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Classification and detection of biological structures in Electron Micrographs (EM) is a relatively new large
scale image analysis problem. The primary challenges are in modeling diverse visual characteristics and
development of scalable techniques. In this paper we propose novel methods for synapse detection and
localization, an important problem in connectomics. We first propose an attribute based descriptor for
characterizing synaptic junctions. These descriptors are task specific, low dimensional and can be scaled
across large image sizes. Subsequently, techniques for fast localization of these junctions are proposed.
Experimental results on images acquired from a mammalian retinal tissue compare favorably with state
of the art descriptors used for object detection.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Visual classification of structures of interest has a wide variety
of applications in natural images, video sequences, aerial and bio-
logical images. At one end of the spectrum, detection and classifi-
cation of objects in natural images has received a significant
research interest in recent times with competitions like PASCAL
and ImageNet. Algorithms such as the DPM and Sparselet have
been shown to perform extremely well on such challenges. At
the other end of the spectrum are emerging applications in bio-
microscopic imagery, where automated image analysis is crucial
due to high throughput image acquisition. Constructing an over-
arching classification/detection model that can work across any
bio-microscopic imagery is challenging due to inherent variability
in imaging protocols. For instance, a tissue imaged using different
imaging conditions, such as the light, confocal or electron micros-
copy, can lead to visually very different images. Knowledge of asso-
ciated meta-data such as molecule specific bio-markers used for
imaging are critical for further processing and interpretation of
such images. As a result, an algorithm developed for one modality
is difficult to adopt to another modality, necessitating the develop-
ment of application specific classification/detection algorithms.
The scope and applications to problems in bio-microscopic
imagery are fairly diverse, with many applications still relatively
unexplored. We focus on one such application, namely structural
connectomics.
Connectomics: Connectomics is a sub-field of neuroscience aim-
ing to understand neuronal circuitry in the animal brain. Synapses,
or edges in the neuronal circuit graph can be resolved only at nano-
meter (10�9 m) resolutions. Such resolutions require the acquisi-
tion of massive amounts of data, typically ranging into several
terabytes. Due to recent developments in high throughput micros-
copy, such datasets can be acquired in a fully automated fashion
without any human intervention. The bottleneck manifests in ana-
lyzing these large image mosaics, which could take human annota-
tors several man years. In attempting to develop fully automated
image analyzers, two main issues arise. Firstly, the low level visual
features that would work best are unknown beforehand, and con-
siderable effort is required to uncover features that work reliably.
Secondly, the feature extractors and classifiers must be scalable
to the size of datasets considered.

In this paper, we focus our attention on the problem of visually
interpreting Electron Micrographs (EM). An example of Electron
Micrograph imagery is shown in Fig. 1. These high resolution EM
images tend to be highly textured and require expert interpreta-
tion in identifying cellular and sub-celluar structures of interest.

Scale of Data Considered: The dataset of interest in this paper,
also referred to as the RC1 connectome is acquired from a rabbit’s
retinal tissue. It is physically 33 lm thick and has a diameter of
25 mm. The imaging is performed at an x–y resolution of
2.18 nm, and a z-resolution is 70 nm. As a result, the data is highly
anisotropic, meaning that the sampling across z-direction is much
coarser than sampling on the x–y direction. In other words, thin
sections of the tissue are successively imaged with a z-spacing of
about 70 nm between adjacent slices. A total of 341 z-slices are ac-
quired using high throughput microscopy, leading to the creation
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Fig. 1. The first row illustrates examples of synaptic junctions characterized by vesicles (blue contours), cell membrane (yellow contour) and ribbons (orange box). The
second row of images illustrate negative examples which do not contain synaptic junctions. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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of a 3D image stack where the z dimension ranges from 1 to 341.
Further, the raw data is stored as a multi resolution volume, com-
prising a total of six pyramid levels. The total storage requirements
for the multi resolution volume alone is about 15 terabytes. Hence,
even storing, accessing and handling the entire dataset is a major
challenge to begin with. The scalable Viking viewer (Anderson
et al., 2011) elegantly solves this problem by providing an interface
to interact, annotate and study the data.

