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Abstract—This paper proposes a distributed multi-camera
tracking algorithm with interacting particle filters. A robust
multi-view appearance model is obtained by sharing train-
ing samples between views. Motivated by incremental learning
and [1]], we create an intermediate data representation between
two camera views with generative subspaces as points on a
Grassmann manifold, and sample along the geodesic between
training data from two views to uncover the meaningful descrip-
tion due to viewpoint changes. Finally, a Boosted appearance
model is trained using the projected training samples on to these
generative subspaces. For each object, a set of two particle filters
i.e., local and global is used. The local particle filter models the
object motion in the image plane. The global particle filter models
the object motion in the ground plane. These particle filters
are integrated into a unified Interacting Markov Chain Monte
Carlo IMCMC) framework. We show the manner in which we
induce priors on scene specific information into the global particle
filter to improve tracking accuracy. The proposed algorithm is
validated with extensive experimentation in challenging camera
network data, and compares favorably with state of the art object
trackers.

Keywords—Distributed Camera Network, Particle Filters, Object
Tracking.

I. INTRODUCTION

Proliferation of cheap and network enabled smart cameras
has provided an enormous opportunity for large scale de-
ployment of camera networks in real-world applications. This
paper proposes a novel tracking algorithm to track pedestrians
using a set of cameras with overlapping views by integrating
information from different camera views. The ground plane
homography is used to relate information obtained from mul-
tiple cameras to estimate an object’s position in the ground
plane. Further, to enhance tracking quality, scene priors such
as crowd flow information from the past historical data is
used. More importantly, we propose a strategy to learn a
robust discriminative appearance model by sampling training
examples from generative subspaces between two views and
this leads to significant improvement in tracking accuracy.

Existing multi-camera tracking algorithms assume that the
tracking problem in individual cameras is solved, and focus on
higher level tasks such as activity recognition, event analysis
and camera-hand-off. Due to background distortions, complex
illumination changes, varying object shapes and packet losses
in wireless communication, the performance of single camera
tracking is far from the ideal. Also, the tracking algorithm
is most likely to fail due to improper appearance modeling.
Multiple viewpoint changes are not explicitly modeled in
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Fig. 1: Proposed Multi-camera based tracking algorithm: Both local and
global particle filters operate in parallel. Local particle filter interacts with
the global particle filter using IMCMC framework [6]. Local particle filter
takes only local information available within the camera view into account.
Global particle takes multi-camera information (performs fusion) and scene
priors into account. Finally, a robust global appearance model is learnt by
sharing training samples with the neighboring camera views. Contributions of
this paper are highlighted in red.
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existing tracking algorithms. More importantly, information
fusion algorithms do not take scene priors into account.

There are a number of multi-camera tracking algorithms
[2], yet very little attention has been paid to distributed tracking
algorithms. Existing distributed tracking algorithms [3], [4]], [S]
manifest as solutions to an information fusion problem and do
not take prior information about the network into consideration
during the fusion. Also, not much attention has been paid to
robust multi-camera appearance modeling. We propose a novel
strategy to train a discriminative Boosted appearance model
by sharing training samples with neighboring views by taking
view-shift into account. More importantly, we induce the priors
on scene information such as crowd flow into a particle filter
framework and demonstrate that this significantly improves the
robustness of object tracking.

For a synchronized network with M cameras, let {If,,}
be a set of video frames from different camera views where
c € {1...M}. At time instance ¢, the state of the i'"
object on the image plane of the ct? camera is denoted
by X" = [positionX, positionY, sizeX, sizeY| where i €
{1,...,0} is the global object index and O is the number
of objects initialized by the object detector at the first frame.
[position X, positionY] is the center of the object’s bounding



box on the image plane and [sizeX, sizeY] is the size of the
object along the x and y directions. Given the set of video
frames, i.e. {I{.,} from different cameras we infer the object
state for the 7" object, {X{} = [X}...X}"] by Maximum
a Posteriori (MAP) formulation:

arg max pU{XE AT, (D
X'

t

where ¢ is the object index and c is the camera index. We pro-
pose a novel strategy to train a robust discriminative multi-view
appearance model p(Y;"|X;"), by taking viewpoint changes
into account. Additionally, we propose a unified Markov Chain
Monte Carlo (MCMC) framework to combine local and global
information into the tracker. Most importantly, we show the
manner in which we induce the scene specific priors and multi-
camera interaction into the global particle filter to improve the
tracking accuracy. Figure [T highlights the contributions of the
proposed multi-camera tracking algorithm. Following are the
main contributions of this paper:

1. A robust globally discriminative appearance modeling by
taking viewpoint shift into account.

2. A unified MCMC approach to combine local and global
models. Global particle filter models the multi-camera infor-
mation fusion and takes scene priors into account.

II. RELATED WORKS

In [7], a distributed Kalman filtering framework is used
to track the objects on the global ground plane. There have
been recent efforts to perform active collaboration between
cameras. [8] proposed a Bayesian algorithm for distributed
multi-target tracking using multiple collaborative cameras and
they used 2D location instead of 3D. They do not take
higher level scene information into account while performing
the fusion. Especially in [9], a distributed fusion mechanism
that clusters particles obtained from multiple camera views
is proposed. This method is highly vulnerable to outliers in
shared particles. In contrast, our distributed tracking algorithm
combines local and global motion models in a unified proba-
bilistic framework. Also, scene priors are taken into account
while updating the global motion model. There are a few single
camera tracking algorithms that take scene priors into account
to improve the tracking accuracy, however, these methods
are not straightforward to extend to multi-camera distributed
tracking scenarios [[10]], [11]].

Recently, tracking by detection algorithms have been gain-
ing popularity [12]], [13], [14]. Existing multiple camera track-
ing algorithms do not discriminatively model the multi-view
appearance in an online manner. Roth et al. [15] proposed a
multiple instance learning based co-training strategy for multi-
view appearance tracking. In comparison, we propose a novel
distributed strategy to train a discriminative appearance model
by taking viewpoint shift into account.

The rest of the paper is organized as follows. Section
[] introduces Bayesian Tracking formulation with Markov
Chain and Monte Carlo. Section [[V] formulates the multi-
camera tracking algorithm. Section proposes a novel
method for multi-view appearance modeling and section [[V-B]
discusses multi-camera information fusion by inducing scene

priors. Section [V] demonstrates the efficacy of the proposed
methodology on some challenging multi-camera datasets and
finally we conclude the paper in section

III. BAYESIAN TRACKING FORMULATION

We explain the basics of particle filter based object track-
ing [11]. The goal of object tracking is to find the best object
configuration X; given the observations Y., up to time ¢ using
the following Bayesian formulation:

P(X¢| Y1) o p(Ye|Xe)

2
/p(Xt\Xt—l)P(Xt—l|Y1:t—1) dXi_1, @

The optimal object configuration X, is obtained by Maxi-
mum a Posteriori (MAP) estimation:

X, = arg max p(X¢|Y1:t) 3

The posterior at time “¢ — 17, is approximated by a set
of weighted particles in “Sequential Importance Resampling”
(SIR) particle filters:

(Xt 1|Yt 1)N{Xt 1’7Tt 1}p 1 “

where p is the particle index and P is the number of particles.
The weight of the pt" particle is given by, 7'”) = p(Y,[X\)).
The integral in the equation [2| can be approximated by:

P

p(Ye[Xy) Z X)) ®)

p(X¢|Y;) ~

We use MCMC sampling instead of the standard “im-
portance resampling”. Compared to “importance resampling”
based particle filter, the MCMC based particle filter is very
efficient [16]]. The complexity varies linearly with respect to
number of objects compared to exponentially varying com-
plexity in SIR particle filters. More importantly, “importance
resampling” methods suffer from particle impoverishment and
degeneracy. In MCMC methods, a Markov chain is defined
over the space of conﬁgurations X, and the stationary distribu-
tion of the chain is equal to the posterior distribution, p(X|Y).
A set of un-weighted samples i.e., p(X:|Y:) =~ {X; p)} _, s
used to represent the posterior in MCMC based partlcle filter.

