for j > i+1.

By similar reasoning, only the edge (pi+1, qi) with infinite
weight is needed to prevent all labelings zjpz

i
q = {01} for

j > i.
The graph in figure 5(a) shows the infinity weighted edges

used to enforce the LAC. Note that these are directed edges.
Figure 5(b) shows an example of an infeasible cut, where
pi ∈ T and qi+1 ∈ S resulting in zipz

i+1
q = {10}. Since

edge (qi+1, pi) with infinite weight is in the cut, this cut has
a very high cost. Note that even if the cut assign qj ∈ T , j >
i + 1 or pj ∈ S, j < i, edge (qi+1, pi) will still be in the
cut.

Up to this point, we have not addressed the portion of the
graph construction that is necessary to account for the costs
θpq;ij . The constrained edges (qi+1, pi) and (pi+1, qi) en-
sure that the first summation in equation (22) will be zero for
all feasible cuts on the graph. The only remaining task is to
add the necessary edges to minimize the second summation,
i.e. the term involving αii. Subsequently, we assume that
the pairwise potential θpq;ij is submodular with respect to
all adjacent label pairs {yp = i, yq = i+1} so that αii ≤ 0.
In figure 6(a), we show one possible edge weight assignment
scheme, but there are other equivalent constructions, e.g. see

t

s

pi

qi+1

p1

pi+1

q1

pK−1 qK−1

t

s

pi qi

p1 q1

pK−1 qK−1

qi

wiipq

wiiqp

1
2θpq;ii

pi−1 qi−1

1
2θpq;11

1
2θpq;KK

(a)

t

s

pi

qi+1

p1

pi+1

q1

pK−1 qK−1

t

s

pi qi

p1 q1

pK−1 qK−1

qi

wiipq

wiiqp

1
2θpq;ii

pi−1 qi−1

1
2θpq;11

1
2θpq;KK

(b)

Fig. 6 Graph construction for the minimization of a multi-label vari-
able pair with adjacent label constraint. (a) Edge weight assignments
for the pairwise potential. (b) Final graph from additively combining
the graphs in (a) and figure 5(a).

(Kolmogorov and Zabih (2004); Kohli and Torr (2007)), and
their reparameterizations (Kolmogorov and Rother (2007)).
The weights for edges (pi, qi) and (qi, pi) in the figure are

wiipq = θpq;(i+1)i −
1

2

(
θpq;ii + θpq;(i+1)(i+1)

)
(24a)

wiiqp = θpq;i(i+1) −
1

2

(
θpq;ii + θpq;(i+1)(i+1)

)
. (24b)

Although the graph shown in figure 6(a) may not be the most
compact construction, it provides a straightforward and intu-
itive representation for encoding the energy in equation (1).

Utilizing the additive property of graphs (Kolmogorov
and Zabih (2004)), the overall graph structure shown in fig-
ure 6(b) is produced by combining the graphs in figures 5(a)
and 6(a), where the weights of directed edges linking the
same nodes are added. The final graph has (K − 1) ·N + 2

nodes (including the terminals s and t), which is the same
as the graph in figure 3(b). However the number of edges is
(K − 1) · (Mn +Mt) + (K − 2) ·Mn, where Mn and Mt

are the total number of neighborhood and terminal edges,
respectively, for the two label problem. Thus the number of
edges is on the order of O(NK), which is a significant re-
duction from the number of edges in the graph construc-
tion proposed by (Ishikawa (2003)), shown in figure 3(b).
Note that Mn depends on the neighborhood connectivity.
The above construction (to the best of our knowledge) is
the most efficient known technique for optimally solving the
Nested Layer Segmentation problem.

Table 1 summarizes the weight assignments for the edges
in the final graph. Note that it is possible for edges (pi, qi)

and (qi, pi) to have negative weights. However, the repa-
rameterization techniques in (Kohli and Torr (2007); Kol-
mogorov and Rother (2007)) can be used to transform the
graph so that these edges will have nonnegative weights. In
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Table 1 Edge weight assignments for label adjacency constraint graph.

