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ABSTRACT

This paper presents a novel and computationally efficient multi-
object tracking-by-detection algorithm with interacting particle
filters. The proposed online tracking methodology could be scaled
to hundreds of objects and could be completely parallelized. For
every object, we have a set of two particle filters, i.e. local and
global. The local particle filter models the local motion of the ob-
ject. The global particle filter models the interaction with the other
objects and scene. These particle filters are integrated into a unified
Interacting Markov Chain Monte Carlo IMCMC) framework. The
local particle filter improves its performance by interacting with the
global particle filter while they both are run in parallel. We indicate
the manner in which we bring in object interaction and domain
specific information into account by using global filters without
further increase in complexity. Most importantly, the complexity of
the proposed methodology varies linearly in the number of objects.
We validated the proposed algorithms on two completely different
domains 1) Pedestrian Tracking in urban scenarios 2) Biological cell
tracking (Melanosomes). The proposed algorithm is found to yield
favorable results compared to the existing algorithms.

Index Terms— Tracking, Detection, Particle Filters.

1. INTRODUCTION

Object tracking is a well-studied problem in the computer vision
community [1]. Recently, tracking by detection methodologies have
been gaining more popularity due to the advancements in object de-
tection [2, 3]. Several multiple object tracking-by-detection algo-
rithms optimize detection responses across several past and future
frames. These approaches find the optimal target configurations by
solving the linear assignment problem [4, 2, 5]. These methods do
not scale to large number of objects. In contrast, online tracking
algorithms provide a scalable solution. However, online multiple
object tracking still remains as a challenging problem. Tracking al-
gorithm tuned for one domain might completely fail in another do-
main. For example, tracking algorithm modeled for crowded urban
environment cannot be directly applied to biological cell tracking
problem. We propose a novel online multiple object tracking-by-
detection framework that takes domain information into account and
can be seamlessly used in different domains. Figure 1 shows visual
snapshots from two completely different domains.

Sequential Monte Carlo methods [6, 7] have been widely used
in several object tracking algorithms and it provides a framework for
online tracking by applying Markovian principle such that only the
past frame is taken into account. For multiple object tracking, some
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of the existing methodologies represent the state space of all the ob-
jects jointly [8]. Khan et al. [9] use joint particle filter for all the
objects and impose MRF priors for modeling the object interactions
with efficient MCMC sampling. The joint state space representa-
tion introduces tremendous computational complexity. Therefore,
recent methods use separate filter for each object [10, 3, 11, 12].
Qu et al. [10] use independent particle filter for each object and
relax the first-order Markov chain assumptions by using “Inertia”
Markov chain. Kwon et al. [11] combined several basic motion mod-
els and each of them covered different types of motions i.e. one
for smooth and another for abrupt motions. Within a scene, differ-
ent objects might exhibit different motion behaviors and single mo-
tion model may not be sufficient. Therefore, they form a compound
tracker using several basic trackers and combine them using Inter-
acting Markov Chain Monte Carlo (IMCMC) framework [13] and
show significant improvements over the existing algorithms in some
challenging sequences. However, they do not model the interaction
between objects and also do not take additional domain specific in-
formation into account [14].

In this paper we propose a novel multiple object tracking-by-
detection framework that can be applied to different domains '. A
set of detections is obtained at every frame and we use the Hungar-
ian algorithm for assigning detections to tracklets [2]. For every ob-
ject, we use two kinds of particle filters i.e. local and global with
MCMC sampling. For local particle filters, the observation like-
lihood is computed using the associated detection and it does not
model scene information. For global particle filters, the observation
likelihood is computed based on detections of nearby objects and do-
main specific information. Similar to [11], each filter operates either
in parallel or interactive mode. By separating the local and global
models, we can easily account for domain specific information into
the global model. We provide extensive experimental results on two
completely different application domains.

'not to be confused with cross-domain learning in Machine Learning community



Compared to existing works, following are the main contribu-
tions of this paper:

1. A unified MCMC approach to combine local and global mod-
els. Global models capture multi-object interaction and do-
main specific information.

2. Anovel and computationally efficient approach for probabilis-
tic multiple object tracking-by-detection using MCMC frame-
work with independent filters for each object.