IV. DISTRIBUTED MULTI-OBJECT TRACKING IN A
CAMERA NETWORK

For a camera network with M synchronized cameras, the
primary task is to jointly track objects with active collaboration
between the views. The goal is to estimate the state of objects,
i.e, {X}"} given the set of image observations {Y7;} on the set
of video frames {I{;} from different cameras and ground plane
homography. We assume that no raw image data is transferred
between nodes due to network bandwidth constraints and
estimate the following by approximating equation [T on camera
¢ = C for the i'" object as:
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Fig. 2: Interactive MCMC based tracking: At time ¢ — 1, the global
appearance model is trained by sharing training examples between different
views. The local appearance model is trained using examples within the image
view. Both local and global particle filters predict the state from time t—1. The
global particle updates its state using the object measurement shared between
different views. The local particle filter interacts with the global particle filter
about the best configuration of the object.
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By assuming I¢=¢ is conditionally independent of 1559,
given the estimates {X}”*} and expanding equation [6|by Bayes
rule, we have the following:
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We propose a novel strategy to model the appearance
likelihood in a distributed manner by taking viewpoint shift
into account (explained in section . Also, in section
we show the manner in which we combine local and
global motion models using the interacting Markov Chain
Monte Carlo. Most importantly, we induce scene specific priors
into the global particle filter. Figure [2] shows the proposed
distributed tracking methodology.

A. Appearance Modeling

We use a discriminative classifier to model the appearance
of the object. The likelihood of a pixel x belonging to the
foreground label y = 1 is given by:

ply =1z) = 11 oL (F@) )

where H; is a discriminative classifier learnt with online
Boosting and F is the image feature computed at pixel location
z. Given a confidence map of the object of interest by testing
appearance classifiers at time ¢, a mean-shift based [[12] object

state estimate 14 is obtained. The appearance likelihood is
given as follows:

P(Yt|Xt) = Ppos(ve|Xt) (10)

where ppos(v4|X;) is drawn from the Normal distribution
such that p,os(v4|Xe) ~ N (15X, Epos) and 05 is the co-
variance matrix. In the rest of this section, we discuss in
detail about the manner in which we train the local and global

appearance classifiers, Hgl) and Hgg) respectively.

1) Local Appearance Modeling: For learning the local

appearance classifier H,El), we use a combination of histogram
of oriented gradients features (HOG) [17]] and normalized color
features. We use a 12 dimensional feature vector with 9 bins for
HOG and 3 for normalized pixel RGB color values. Similar
to Ensemble Tracker [12]], we train a discriminative online
classifier at each time instance by using samples within the
object bounding box as positive examples and samples outside
the object bounding box as negative examples.

2) Global Appearance Modeling: Similar to local appear-
ance modeling, we extract an n-dimensional feature vector
with HOG and normalized pixel RGB color values (we used
36 bins for HOG and 3 for normalized pixel RGB color
values). We propose a novel strategy to extract training samples
for learning the global discriminative appearance model in a
distributed manner. At each time instance, each tracker in every
view (one tracker per object) shares their training examples to
their neighboring camera views.

We first formulate the problem for two views and sub-
sequently extend to multiple views. Let X; € RN X" and
X,y € RN2X" be the set of training samples obtained from two
views where N7 and N, are the number of training samples
in each of the views. S; € RV1*? and Sy € RV2*? represent
generative subspaces obtained by performing Principal Com-
ponent Analysis (PCA) on X; and X5 where d << n (in our
experiments, we set d = 17). We now discuss the computation
of intermediate subspaces S,,,m € R;1 < m < 2 in order to
model the appearance changes due to viewpoint variations.