Edge Weight

(s, p1) θp;1 + 1
2
θpq;11

(pi, pi+1) θp;i+1 + 1
2
θpq;(i+1)(i+1)

(pK−1, t) θp;K + 1
2
θpq;KK

(pi+1, pi) ∞

(pi, qi) θpq;(i+1)i − 1
2

(
θpq;ii + θpq;(i+1)(i+1)

)
(qi, pi) θpq;i(i+1) − 1

2

(
θpq;ii + θpq;(i+1)(i+1)

)
(pi+1, qi) ∞

(qi+1, pi) ∞

this work we use a pairwise potential where θpq,ii = 0, ∀i ∈
L, and hence these edge weights are always nonnegative.
The final graph construction in figure 6(b) allows the exact
minimization of the energy in equation (1), subject to the
LAC (2), in polynomial time using st-mincut techniques.

5 Experiments and Results

In this section, we first describe the segmentation workflow
for our proposed method, starting with the user input and
ending with completion of the maxflow/mincut. We provide
details for computing the unary and pairwise potentials as
well as the set of image features used in the experiments.
We then show the results of applying our LAC algorithm on
a set of 2D and 3D images, and briefly compare some results
with the α-expansion and αβ-swap algorithms (Boykov et al
(2001)) and results using Ishikawa’s construction (Ishikawa
(2003)).

5.1 Segmentation Workflow

Figure 8 shows the segmentation of an immunofluorescence
image of a retinal cross section using 7 labels. The highly in-
homogeneous textures in several of the regions require large
exemplar regions for training. This image was provided by
Dr. Geoff Lewis from the Neuroscience Research Institute,
U.C., Santa Barbara.

For a given image, the segmentation begins with inter-
active user input. The user selectively marks one or more
exemplar regions from each layer and indicates the layer
nesting order, e.g. by the order in which each region was
marked. As will be explained shortly, the pixel features in
these exemplar regions are used for density estimation and
subsequently to compute the unary potentials. Next, the al-
gorithm constructs the LAC graph and computes the corre-
sponding edge weight assignments. Finally, performing the

(a) user input (b) ML classification

(c) overlaid (d) LAC segmentation

Fig. 7 LAC segmentation of a texture image. (a) Using 4 labels, the
user selects an exemplar region for each label in order of layer nesting,
either top-to-bottom or bottom-to-top for this example. From density
estimation using the exemplar region features, the maximum likelihood
(ML) classification is shown in (b). The LAC segmentation result (d) is
overlaid or superimposed on top of the original image (c). Parameters:
conn = 8, λx = 1, texture features.

(a) user input, 455× 285 (b) ML classification

(c) overlaid (d) LAC segmentation

Fig. 8 Segmentation of immunofluorescence image of retinal cross
section with 7 labels. Parameters: conn = 16, λx = 0.1, texture fea-
tures.

maxflow/mincut on the LAC graph results in the globally
minimal labeling.

Figure 7 illustrates the segmentation workflow for an
image with four texture regions, some of which are visu-
ally very similar. Figure 7(a) shows the exemplar regions
selected by the user, with the ordering specified from ei-
ther top-to-bottom or bottom-to-top. For this example, the
selected regions include all pixels enclosed inside the mark-
ings. Figure 7(b) shows the maximum likelihood (ML) clas-
sification for the labels after density estimation (see section
5.1 below). Though normally one would not choose ML
classification for segmentation, this result illustrates that the
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combination of inadequate image features and/or poor den-
sity estimation do not necessarily provide an accurate indi-
cation of the layer labels. Nonetheless the LAC segmenta-
tion algorithm is powerful enough to correct for this short-
coming. Figure 7(c) shows the result of our algorithm over-
laid on top of the original image, and figure 7(d) shows the
LAC result alone.

Figure 8 shows the segmentation of an immunofluores-
cence image of a retinal cross section using 7 labels. The
highly inhomogeneous textures in several of the regions re-
quire large exemplar regions for training. This image was
provided by Dr. Geoff Lewis from the Neuroscience Re-
search Institute, U.C., Santa Barbara.

In our work, we use the MATLAB mex interface to run
the maxflow algorithm of Boykov and Kolmogorov (Boykov
and Kolmogorov (2004)) written in C++ and is available on-
line (http://vision.csd.uwo.ca/code/). After user input, den-
sity estimation is performed using the Fast Gauss Transform
(Yang et al (2003); Elgammal et al (2003)).