Each z-slice of the connectome volume comprises around
250,000 tiles of dimension 256� 256. The entire connectome
volume would then comprise a total of 90 million such tiles of
dimension 256� 256. A single slice from the connectome, after
mosaicking has 125000� 125000 pixels. Processing such large data-
sets require distributed computing infrastructures, and the avail-
ability of algorithms that can be parallelized and scaled across a
large number of computing nodes. We focus our attention on the lat-
ter issue of developing scalable algorithms that solve an important
problem of synapse localization in Electron Micrographs, see Fig. 2.

Significance of Synapses: Synapses are structures in the brain
that help neurons in communicating with one another using chem-
icals known as neurotransmitters. Vesicles are the carriers of
neurotransmitters, that are transmitted from one cell to another.
Since vesicles are spherical in 3D, they have a circular shape when
projected onto a 2D plane and imaged. The junction where
Fig. 2. Illustration of the Detection task. The aim here is to isolate synapses (green
boxes) from the rest of structures in the image. The image comprises only a single
channel, and has structures surrounding the synapse with similar visual properties,
making the detection problem very challenging. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
communication between neurons happen is the cell membrane,
also referred to as clefts. Vesicles and clefts co-occur in any type
of chemical synaptic junction. Further, in some classes of synapses
one can observe electron dense black regions referred to as ribbons
near the cleft. Such synapses are known as ribbon synapses. The
co-occurrence of three structures, namely vesicles, clefts and rib-
bons are often used by biologists to detect the presence/absence
of a synaptic junctions. We also refer to the three structures
(vesicles, clefts, ribbons) as semantic attributes that are the build-
ing blocks in constituting a synapse.

The primary objective of this work is to build a robust and light-
weight feature descriptor for identifying synaptic junctions in large
EM mosaics.

Strong Biological Priors: Object detection refers to the problem of
identifying the spatial location of an object of interest in images.
State of the art methods can detect faces and people with impres-
sive accuracy. However, detection of generic object categories is
still an open area of research which is being addressed in computer
vision competitions such as PASCAL VOC. In most of the detection
systems that work reliably, some form of gradient features based
on histogram of oriented gradients are trained with linear SVMs
for detection. Extensions based on deformable part models where
latent part configurations are inferred during training are widely
used. The deformable part model does have its share of disadvan-
tages such as reduced accuracy on object classes without articulate
parts, and considerably higher training time involved in learning.

Images for generic object detection can come in any scale/rota-
tion/shear/clutter, while the target class (say a person) remains
consistent across all images, thus necessitating rich feature sets
and object localizers. In contrast, biological image datasets have
highly constrained imaging protocols which are known in advance,
as well as biological priors on shape and size of objects of interest.
As a result, we propose to focus on exploiting strong constraints on
imaging and biological knowledge to construct efficient and simple
detectors. We focus on the problem of synapse detection for illus-
trating the usefulness of exploiting strong prior knowledge avail-
able in bioimaging scenarios.

Paper Organization: The rest of the paper is organized as follows.
Section 2 presents the design of attribute based feature descriptors
for synaptic patches, and their classification based on fusion of fea-
tures. Section 3 discusses extension of classification to a localiza-
tion framework. Section 4 presents comprehensive experimental
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validation on individual and fused attributes, followed by conclu-
sions and a discussion of future work in Section 5.