2. BAYESIAN TRACKING FORMULATION

In this section, we explain the basics of particle filter based ob-
ject tracking. Let the object configuration be represented by X; =
[+, yt, st| where x+, y: and s; indicate the x, y position and scale of
the object respectively. The goal is to find the best object configura-
tion X given the observations Y. Given the observation up to time
“t”, Y1.¢, we estimate the state of the object X; at time “¢” with the
following Bayesian formulation:

p(Xe|Y1:4) o p(Ye|Xe)

)]
[ XX P [¥1-1) X,
the best object configuration X, is obtained by Maximum a Pos-
teriori (MAP) estimation:

X, = arg max p(Xe|Yi.) )

with “Sequential Importance Resampling” (SIR) particle filters,
the posterior at time “¢ — 1 is approximated by a set of weighted
particles given by:

p(Xe—1]Ye1) = (X7, w0 3)

where r is the particle index and N is the number of particles. The
particle weight is given by, 7.") = p(Y:|X{™)). The integral in the
equation 1 can be approximated by:

N
P(Xe|Ye) ~ p(Yi[Xe) Y i p(Xe[X(7)) )
r=1

In this paper, we use MCMC sampling instead of the standard
“importance resampling”. The MCMC based particle filter is very
efficient compared to “importance resampling” based particle fil-
ter [9]. Also, “importance resampling methods suffer from particle
impoverishment and degeneracy. MCMC methods work by defining
a Markov chain over the space of configurations X, such that the sta-
tionary distribution of the chain is equal to the posterior distribution,
p(X]Y). In MCMC based particle filter, the posterior is represented

by set of un-weighted samples i.e. p(X¢|Y¢) = {X,(f)}ﬁvzl.

3. TRACKING BY DETECTION WITH IMCMC

This paper proposes a novel tracking algorithm to combine local and
global models in a computationally efficient manner. The objects
detection yields fully automated tracker initialization. A new tracker
is initialized for every detection that is neither associated to any of
the existing trackers nor occluded. Given the set of detections D; =
{d;+} at every time step ¢, where j is the detection index, we explain
the proposed tracking algorithm in the following.

3.1. Data Association

At time ¢, a matching algorithm is used to associate detections to
existing trackers. We use the Hungarian algorithm to associate one
detection to at least one tracker and we create a new tracker for every
unassociated detection. Let {¢r;:} be the set of trackers at time ¢,
where ¢ is the tracker index and each tracker independently tracks
one object. The score matrix (S) captures the affinity of matching a
detection dj; to the existing set of trackers {¢r;: } as given below:

S(1,J) = Psize(djt[trit) - Ppos(djeltrit) - pappr(djeltri) — (5)

where Dsize(djt[tr), Ppos(djt|trit), and pappr(dji|trie) are the
likelihoods based on size, position, and appearance. psizc(d|tr)
and ppos(d|tr) are drawn from the Normal distribution such that
psize(d|tr) ~ N (size(d);size(tr),02;,.) and ppos(d|tr) ~
N (pos(d); pos(tr), Xpos) respectively. o2;.. and Sp, are variance
and co-variance for size and position respectively. pappr(dje|trit)
captures appearance likelihood based on the problem domain (color
or shape based model).

3.2. MCMC based Local Particle Filter

The local particle filter captures the local information with respect
to the object and it does not take object interactions nor domain in-
formation into account for modeling the object motion. After com-
puting the associated detection for the given tracker, the observation
likelihood is evaluated with respect to the associated detection d.
The following observation model is used for the local particle filter:

Detection—Score Position

M(d’ Xt) Ppos (d|Xt)

b (Yt|Xt) =

where p(+) is based on the pascal visual object challenge (VOC)
detection score [15]. With the detected bounding box B4 and the
predicted bounding box B, the pascal VOC detection score is given
by:

area(Bq N B;)

uld,Xe) = area(Bq U B;)

@)

and ppos(+) is a likelihood measure based on the distance be-
tween the centroids. We approximate the local motion model with
the Normal distribution such that p; (X¢|X¢—1) ~ N (X¢; Xe—1, 30).