Unary and Pairwise Potentials: Let xp ∈ Rd be a d-
dimensional feature vector at pixel location p. We use the
following cost for the unary potential in equation (4) θp,i =
− log Pr(xp|yp = i), ∀i ∈ L. This is simply the negative
likelihood of xp given that the label yp = i. This cost favors
the class label that best explains the observation xp.

Given a set of pixel features from user selection, we
use kernel density estimation to calculate the likelihood. Let
{x1|i, x2|i, . . . , xni|i} be the set of training image features
for the ni pixels labeled i ∈ L by the user. The kernel den-
sity estimate for a pixel p is

Pr(xp|yp = i) =
1

ni

ni∑
j=1

1

(2πσ2)d/2
exp

(
−
‖xp − xj|i‖2

2σ2

)
.

(25)

In all experiments, the bandwidth parameter σ is set to
√
2d/10

for xp ∈ [0, 1]d, similar to that in (Malcolm et al (2007)).
We define the pairwise potential θpq,ij as

θpq,ij =


0 if yp = yq

g(xp, xq) if |yp − yq| = 1

∞ otherwise.

(26)

The data dependent function g(xp, xq) is

g(xp, xq) =
1

|p− q|

(
λmin + λx · exp

(
−‖xp − xq‖

2

2σ2
x

))
(27)

and acts to penalize pairwise label changes by an amount
dependent on the difference between the features xp and xq
(plus a constant λmin) (Boykov and Jolly (2001); Rother et al
(2004); Kohli et al (2008)). Here, |p − q| is the Euclidian
distance between pixel p and q, which is not a constant when

the neighborhood connectivity is 8 or greater. The parameter
λmin ensures that there is some minimum penalty for a label
difference. The parameter λx ∈ [0.1, 1] controls the degree
of smoothness of the layer boundaries. Smaller values favor
more jagged boundaries.

In practice, we only compute the cost θpq,ij when |yp −
yq| = 1 and set the weight for the constraint edges in the
graph to some large value, e.g. 106. For all experiments, the
parameter σx, which controls the contrast sensitivity, is set
to be the square root of the average square norm

σx =

√√√√ 1

|ERF |
∑

(p,q)∈ERF

‖xp − xq‖2, (28)

and λmin is set as

λmin =
1

|ERF |
∑

(p,q)∈ERF

exp

(
−‖xp − xq‖

2

2σ2
x

)
. (29)

Here ERF is the set of edges in the random field model.
Image Features: We use a combination grayscale, color

values, and texture descriptors for the image features in our
experiments. However, we want to emphasize that choice
of image features is often application dependent and our
method is not restricted to only the features presented herein.
The RGB color images are converted into the three dimen-
sional Luv colorspace, which we denote [I Iu Iv]. For tex-
ture discrimination, we use the diffusion based texture fea-
tures proposed in (Rousson et al (2003)). These features are
computed from the joint nonlinear diffusion of the structure
tensor components, resulting in a three dimensional vector
[Ixx Ixy Iyy]. Then to characterize the scale of the texture,
we use the TV flow based local scale measure Is, which
is one dimensional (Brox and Weickert (2004)). There are
other popular texture descriptors that can be used, such as
the Gabor features (Manjunath and Ma (1996)). However,
these features are often high dimensional and can negatively
affect the accuracy of density estimation, especially when
user input is sparse. The combined texture descriptor used
in our experiments is only four dimensional, but it has been
shown to perform comparably with a 12-dimensional Gabor
feature (Brox and Weickert (2006)).

5.2 LAC Segmentation Results: Quantitative Evaluation

We compare the proposed approach with the Ishikawa con-
struction and the α expansion algorithm. First we pause to
discuss the issues with both competing methods, followed
by a thorough quantitative evaluation.