2. Synapse classification

We first consider the problem of classifying synaptic regions
from non-synaptic regions. Example image patches in which syn-
apses are present/absent are shown in Fig. 3. Given the typical
wide intra-class variability of the images, it is often a challenging
classification problem even for a trained human expert. This prob-
lem is in stark contrast to typical detection of common objects
such as faces, humans, cars, and buildings, where the objects are
immediately discernible and well defined. As noted earlier, a key
observation is that the synaptic junctions are characterized by
the co-occurrence of image primitives corresponding to vesicles,
clefts and ribbons. The same intuition is used by the human ex-
perts while annotating such regions, and our feature fusion meth-
od described below builds upon this observation.

The work by Kreshuk et al. (2011) is closest in spirit to the pro-
posed approach, with some important differences. Firstly, the tech-
nique in Kreshuk et al. (2011) was pixel based and does not model
contextual cues. In contrast, the proposed approach models con-
textual (co-occurrence) cues, and classifies regions instead of pix-
els. Intuitively, it would be easier to provide patch exemplars to
train a system (proposed), in contrast to precise user strokes on
synapses. More importantly, the proposed approach extends the
idea of pixel level features to regions by modeling the distribution
of filter responses as a spatial pyramid. Further there have been
work on detecting structures like mitochondria (Lucchi et al.,
2010) or vesicles (Dıaz et al., 2010) from EM images. While these
structures form closed contours and can be associated with some
notion of shape, synaptic junctions considered in this work are re-
gions comprising a mixture of structures (clefts,vesicles, ribbons)
devoid of an intuitive shape representation. The works of Kaynig
et al. (2010) and Jagadeesh et al. (2011) are other sources of refer-
ence for EM image analysis.

The proposed method is illustrated in Fig. 3. Initially, the prob-
lem of finding representations for vesicles, ribbons and clefts is ad-
dressed. Subsequently, a technique for fusing the above cues is
discussed.

2.1. Vesicular features: spatial pyramids of matched filtering

Vesicles are spherical structures in three dimensions, and ap-
pear as circular structures when sliced across the z dimension. As
illustrated by the blue contour in Fig. 3, vesicles are small circular
blobs that are usually clustered in space. Hence, a detector of
Conte
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Fig. 3. An illustration of the multi attribute fusion procedure. The co-occurence of mult
clefts (yellow contour) are described using task specific features. Subsequently, these fea
of a synaptic junction. (For interpretation of the references to color in this figure legend
vesicles must be shape aware (circularity) and quantify spatial
clustering behavior of detected vesicles. We propose using a filter
matched to the size of vesicles observed during an offline training
phase. Fig. 4(a) illustrates the result of convolving a vesicular patch
with the matched filter. The vesicular blobs have a stronger filter
response (in red) since they are matched to the filter, in compari-
son to the background. Performing a peak detection on the filtered
response (black spots overlaid on Fig. 4(a)) illustrate detection of
the centers of circles in the x–y plane. The analytical form of the

LoG kernel is given by, Gðx; yÞ ¼ � 1
pr4 1� x2þy2

2r2

h i
exp � x2þy2

2r2

� �
. How-

ever, vesicles do not occur in isolation but with a lot of other sub-
cellular structures which may be distracting in the filter responses.
As a result, the local distribution of detected centers are computed
to quantify the spatial clustering of vesicles. In order to make the
representation robust, a spatial pyramid approach (Fig. 4(b)) is
proposed. The basic idea is to capture the spatial distribution of
feature points in addition to the magnitude of responses them-
selves. This is accomplished by successively subdividing an image
into non overlapping sub-regions and accumulating strengths of
filter responses that serve as feature vectors for classification.
The subtle difference with existing spatial pyramid matching tech-
niques is the absence of a pre-computed codebook (Lazebnik et al.,
2006). In contrast, this work preserves the intuition that distribu-
tion of feature points be characterized along with strength of filter
responses without an explicit codebook.