The space of d-dimensional subspaces containing the origin
in R™ can be identified with the Grassmann manifold G, 4
where S; and S, are points on G,, 4. The Grassmann manifold
is the space of d dimensional subspace in R™ and a point on
Grassmann manifold represents a subspace. We use geodesic
paths that are constant velocity curves on a manifold to obtain
intermediate subspaces. Viewing G,, 4 as quotient space of
SO(n), the geodesic path starting from S; is given by one-
parameter exponential flow ¢¥(m') = Qexp(m’B) [1I, [18]
where 0 < m’ < 1 and B is restricted to a skew-symmetric,
block diagonal matrix of the form:

o AT (n—d)xd
B_[_A 0],A6R . an
where A specifies the direction and the speed of geodesic flow.
Q € SO(n) such that QTS; = J and J = 0 Iddd L g s
n—a,

a d x d identity matrix. By varying m’ between 0 and 1, we
get a set of intermediate subspace S’ that includes S; and S
(interested readers refer to [[1] for more details on calculating
A).
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Fig. 3: Training Sample Generation: Training samples for global appear-
ance learning is obtained by projecting samples from view 1 on to different
generative subspaces obtained by varying m’. As highlighted in inverse HOG
representation (iHOG) obtained using [19], body of the person is clearly
discriminative with respect to viewpoint changes.

Given the intermediate subspaces S’, we propose a novel
methodology to extract training samples to learn the multi-
view discriminative appearance model. Let N’ be the number
of intermediate subspaces. We extract training samples by
projecting X; on to these intermediate subspaces. We train
our global discriminative appearance model by gathering each
of the training samples projected on to these intermediate
subspaces i.e., X| € RN'N1Xd_ For multiple views, we adopt
similar strategy to extract training samples between the current
view and every other view using intermediate subspaces.
Finally, we random sample training examples to learn the
global appearance classifier.

B. Interacting Markov Chain Monte Carlo Based Tracking

We now present a camera tracking-by-detection algorithm
with an interacting MCMC framework. For every object,
we use two kinds of particle filters, local and global, with
MCMC sampling. For local particle filters, the observation
likelihood is computed using the local appearance model and
object interaction that are local to the camera. For global
particle filters, the observation likelihood is computed based
on global appearance model, multi-camera information and
scene priors. Similar to [20], each filter operates either in
parallel or interactive mode. In the parallel mode, object
state is completely determined by the local particle filter. In
the interacting mode, the local particle filter interacts with
the global filter and determines the object state at that time
instance. By separating the local and global models, we can
easily account for higher level constraints into the global
model and reduce the complexity of the local particle filters
significantly.

C. MCMC based Local Particle Filter

The local particle filter captures the local information
within the image plane and it does not take scene priors
into account for modeling the object motion. The observation
model for the local particle filter is given by:

Appearance with Hil) Interaction

c=Ci

=C,i =C,i|gc=C,i =C,i xc=C,j
p(Y X = p(YTNXTY) [T e T X9

i
(12)

Y(X5=9 X69) encodes the interaction likelihood
based on the state of the other objects in the scene and it
is based on the Magnetic repulsion potential:

dist(XE= Xe=C) )
- 2

(o

VXX =1 e
13)
where 3 is the normalization constant and o? characterizes
the allowable maximum interaction distance (in our experi-
ments, we set 3 = 1 and 07 = 100). We approximate the
local motion model with the Normal distribution such that
p1(Xe|Xi—1) ~ N (X¢;Xi—1,%;). The local particle filter finds
the MAP estimate defined in equation [3] by sampling via
Metropolis Hastings algorithm. The algorithm consists of two
steps, a proposal step and an acceptance step. In the proposal
step, the new state is proposed with the following proposal
density:

Ri(X5;Xy) = pi (X7 1Xe) (14)

where R; denotes the proposal density function based on the
local particle filter’s motion model and X} represents the new
state proposed by R; at time ¢. Given the proposed state, the
local filter accepts the new state with the acceptance ratio given
by:

Pl(YtIXZ‘)Rz(Xt;XZ‘)} (15)

Pl(Yt|Xt)Rl(X:; Xt)