Ishikawa Construction: As stated in section 1.2, the
graph construction of Ishikawa (Ishikawa (2003)) can also
be used to solve the nested layer segmentation problem. How-
ever, there are practical challenges that make Ishikawa’s method
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(a) user input (b) our result (LAC) (c) Ishikawa γ = 5

(d) Ishikawa γ = 16 (e) Ishikawa γ = 20 (f) Ishikawa γ = 25

Fig. 9 Comparison with Ishikawa method. For low values of γ, the re-
sults violate the LAC. As the value of k increases, the Ishikawa method
encounters numerical errors and produces increasingly less accurate re-
sults.

less suitable for tackling these problems. Besides requir-
ing a larger graph compared to our method, the Ishikawa
algorithm is prone to numerical overflow when enforcing
the LAC, as shown in figure 9. Using the pairwise poten-
tial (26), we ran the Ishikawa algorithm using equation (3)
for γ = {1, 2, . . . , 35}. Figure 9(b) shows the result of our
method using the same parameters, and the results of the
Ishikawa method for four values of γ are shown in the last
two rows of figure 9.

Notice that for sufficiently small γ, the Ishikawa seg-
mentation violates the LAC resulting in a large energy equa-
tion (1) subject to the LAC. The result in figure 9(c) for
γ = 5 shows numerous instances of this violation. As γ
increases to around 16, where the energy is lowest, these vi-
olations are reduced. As seen in figure 9(d) there are no label
violations and the result is visually similar to ours. However
the segmentation energy remains slightly higher, indicating
a near but non-optimal solution. For sufficiently large values
of γ, the algorithm encounters numerical overflow problems
when computing the maximum flow, and the results are no
longer accurate. Figures 9(e) and 9(f) show the result for
γ = 20 and γ = 25, respectively. At these values of γ, the
segmentation energies are far from the optimal.

α−Expansion: We also compare our LAC algorithm
to the α-expansion and αβ-swap algorithms (Boykov et al
(2001)), which are state of the art algorithms used to ob-
tain approximate solutions to the multi-label MRF problem.
These algorithms iteratively makes labeling moves at each
iteration to decrease the MRF energy. As noted by Liu et
al. (Liu et al (2008)), both the expansion and swap algo-
rithms are more likely to get stuck in local minima when or-
dering constraints are used, and we observed this behavior
frequently in our experiments. We test these two algorithms

(a) user input (b) our result (LAC)

(c) αβ-swap run 1 (d) αβ-swap run 2

Fig. 10 Results from two separate runs of the αβ-swap algorithm with
LAC. Although there are no constraint violations, the MRF energies for
the labelings in 10(c) and 10(d) are much higher than the shown using
LAC segmention in 10(b).

using the same parameter settings on the image in figure 7
and set the adjacency constraint penalty to 106. Since both
algorithms compute the solution iteratively starting from a
random initializations, the final solutions are often different
for different runs. The result of two separate runs for the
αβ-swap algorithm is shown in figure 10. The expansion
algorithm also produced similar results. Although these seg-
mentations do not violate the LAC, the MRF energies for
these labelings are much higher than the LAC segmentation
shown in figure 10(b). We observed similar results for the
other images in our experiments.

5.3 Quantitative Evaluation:

We conducted experiments to quantitatively compare our al-
gorithm against Ishikawa’s method and the α-expansion al-
gorithm. The first set of experiments compare the segmenta-
tion performance on a set of synthetic nested layer images,
similar to that in figure 7. The second set of experiments
evaluate performance on a set of confocal retinal images.
For both cases, pixel wise ground truth segmentation is com-
pared to results produced by the algorithm using the ham-
ming distance and rand index, a metric recently proposed
for comparing segmentations (Unnikrishnan et al (2007)).
We report hamming distance as the percentage of pixels in
the segmentation result that are not in agreement with the
ground truth. Hence, a larger Hamming distance percent-
age reported would correspond to greater disagreement of
segmentation with the ground truth. Finally, results on seg-
mentation of images acquired for retinal detachment studies
over four time intervals are reported.
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(a) input nested layer texture (b) α-expansion

(c) Ishikawa γ = 9 (d) our result

Fig. 11 (Best Viewed in Color) Nested Texture segmentation exper-
iment described in section 5.3.1. Results of the proposed approach
do not violate label ordering and produce results that are visually and
quantitatively superior to other competing techniques.