The vesicle descriptor construction is now explained in further
detail. Assuming the image to be denoted by I 2 ½0;1; . . . ;255�M�N ,
the matched filter response for vesicles denoted by Fv for every
pixel p is obtained as:

FvðpÞ ¼ IðpÞ � GðpÞ ð1Þ

Since one is interested in the peaks of filter responses to locate
circular structures, we now define a binary vesicle interest map Bv

that estimates locations of vesicle centroids, with respect to
8-connected neighborhoods N p of a pixel p:

Bv ¼ I Fv ðpÞ>Fv ðqÞ; 8q 2 N p ð2Þ

where Iw ¼ 1, if w ¼ 1 and is 0 otherwise. As described above, ves-
icles are spatially clustered in electron micrograph stacks, and any
patch sampled should have vesicles that are uniformly distributed
in space. In order to computationally capture this notion, we utilize
spatial pyramids. For a spatial pyramid decomposition, the image is
partitioned into multiple non-overlapping regions. Let us denote
the binary mask corresponding to such a partition j in pyramid level
i to be Qj

i 2 BM�N , we obtain the descriptor defined over the set of
pixels P constituting the image to be,
Classifier 
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iple attributes, namely ribbons (orange bounding box), vesicles (blue contour), and
tures are fused using kernel learning to yield confidence measures for the existence
, the reader is referred to the web version of this article.)



Fig. 4. Matched filtering for vesicle description and pyramidal feature construction.
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Rvð2i þ jÞ ¼
X
p2P

Fv � Bv � Q j
i

� �
ðpÞ ð3Þ

where � refers to an element by element matrix multiplication.
In our experiments, i ¼ 1, leading to a 5-dimensional vesicle
descriptor.

2.2. Cleft features: steered second order Gaussian derivatives

Clefts, as illustrated by the yellow open contour in Fig. 3 is the
cell membrane separating two neuronal structures. It is well
known that synapses occur only at locations where clefts are
present. They have a characteristic ridge profile (see Fig. 5) and
we propose using a second order Gaussian derivative filter to
detect ridges. Since the clefts could occur at any orientation, a
steered Gaussian derivative filter bank is utilized to detect despite
orientation variability. In other words, the filter bank is con-
structed by rotating the Gaussian derivative kernel by uniformly
sampling 0–180 degrees (see Fig. 6), with the set of angles
contained in H. Denoting the image by I, second order Gaussian
derivative filter at an angle h by u00h , and the filter response at pixel
p by HhðpÞ ¼ IðpÞ � u00h , we compute response at every pixel to be
FcðpÞ ¼maxhHhðpÞ; h 2 H. In other words, the input image is con-
volved with rotated second order derivative Gaussian filters, and
the maximum response at each pixel is selected. The resulting re-
sponse is binarized to obtain the cleft interest map over the image:

BcðpÞ ¼ I IðpÞ>TI ð4Þ

where TI is a threshold estimated form data using Otsu’s method
(1975). It is important to note that the goal of this procedure is
not to perform accurate cleft segmentation. Instead, the idea is to
accumulate evidence of contiguous ridge strength at the vicinity
of vesicles. As illustrated in Fig. 5(a) the green contours capture a
majority of clefts (there could be missing detections where signal
strength is weak) without capturing any background clutter. A
spatial pyramid histogram is constructed to represent clefts in a
manner similar to the spatial pyramid description of vesicles. The
individual features of the spatial pyramid representation are formed
by accumulating the strengths of filter responses in the region of
interest. Denoting the binary mask corresponding to such a parti-
tion j in pyramid level i to be Qj

i 2 BM�N , we obtain the descriptor
defined over the set of pixels P constituting the image to be,

Rcð2i þ jÞ ¼
X
p2P

Fc � Bc � Q j
i

� �
ðpÞ ð5Þ

In our experiments, we set i ¼ 1, obtaining a cleft feature descriptor
that has 5 dimensions. The problem of validating clefts is tricky
since clefts-like features are present in abundance throughout the
connectome. Hence they are not very discriminative, but work in
conjunction with vesicular features to reduce false positives, as will
become evident later.