Qparallel = min |:17

D. MCMC based Global Particle Filter

The global particle filter operates with the global appear-

ance model and it takes scene priors and multi-camera informa-
tion into account. The observation model, p,(Y¢=< X5~

for the global particle filter is given by:

Appearance with Hgg)
—_—
c=CLi|ye=C,i\ __ c=C,i |y c=C,i
py(Y; X )= p(Y; X )
Multi—camera likelihood ScenePriors

=Cyi yo=k,i =Cyi
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(16)

D(X=9 XM7Y encodes the multi-camera spatial likeli-
hood and it is given by:

L o 1 dist Xc:C,i Xc:k,i
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TABLE I: Mean Root Mean Square Pixel Errors on different
datasets.

TABLE II: Mean Pascal VOC detection scores on different
datasets.

[ Datasets | OAB | OAB-PF [ MS [ MIL [ MIL-PF | Struck | Proposed | [ Datasets [ OAB [ OAB-PF | MS [ MIL [ MIL-PF [ Struck [ Proposed |
Outdoor 19 20 35 19 12 13 7 Outdoor 0.42 0.41 0.26 | 0.46 0.51 0.55 0.68
PETS-2009 61 120 86 86 120 98 15 PETS-2009 | 038 0.10 023 | 0.40 0.10 0.20 0.66
Indoor 16 11 18 17 14 22 38 Indoor 0.52 0.54 0.45 | 049 0.56 0.49 0.66

where p is the normalization constant and o2 characterizes
the allowable distance for multi-camera interaction (in our
experiments, we set p = 1 and 02 = 1000). We share object’s
measurement (mean-shift estimate obtained by global appear-
ance classifier) with the neighboring camera views for multi-
camera interaction. ¢(X;~<"") is based on the scene, it encodes
the scene knowledge into the observation model. For modeling
the scene specific priors, we used Kernel density estimator to
model the probability density function on trajectories of the
objects that moved over the scene for a period of time [10].
We approximate the global motion model with the Normal dis-
tribution such that pg(X¢|X;—1) ~ N(X¢; Xi—1,X,). Similar
to the local particle filter, the global particle filter uses the
Metropolis Hastings algorithm based MCMC sampling.

Algorithm 1: Multi-Object Tracking with IMCMC
Input: X;,~v
Output: X;
1: rand() returns a random number between 0 and 1.
2: if rand() < - then
| Accept the new state with the probability (T8)
else
Propose the new state using
Accept the new state with the probability (15)
end

3: Estimate the MAP state X; using

E. IMCMC based Tracking Algorithm

During the sampling process, at each time step, the local
particle filter interacts with the global particle filter (illustrated
in Fig[2). We make use of the IMCMC framework for the local
particle filter to communicate with the global particle filter [6],
[L1]. However, the global particle filter operates entirely in
parallel mode. The proposed tracking algorithm operates in
either parallel or interactive mode [20]. The local and global
particle filters act as the parallel Metropolis Hastings in the
parallel mode. Whereas in the interaction mode, the local
particle filter communicates with the global particle filter and
seeks a better state for the object configuration. The local
particle filter then accepts the state of the global particle filter
as its own state with the probability as given by:

c=C,i|yc=C,i
Py (Y3 X )

c=C,i |y c=C,1 c=C,i |y c=C,1
(Y X ) +pg(Y; IX; )
(18)

Uinteracting =

Algorithm [I] explains the proposed multi-camera tracking
methodology with IMCMC framework. The MAP estimate is
obtained using the local particle filter by communicating with
the global particle filter:

F. Occlusion Handling

In some scenarios, objects might not be detected due to
various reasons such as lighting changes, illumination effects,
and missing features. We assume that an object is occluded
when ( falls below a certain threshold (0.1 in our experiments),
where ¢ of the image patch positioned at X; is given by:

sum of pixel likelihoods

~ area of the patch positioned at X,

For a given tracker, if the object is occluded, the global
particle filter proceeds with the prediction step and performs
an update with multi-camera information and scene priors. On
the other hand, the local particle filter operates completely
in interactive mode. The tracker pauses its operation after a
specified number of continuously missed detections between
frames (in our experiments, we set the threshold to 20 frames).