5.3.1 Experiments on Nested Texture Dataset

We created a database of 200 nested texture images, simi-
lar in structure to that in figure 7. For each image, we ran-
domly sample four textures from the Brodatz texture album
(Brodatz (1966)). An example is shown in figure 11. The
unary potentials are computed using TV flow texture fea-
tures, and the interaction potentials are constructed as de-
scribed previously for the LAC and Ishikawa methods. Here,
we also show the hamming distance and rand scores for
the maximum likelihood (ML) segmentation, as well as the
Ishikawa’s construction (IC) andα-expansion algorithm (AE).
In all experiments, we attempted two variations. In the first
case, the strokes offered to the algorithm were hardcoded
(typical of interactive settings, strong unaries), while strokes
were not hardcoded in the second case. We discovered that
LAC and IC performed much better than ML and AE. Fur-
ther, the performance of LAC and IC almost overlapped, in-
spite of IC requiring a lot more edges. Further, the unary
potentials for the texture dataset are pretty strong and the
total number of layers is only four. The subsequent discus-
sion will explicitly illustrate advantages over IC when unar-
ies are weak and the number of labels scale. The quantitative
results for this case are illustrated in figures 13,15,14,16 and
tables 2,3.

It is important to note that the hamming distance/rand in-
dex is not designed to capture violations in nested layer con-
straints. As a result, even minor differences in the hamming
distance/rand index (in layered textures in table 2) leads to
major visual differences in the segmentation results (see fig-
ure 11). Since we are unaware of a metric that penalizes vi-
olations in label constraints, we resort to the widely used
validation metrics.

(a) user input (b) α-expansion

(c) Ishikawa γ = 9 (d) our result

Fig. 12 (Best Viewed in Color) Retinal layer segmentation experiment
described in section 5.3.2. The label ordering is preserved for our re-
sult.

5.3.2 Experiments on Nested Retina Dataset

The second experiment utilizes 11 confocal images of the
retina taken 3 days after retinal detachment. An example
is shown in figure 12. These images contain a total of 4
layers of interest and 2 background layers (6 layers total).
Note that the textures in the layers are challenging to ade-
quately characterize, and we resort to using color features.
In addition, a distance transform constructed from user in-
put strokes is utilized to modulate the unary potential, which
discourages pixels far away from a stroke to be assigned that
stroke’s label in addition to hardcoding labels on pixels con-
tained in a stroke. We refer to the above procedure as stroke
hardcoding. With stroke hardcoding, see Table 2, LAC has a
Hamming distance of 13 from ground truth while the nearest
competitor is AE with a distance of 16. On a more challeng-
ing scenario with no stroke hardcoding, see Table 3, LAC
still has a Hamming distance of 13 from ground truth while
AE has a distance of 29, a difference of 16 between the two
results! It can be observed that the Ishikawa construction
degrades in performance with increasing labels since it has
distances of 27 and 33 in comparison to LAC’s 13 and 13.

5.3.3 Analysis of Runtime and Performance across
Datasets

The results in figure 17 present the running time of var-
ious techniques in seconds. A striking observation is the
long time taken by the Ishikawa construction since the num-
ber of edges grows quadratically with the number of la-
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bels. Further, the proposed approach comes very close to
the running time of α-expansions eventhough the memory
requirements for α-expansions is lower. Further, since the
proposed approach requires a single maxflow computation,
parallel and distributed solvers could potentially offer sig-
nificant speedups.

Figure 18 illustrates performance of the various tech-
niques with datasets on the x-axis. We find that for reti-
nal detachment studies, the proposed approach consistently
outperforms α-expansions. However, an interesting trend on
performance with respect to the datasets emerge. For all tech-
niques considered, 3-day detached retinas are the easiest to
segment while normal retinas are the toughest to segment.
The ML and Ishikawa constructions are worst affected by
changing datasets. This finding could be utilized to collect
more careful user annotations for tougher (Normal and 28-
day detached retina) datasets.

In the case of nested texture and nested retina datasets,
we find that the proposed approach still performs the best.
However, the Ishikawa construction edges out α expansions
in the nested texture dataset while α-expansions still ranks
second for the nested retina dataset. This behavior can be
attributed to the stronger unary terms present in the tex-
ture datasets and lower number of layers, in contrast to the
weaker unary terms and more layers for retinal datasets.