2.3. Ribbon features: region stability and shape

Ribbons are electron dense regions (see Fig. 5) that occur in
some special kinds of synapses called ribbon synapses. They have
a characteristic black appearance and close to an elliptical shape.
In order to detect these structures the input image is adaptively
equalized using Contrast Limited Adaptive Histogram Equalization
(CLAHE) (Zuiderveld, 1994) to get an image denoted as Iclahe. We
subsequently define a ribbon interest map by,

BrðpÞ ¼ I IclaheðpÞ>TIclahe
ð6Þ

where TIclahe
is a threshold estimated from the data. Ribbon detec-

tions are generated by using connected components analysis
(CCA) on the ribbon interest map Br . Further, let CCAiðBrÞ denote a
function that returns pixels corresponding to the ith largest



Fig. 5. Illustration of cleft and ribbon detection.

Fig. 6. Steered second order derivative of Gaussian filters at six orientations from 0–180 degrees.
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connected component in Br . The features for ribbon presence in a
patch are size of the three ribbon candidates normalized by the im-
age size,

RRrðiÞ ¼
jCCAiðBrÞj
jIj ; 1 6 i 6 K ð7Þ

where j � j denotes the cardinality of a set. In our experiments, K ¼ 3
leading to a 3-dimensional descriptor for ribbons. Ribbons are
known to be near elliptical in shape, a factor that can be used in
refining ribbon detection. Denoting the covariance matrix of the

binarized region corresponding to the ribbon, C ¼ Cxx Cxy

Cyx Cyy

� �
de-

note by rc1; rc2 the eigenvalues corresponding to the covariance
matrix. The ratio sribbon ¼ rc1=rc2 is utilized for ascertaining the
ellipticity of the shape, and the validity of a ribbon detection.
2.4. Fusion classifier for detection

The three different features correspond to vesicles (Rv ,
5-dimensional), cleft (Rc , 5-dimensional) and ribbon (Rr , 3-dimen-
sional) features. Let the above features corresponding to the three
attributes be denoted by, fj; 1 6 j 6 3.

We now propose using two simple and intuitive fusion
schemes. The aim is to learn a single discriminant function (Varma
and Babu, 2009), Eðf RÞ ¼

PM
i¼1yiaiKðf R; f iÞ, where K is a kernel func-

tion measuring dissimilarity between the M support vectors f i

(formed by concatenating fjs for data point i) with weights ai, and
the input feature f R. Specifically, we utilize the radial basis function
for measuring dissimilarity in data points.

Early Fusion/Naive Learning works on feature vector concatena-
tion. For every image all attribute features are extracted, and vec-
torized to a long column vector, which is the fused representation.
The features are then mean normalized and scaled. Subsequently, a
support vector machine (Chang and Lin, 2011) is trained over the
input feature vectors to classify synapses in test data. Similarly,
an online boosting algorithm is also utilized over the input features
for synapse classification.

Late Fusion/Multi Kernel Learner works on the premise that not
all feature dimensions are equally discriminative. In other words, a
feature subset selector works along with the base SVM to weight
discriminative feature channels more (Varma and Babu, 2009).
The kernel function is where the actual fusion takes place, and is
defined by a linear combination of a set of base kernels,
Kðf R; f iÞ ¼

P
jsdjsKðf R

js ; f
i
jsÞ, where j and s iterate over the different

features, along with their scales respectively. K is the kernel
function between the estimated support vector f i and the input
feature f R. The variable K is a positive definite kernel and i indexes
a set of M candidate support vectors chosen by the SVM. The above
function can be interpreted as a kernel that can be further decom-
posed to a set of base kernels with weights djs. Minimizing the MKL
cost function yields a set of classifier weights across the different
kernels, that is used during test time. The reader is referred to
Varma and Babu (2009) for a more detailed treatment of MKL.
The weights are learnt with respect to the different feature spaces
indexed by j and the scale s at which features are extracted.