V. EXPERIMENTS

We evaluated the proposed method with a wide area camera
network consisting of six cameras on an outdoor environment.
Videos (640x480) are captured for several hours in an un-
controlled environment with complex shape and appearance
changes in human body, wireless packet losses and irregular
illumination variations (for example shadows, lighting changes
due to sun rays and others). Also, we evaluated the proposed
algorithm in some of the publicly available multi-camera
pedestrian datasets [21] and [9]. Tables [I] and @ show average
VOC detection scores and root mean square pixel errors
for various algorithms on three different datasets (Outdoor,
PETS2009, and Indoor). In all the experiments, we set the
number of weak classifiers for the Ensemble training to 12
and updated 2 weak classifiers at every frame. We set the
number of particles P = 500. For both local and global
particle filters, we used the Brownian motion model with
standard deviation o, = 21,0, = 3 and o, = 0.01. We
set the IMCMC interaction threshold v = 0.1. We assumed
Ypos to be a diagonal matrix with leading diagonals equal
to [2,2]. Finally, for generating intermediate subspaces we
set m = [0.25,0.5,0.75]. For comparison metrics, we used
Root Mean Square Pixel error and pascal VOC detection score
(primarily used for comparing single camera appearance based
trackers). VOC detection scores capture compactness of the
predicted bounding box is with respect to the ground plane
bounding box. With the predicted bounding box B, and the
ground truth bounding box B, the pascal VOC detection score
is given by:

area(Bp N Bgt)

VOC Detection S =
etection Score arca(B, U Byr)

19)
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Fig. 4: Experiment 1: On camera C2, object Ol is indistinguishable from
the background and hence some of the discriminative appearance model
based trackers fail. Whereas in the proposed methodology, training samples
are extracted from intermediate subspaces between multiple views to learn
the global appearance model. Additionally, multi-camera information and
scene priors are helpful in maneuvering the object when appearance cues
are misleading. Best viewed in color.
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A. Global Appearance Modeling with Global Filtering

In our first set of experiments with our own dataset, we
evaluated the proposed methodology with six cameras in the
network, of which only two of the cameras (C2 and C4)
directly sensed the objects of interest (O1 and O2). The objects
of interest are initialized using a background subtraction based
blob detector. We compared the proposed methodology with
some of the state of the art tracking algorithms: on-line
Adaboost (OAB) [22]], on-line Adaboost with particle filter
(OAB-PF), Multiple instance learning(MIL) [13], Multiple
instance learning with particle filter (MIL-PF), Struck [23],
and Mean-shift (MS) trackers. From the outdoor sce-
nario results in Tables [] and [l we show that the proposed
methodology outperforms all the other tracking methodologies
in network wide scenarios. Poor performance of some of the
appearance based trackers is due to mistaken identities and
inadequate appearance modeling. In the case of the proposed
algorithm, a robust global appearance classifier is learnt by
taking viewpoint shift into account. Additionally, the multi-
camera likelihood and scene priors in global particle filters are
helpful in correcting the local particle filters whenever the local
particle filter suffers from insufficient motion and appearance
modeling. When the object merges with background (shown
in Figure [), scene priors in global particle filters are helpful
in maneuvering the object using the prior information from
previous objects that moved on the same location over the time
and also the multi-camera likelihood is helpful in correcting
the object state estimate by exploiting multi-view redundancy.
Most importantly, the global appearance model captures the
missing features using the training samples obtained from
neighboring camera views and helps the tracker to recover
itself in the subsequent frames by building a robust appearance
model.