In summary, the quantitative experiments have demon-
strated the advantages offered by the proposed approach on
diverse texture and retinal layer segmentation datasets. In
spite of the non-availability of a validation metric that cap-
tures label constraint violations, the proposed approach ranks
better than state of the art on the rand scores. We have ex-
perimented with various other applications in 2D and 3D
segmentation where nested layer constraints hold. The re-
sults of auxiliary experiments can be viewed at
http://vision.ece.ucsb.edu/segmentation/nls/.

5.3.4 Experiments on Retinal Detachment Dataset

The final experiment we performed utilizes data from retinal
detachment studies. It is of great biological importance to
study the effects of retinal detachment (Fisher et al (2005))
over time. For this purpose, confocal microscopic images
are captures at time regular time intervals. In the dataset
we considered, the intervals were normal retina, 3 days, 7
days and 28 days after detachment. We utilized ten images
randomly sampled from each time interval with pixel wise
ground truth for validating the proposed approach.

Table 23 illustrates the comparative performance of the
proposed approach with competing techniques on the Reti-
nal Detachment dataset. We observe that the proposed ap-
proach (colored red) performs better than all competing meth-
ods. It is interesting to note that α-expansions comes close
to the proposed approach with stroke hardcoding. For exam-
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Fig. 18 (Best Viewed in Color) Performance on the Retinal Detach-
ment and Generic Datasets with no Stroke Hardcoding on the Ham-
ming distance (top row) and Rand scores (bottom row)

ple LAC beats AE by 3 percent in the 3day detached retinas
in Table 2. We emphasize that though the difference in about
3 percent in favour of our method, α-expansions yields bi-
ologically implausible results by violating label constraints.
Further, ML and the Ishikawa constructions yield much higher
distances in comparison to the proposed approach. On the
more challenging scenario of no stroke hardcoding, LAC
performs significantly better than competing methods and
the margin in 3day detached retinas grows to 11!, see Ta-
ble 3. A graphical illustration of the comparative perfor-
mance of the various approaches on the rand scores and
hamming distance is shown in figures 13,15,14,16 and ta-
bles 2,3.

5.3.5 Failure Case

A probable failure case of LAC is when there are weak and
misleading unary potentials, or noise that is correlated with
the constraints. In such rare scenarios LAC might wipe out
layers, especially near the image corners. We very rarely ob-
served such cases in our experiments, and even in such cases
the average performance of LAC was comparable to its com-
petitors. For example, without stroke hardcoding on the 28
day detached case the performance of LAC drops though it
beats all other methods on the average Hamming distance.
By strengthening the unaries with hardcoding LAC is able
to increase its performance margin, see Table 23.

6 Future Work and Conclusion

There are several future directions that we wish to explore.
Despite using a straightforwardly simple graph construction,
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(f) 28 Day Detached

Fig. 13 (Best Viewed in Color, Strokes hardcoded) Hamming distances (Lower is Better) corresponding to different datasets considered.
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(f) 28 Day Detached

Fig. 14 (Best Viewed in Color, Strokes hardcoded) Rand Scores (Higher is Better) corresponding to different datasets considered.

0 5 10 15
0

10

20

30

40

50

Image Number

H
am

m
in

g−
D

is
ta

nc
e

 

 

ML
Ishikawa
LAC
AE

(a) Nested Retina

0 50 100 150 200
0

10

20

30

40

50

60

Image Number

H
am

m
in

g−
D

is
ta

nc
e

 

 

ML
Ishikawa
LAC
AE

(b) Nested Textures

0 2 4 6 8 10 12
20

30

40

50

60

70

80

90

Image Number

H
am

m
in

g−
D

is
ta

nc
e

 

 

ML
Ishikawa
LAC
AE

(c) Normal Retina

0 2 4 6 8 10 12
0

10

20

30

40

50

Image Number

H
am

m
in

g−
D

is
ta

nc
e

 

 

ML
Ishikawa
LAC
AE

(d) 3 Day Detached

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Image Number

H
am

m
in

g−
D

is
ta

nc
e

 

 

ML
Ishikawa
LAC
AE

(e) 7 Day Detached

0 2 4 6 8 10 12
0

20

40

60

80

Image Number

H
am

m
in

g−
D

is
ta

nc
e

 

 