Algorithm 1. Procedure for Fast Interest Point Localization for
Synapses

Require: I (the image), th (threshold), CC (connected
components)

Ensure: 0 6 th 6 1
Normalize the Image Intensity I ¼ I�Imean

Imax

Threshold image IT ¼ TðI; thÞ, where the threshold th ¼ 0:2
if TRAIN then

Extract connected components Ktrain ¼ CCðITÞ
Training: Learn PrðKÞ ¼ Nðlsize;rsizeÞ  K from the set of

connected components
else

Extract connected components Ktest ¼ CCðITÞ
Evaluate Ktest on the pre-learnt PrðKÞ to accept or reject a

hypothesis
end if
3. Synapse localization

The previous section discussed modeling the visual characteris-
tics of a synaptic patch. We now turn our attention to localizing
these regions effectively in very large mosaics.

For this purpose, we design an interest point detector similar in
spirit to a Maximally Stable Extremal Region (MSER) of Matas et al.



Fig. 7. Examples of synapse localization/detection on 2500 � 2500 image mosaics. The bounding boxes indicate locations that the algorithm places a high likelihood for the
existence of a synaptic junction. Further, green boxes are locations where the algorithm is most confident, followed by the regions highlighted by red boxes. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(2002). Our main observation is that of exploiting a region around
the cleft that has an invariant black ridge profile. We propose the
procedure in Algorithm 1 for efficient localization. This procedure
is used to generate candidate locations (interest points) where
the synapse attribute classifiers explained in the previous section
are applied on.

Fig. 7 illustrates an example of synapse detection on a large
2500 � 2500 image mosaic. Detection using traditional scanning
window techniques would take considerable time (order of min-
utes in our implementation) for detection. In contrast, our pro-
posed technique can detect/classify synaptic junctions in a few
seconds. In Fig. 7 the green bounding indicate regions where the
algorithm is most confident of its detections, followed by the red
bounding boxes. In the dataset considered, it is infeasible to evalu-
ate accurate precision values because much of the dataset does not
contain any annotations. As a result, any ground truth sampled
from existing annotations would be partial, since many true posi-
tives are yet to be annotated. The PASCAL Average Precision score
(Everingham et al., 2010), a standard procedure to validate detec-
tion does not apply here. However, the proposed detector achieves
a recall of 0.85 on a validation set. This means that 85% of synapses
that were annotated are successfully identified.

Fig. 8 illustrates a scenario where the proposed technique could
be improved upon. The image shows multiple bounding boxes that
are in the immediate vicinity of each other. A robust non-maxima
suppression model would aid in achieving more accurate detec-
tions, and is a subject of future work.
Fig. 8. Examples of synapse localization/detection on 2500 � 2500 image mosaics.
A scenario where the proposed technique could be improved, with stronger non-
maxima suppression models.
4. Experimental validation

Experimental results are first reported on the efficacy of each
feature separately in a task specific manner, see Fig. 9(a)–(c).
Subsequently experimental results are reported on the effectiveness
of feature fusion, and the synapse detection task on a large dataset.
Since the datasets considered have equal distribution of positive and
negative samples, the detections are validated by their accuracy.

Experiments reported in Fig. 9 are performed on data from the
RC1 retinal connectome. In order to understand each attribute’s
performance, they are initially validated separately, each on a data-
set of 200 images (100 train/100 test) to identify relative attribute
strengths. Subsequently, the fused description of three attributes is
validated on the synapse classification task.

The results obtained using the 5-dimensional vesicle feature
descriptor trained on an SVM with stratified ten fold cross valida-
tion is given in Fig. 9(a). Similar results for the individual cleft and
ribbon descriptors are given in Fig. 9(b) and (c) respectively.