The local particle filter finds the MAP estimate defined in equa-
tion 2 by sampling via Metropolis Hastings algorithm [6]. The algo-
rithm consists of two steps, a proposal step and an acceptance step.
In the proposal step, the new state is proposed with the following
proposal density:

QX5 Xe) = pu(X([X) ®)

where (); denotes the proposal density function based on the local
particle filter’s motion model and X} represents the new state pro-
posed by @Q; at time ¢. Given the proposed state, the local filter
accepts the new state with the acceptance ratio given by:

Pz(Yt|X?)Ql(Xt;Xt*)] ©)

pr(Ye|Xe)Qu(X7; Xe)

Oparallel = min |:17



3.3. MCMC based Global Particle Filter

The global particle filter captures interactions with the other objects
and also with the scene. Also, it provides an efficient way to enforce
higher level constraints without increasing the overall complexity of
the tracking algorithm. Given the associated detection d; for the
tracker tr;, observation model, py(Y:|Xi¢), for the global particle
filter is given by:

Interaction

Appearance Domain
pp 10
Po(YelXit) = pappr (dsfXi) - [ [ ¥ (Xir, di) - ¢(di, Xir) (10
k#i

where pappr(+) is the appearance likelihood based on the domain.
1¥(Xit, di) encodes the interaction likelihood based on the associ-
ated detections of the other objects in the scene and it is based on the
Magnetic repulsion potential [10]:

Xty di) =1 - %exp(—idm(xi;’ di)) (11

0;

where 3 is the normalization constant and o2 characterizes the
allowable maximum interaction distance. ¢(d;,X;;) is based on
the domain, it encodes the domain knowledge into the observation
model. We approximate the global motion model with the Normal
distribution such that py (X¢|X¢—1) ~ N(X¢;Xi—1,3g). Similar
to the local particle filter defined in section 3.2 we drive the global
particle filter using the Metropolis Hastings algorithm based MCMC
sampling.

3.4. IMCMC based Tracking Algorithm

At each time step, during the sampling, the local particle filter in-
teracts with the global particle filter as described in Fig. 2. In order
for the local particle filter to communicate to the global particle filter
we use IMCMC framework [13]. On the other hand, the global par-
ticle filter operates in parallel mode completely. Similar to [11], the
proposed tracking algorithm operates in either parallel or interactive
mode. In parallel mode, the local and global particle filters act as
the parallel Metropolis Hastings algorithm explained in the previous
subsections. In interaction mode, the local particle filter communi-
cates with the global particle filer and seeks the better state of the
object. The local particle filter accepts the state of the global particle
filter as its own state with the probability as given by:

_ o P (Ye[Xir)
OéznteTactzng -
pr(YelXie) 4+ pg(YeXir)

12)

Algorithm 1 explains the proposed multi-object tracking method-
ology with IMCMC framework. It explains how the MAP estimate
is obtained with the local particle filter by communicating with the
global particle filter while they both operate in parallel.

3.5. Missed Detections and Occlusion Handling

In some scenarios, objects might not be detected due to various rea-
sons such as lighting changes, illumination effects, occlusion, and
missing features. For a given tracker, if the object is neither detected
nor associated, the global particle filter proceeds with the predic-
tion step and performs an update using other available detections
and domain specific information. On the other hand, the local parti-
cle filter operates completely in interactive mode. The tracker pauses
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Fig. 2. Interactive MCMC based tracking at time “t”: The local particle filter
interacts with the global particle filter about the best configuration of the object.
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Algorithm 1: Multi-Object Tracking with IMCMC
Input: X;, v
Output: f(t
1: rand() returns a random number between 0 and 1.

2: if rand() < ~ then
| Accept the new state with the probability (12)
else
Propose the new state using (8)
Accept the new state with the probability (9)
end

3. Estimate the MAP state X using (2)

its operation after a specified number of continuously missed detec-
tions between frames (in our experiments, we set the threshold to 20
frames).

4. EXPERIMENTS

We evaluated the proposed algorithm on two completely different
datasets. For all the experiments, we set the number of particles N =
50. The IMCMC interaction threshold () was set to 0.2. Finally,
the interactive likelihood constants in the global particle filters were
setto § =1 and o = 100.

4.1. Pedestrian Tracking

We used a sequence from PETS-2009 (S2-L2) [16] for evaluating
the proposed algorithm on pedestrian dataset. The sequence is 35
frames long and consists of 7 objects in the field of view. We used
HOG based pedestrian detector to detect objects in every frame [17].
For appearance modeling in the global particle filter, we used “HSV”
based color histogram obtained by binning in the values into a three
dimensional space. Bhattacharya distance metric was used to com-
pare the histograms and the final probability measure was obtained
by weighting the Bhattacharya distance with the VOC detection
score of the detection bounding box. For modeling the domain
specific information, we used Kernel density estimator to model the
probability density function on trajectories of the objects that moved
over the scene for a period of time [14].