ML
Ishikawa
LAC
AE

(f) 28 Day Detached

Fig. 15 (Best Viewed in Color, Strokes not hardcoded) Hamming distances (Lower is Better) corresponding to different datasets considered.
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(f) 28 Day Detached

Fig. 16 (Best Viewed in Color, Strokes not hardcoded) Rand Scores (Higher is Better) corresponding to different datasets considered.
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Fig. 17 (Best Viewed in Color) Running times corresponding to the different datasets considered

the LAC segmentation is still limited to relatively small data
sizes, especially in 3D. This limitation can be quite signifi-
cant, since biomedical datasets are typically very large. For-
tunately, there are research efforts in developing maxflow al-
gorithms for large vision graphs (Delong and Boykov (2008))
and methods to run graph cuts on large graphs using GPUs
(Schoenemann and Cremers (2007)). Second, incorporating
higher order Potts potentials (Kohli et al (2007)) into the
proposed MRF energy should further improve the algorithm’s
ability to capture larger spatial dependencies among pixel
groups, e.g. where the texture is inhomogeneous or have
large scale. These types of textures are difficult to charac-
terize using existing texture descriptors. A third direction
is to use the LAC segmentation algorithm to segment im-

ages that exhibit a hierarchical nested layer relationship. We
would also like to note that our construction can be applied
to the geometric scene labeling (Hoiem et al (2007)) prob-
lem where a tiered label structure exists as observed by (Zheng
et al (2012)). Preliminary results obtained by applying LAC
are shown in Figure 19. We observed that the unary poten-
tials provided by (Hoiem et al (2007)) are of good quality
in comparison to the unary potentials we employed for reti-
nal layer segmentation. A detailed analysis of the benefits
LAC could offer for geometric scene labeling, investigation
of new datasets where unary potentials are not very reliable,
and comprehensive benchmarking are part work we are ac-
tively pursuing. We have requested (Zheng et al (2012)) for
datasets used in their paper, and were told that we could have
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Table 2 Average Hamming Distance(Lower is Good)/Rand Score(Higher is Good) - Strokes are Hardcoded

Method Edges Required Layered Texture Nested Retina Normal Detached(3d) Detached(7d) Detached(28d)
ML N/A 14/.88 27/.84 48/.68 20/.88 21/.87 22/.87
LAC O(NK) 7/.93 13/.92 13/.91 9/.94 11/.92 15/.92
IC O(NK2) 7/.93 27/.86 39/.75 22/.89 24/.86 32/.82
AE O(N) 15/.87 16/.91 16/.89 12/.92 15/.90 18/.90

Table 3 Average Hamming Distances(Lower is Good)/Rand Scores(Higher is Good) - No Stroke Hardcoding

Method Edges Required Layered Texture Nested Retina Normal Detached(3d) Detached(7d) Detached(28d)
ML N/A 14/.88 39/.80 51/.65 33/.85 35/.83 37/.83
LAC O(NK) 8/.93 13/.92 39/.76 12/.93 19/.89 34/.83
IC O(NK2) 8/.93 33/.86 63/.59 33/.87 37/.83 40/.80
AE O(N) 22/.85 29/.89 53/.70 23/.90 35/.85 38/.85

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 19 (Best Viewed in Color) Application of LAC to the geometric scene labeling problem. (a)-(d) illustrate the input images and (e)-(h)
correspond to labels resulting from applying graph cuts using the LAC constraint.

access within the next month. As a result, we are unable to
currently provide quantitative metrics that compare our for-
mulation with theirs, though our solution solves the problem
exactly. We will report the quantitative metrics as soon as we
receive the datasets from (Zheng et al (2012)).
In this work, we described a novel method for nested layer
segmentation and showed that the additional label adjacency
constraint in the MRF framework allows for efficient global
solutions. More specifically we showed that the globally op-
timal solution for the MRF energy in equation (1) subject to
the LAC in equation (2) can be found efficiently via graph
cut techniques. Using boolean encoding, we transformed the
original multilabel MRF energy into an equivalent function
of boolean variables, which is submodular, graph representable,
and can be minimized exactly and efficiently with graph cut.
Our experimental results on both synthetic and real images
demonstrate the utility of our proposed segmentation frame-
work.
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