The previous sets of validation are on controlled data where the
properties of individual attributes could be studied in greater de-
tail. To test the efficacy of fusion, a dataset of 200 images with
equal split of positive and negative samples are considered, with
50 percent of data used for training and the rest for testing. The
prediction accuracy is reported in Fig. 9(d). Initially the task spe-
cific features alone are utilized for classification, followed by the
fusion of all three structural features. As can be observed, the
fusion yields much better results than any of individual features.
Surprisingly, the naive learner gives almost the same performance
as the multiple kernel learner as evident from Fig. 9(d).

Validating Synapse Classification: The next set of experiments
deal with the task of synapse classification. In this task, a database
of 2000 images with equal distribution of positive and negative
samples (1024� 1024) is used for validation. The experiments
compare performance of texture descriptors based on Gabor Wave-
lets (Manjunath and Ma, 1996) (GW), Texton (VZ) filter bank ener-
gies (Varma and Zisserman, 2003), Local Binary Patterns (LBP)
(Ojala et al., 2002), Spatial Envelope (GIST) (Oliva and Torralba,
2001) with the proposed approach. The proposed approach attains
the highest performance by a fair margin. In summary, the pro-
posed descriptor is simple, task specific and low dimensional, in
comparison to texture descriptors that are fairly generic and of
high dimensionality. Further the proposed method has better clas-
sification rate, and has semantic attributes associated with it, and
is much faster to compute due to lesser convolution operations.
The proposed approach can individually characterize vesicular
density, cleft strength and ribbon sizes by their corresponding



Fig. 9. Experimental validation of fusion and large scale experiments.

V. Jagadeesh et al. / Pattern Recognition Letters 43 (2014) 17–24 23
attributes, an aspect that generic features cannot provide. Note
that a direct comparison with (Kreshuk et al., 2011) is not possible
since the data used are inherently very different.Their most infor-
mative features resembling cleft features only yield 60% accuracy
in the detection task.
Fig. 10. The blue boxes are regions where the biologists have marked the presence of a s
be observed, not all locations where the algorithm has generated detections without co
necessary that a human in the loop validate the detection results. Strategies for efficien
interpretation of the references to color in this figure legend, the reader is referred to th
Since the image sizes are large, the time taken for feature com-
putation on a single node is substantial. For the work on classifica-
tion, features are precomputed on a distributed computing
environment with a 32 node cluster. The total time take on the
cluster for computing the six sets of features was close to 12 h.
ynaptic junction, and the red transparencies are detections by the algorithm. As can
rresponding human ground truth can be marked as false positives. As a result, it is
tly utilizing an annotator’s time through active learning is part of future work. (For
e web version of this article.)
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4.1. Large scale localization experiments

As mentioned before, the dataset considered comprises large
mosaics and it is of interest to investigate scalability aspects of
the proposed technique. In order to test the same, we select a sin-
gle z-slice of the connectome volume that comprises 250,000 tiles
of size 256 � 256. We parallelize the algorithm on a 28 node clus-
ter which takes about 100 min to process the entire slice that occu-
pies about a hundred gigabytes of memory.

Fig. 10 is an example of large scale detection applied to the con-
nectome data. The blue bounding boxes indicate the ground truth
marked by biologists, while the red transparencies are results gen-
erated by the proposed algorithm. As can be observed, all locations
where the algorithms has generated results without corresponding
human annotations cannot be flagged as false positives. This is be-
cause the original data has not been fully annotated. The best
course of action in these cases would be active learning, where a
user in the loop is consistently queried with example detections
to validate the algorithm.

5. Conclusions

This paper explored the problem of synapse detection in Elec-
tron Micrographs by addressing the problem of attribute based
synapse description and fast synapse localization. Firstly, a novel
attribute based synaptic junction descriptor that models the visual
characteristics of clefts, ribbons and vesicles was presented. Subse-
quently, techniques for fast synapse localization was proposed,
with validation on large image mosaics. Future work includes the
use of active learning based techniques for interactive querying
and corrections from the end user.
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