For both local and global particle filters, we used the Brownian
motion model with variances o, = 30,0y = 30 and 0, = 0.2.
For comparison metrics, we used “Root Mean Square” (RMS) pixel
error and pascal VOC detection scores. We compared the proposed
algorithm with Mean-shift (MS) [18] and Visual Tracking Decompo-
sition (VTD) [11]. Table 1 shows the average RMS pixel error and
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Table 1. Average RMS errors and VOC detection scores for PETS-
2009 Dataset.

l Metric l MS l VTD l Proposed

RMS 304 278 17
VOC | 034 | 0.0332 0.39

VOC detection score for the sequence (Best performing algorithm
is highlighted by bolded text). Figure 3 compares RMS pixel er-
rors for different algorithms for the objects in the scene. Due to the
partial occlusion caused by the lamp post pole, the detector failed
to detect objects around that region. Hence the objects “O3” and
“0O4” were completely guided by the global particle filter using the
domain information and also by the location of the other tracked ob-
jects through interactive likelihood. Whereas, both Mean-shift and
VTD trackers failed to capture object appearance changes during the
occlusion and completely lost track of the object. Figure 4 shows the
visual tracking results obtained using the proposed algorithm.

Frame - 35

Frame - 10

Fig. 4. PETS-2009 Evaluation: In this experiment, most of the other tracking
methods failed due to the partial occlusion caused by the lamp pole. In the global particle
filter, domain specific information learned from previous trajectories over the time is
helpful in predicting the object position during the partial occlusion. Best viewed in
color.

4.2. Biological Cell Tracking

Melanosomes carry dark pigment and they are imaged using Bright-
Field microscopy. Our dataset is obtained from mouse retina. Track-
ing is very challenging on this dataset since most of the cells are
out of focus and also the scalability is an issue for tracking multiple
cells in parallel (see Figure 1(b) for melanosomes with trajectories
marked in color). In our experiments, we used a sequence that is 360
frames long and consisted of approximately 56 melanosomes. At
every frame, melanosomes are detected by thresholding followed by
connected component analysis. For both local and global particle fil-
ters, we used Brownian motion model with variances o, = 30,0, =
30 and o, = 0.2. The velocity distribution of melanosomes follow

RMS Pixel Errors For Melanosomes
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Fig. 5. Experiment 2: Average Root Mean Square(RMS) pixel error v/s object index
for melanosomes dataset (average width and height of melanosomes is approximately
20 pixels.)

Langevin equation and it could be modeled using the Brownian mo-
tion model [19]. Therefore, we did not explicitly use domain specific
information in the global particle filter. For appearance informa-
tion, we used histogram of Local Binary Patterns computed within
a neighborhood radius of 4 pixels. Similar to pedestrian tracking,
Bhattacharya distance metric was used to compare the histograms
and the final probability measure was obtained by weighting the
Bhattacharya distance with the VOC detection score of the detection
bounding box. Figure 6 shows the trajectories obtained by tracking
different melanosomes over time. Figure 5 shows the RMS pixel
errors compared to Huang et al. [2] for different melanosomes.

y-position '

Fig. 6. Experiment 2: Trajectories obtained by tracking different melanosomes in a
time lapse sequence. Best viewed in color.

5. CONCLUSION

An efficient multiple object tracking by detection algorithm with IM-
CMC framework is proposed. For every object, we used a set of two
particle filters i.e local and global. The local particle filter models the
local information with respect to the object of interest and does not
take multi-object interaction into account. The global particle filter
models the interaction with the other objects and scene i.e. consistent
across the scene. Both of these particle filters are integrated into one
using an efficient Interacting Markov Chain Monte Carlo (IMCMC)
framework. The proposed algorithm is tested on some challenging
datasets and validated with objective results. Our algorithm is very
fast and could be parallelized completely, it takes approximately 300
milliseconds to track 50 objects per frame on a 2.4 GHz machine.
We plan to extend the pedestrian tracking to multiple cameras [20]
and melanosomes tracking to a larger sequence containing several
hundreds of cells with quantitative analysis.
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