B. Global Appearance Modeling with Scene Priors

For the second set of experiments with PETS-2009 se-
quences, the object of interest (O1) was initialized in the first
(C1), third (C3) and sixth (C6) views respectively. For this
experiment, to study the efficacy of the global appearance
modeling with scene priors, the interactive likelihood in local
particle filter was turned off. As seen in Tables [ and [[I} the
proposed algorithm outperforms state of the art algorithms on
VOC detection scores and root mean square pixel errors. The
success of the proposed algorithm (as illustrated in Figure

Fig. 5: Experiment 2: Tracking results from individual camera views are
shown. Clearly, multi-camera information and scene priors help in avoiding
failures due to partial occlusions. In this experiment, most of the other tracking
methods failed due to the partial occlusion caused by the lamp pole. Object
of interest is marked by the label *O1’. Best viewed in color.

B) on this scenario could be attributed to the following: The
proposed algorithm is robust to intermittent tracker failures due
to the partial occlusions by learning a robust global appearance
model. In this scenario, the lamp pole caused a partial occlu-
sion in view Cl and most of the tracking algorithms failed
completely due to improper appearance modeling. Similar to
the first set of experiments, scene priors and multi-camera
information is helpful in correcting the local particle filters
during insufficient motion modeling.

C. Global Appearance Modeling without Scene Priors

For the third set of experiments, we used indoor video se-
quences from [[9]]. The camera network consists of five cameras
along a long corridor. In order to increase the difficulty of the
experiment, we used a part of the sequence where the corridor
lights were switched off. Also, scene priors were not available
for this network. As seen in Tables [I] and [[} the proposed
algorithm outperforms the rest due to the following reasons:
a) Objects appeared similar due to the lighting conditions, the
global appearance model is helpful in capturing discriminative
features using the training samples from neighboring views.
Other methods fail to capture these variations and hence
lose track of the objects due to improper appearance based
association, b) Also, the interactive likelihood in the local
particle filter is helpful in maintaining spatial relationship
between the objects between the frames. This helps in proper
association in the presence of outliers due to missing features
between the frames. Missing features are more likely to happen
due to irregular lighting conditions.

D. Comparison With Multiple Camera Trackers

We compared the proposed algorithm with state of the
art multiple camera distributed filtering based tracking al-
gorithms: Joint Probabilistic Data association with Kalman
consensus filter (JPDA-KCF) [23]], [26], Information consensus
filtering with nearest-neighbor data association (ICF-NN) [3]],
Information consensus filtering with ground truth data as-
sociation (ICF-GT) and Multi-camera information consensus
(MTIC) [3]]. In ICF-NN, the nearest observation is associated
with the existing tracklet based on Hungarian algorithm. We
used Struck (an appearance based tracker) to gener-
ate image based observations. Ground plane estimates are
obtained using homographic transformation and they serve
as measurements for ground distributed fusion algorithms.
Tables m show mean error (in meters) and error standard
deviation for different algorithms in outdoor/indoor sequences
respectively. For the indoor sequences, scene priors were not
available. The proposed algorithm clearly outperforms other
multi-camera tracking algorithms due to the following: a)



TABLE III: Multiple Camera Tracking Comparison in Out-
door/Indoor Sequences (Multiple Objects)

[ Algorithm | Mean Error (m) | Error Standard Deviation (m) |

Proposed 0.27 / 0.41 0.23/0.39
MTIC 6.40 / 0.69 1.54 / 0.44
ICF-NN 25.7/0.56 17.4 7041
JPDA-KCF 52.5/0.70 34.3/0.46
ICF-GT 12.8 /0.53 1.3/0.40

Multi-view appearance model effectively captures viewpoint
variations. b) Ground plane fusion in global particle filters
is efficiently fed back to the local particle filters through an
IMCMC approach.

VI. CONCLUSION

This paper presented a robust multi-camera tracking algo-
rithm using interacting Markov Chain Monte Carlo. The track-
ing algorithm is formulated as a global Bayesian estimation
problem and solved in a distributed manner. We proposed a
novel algorithm to learn a discriminative multi-view appear-
ance model by sharing samples across the views. We provided
an efficient algorithm to combine local and global models into
one using a unified probabilistic framework. The distributed
multi-camera tracker takes approximately one second per-
frame with the Matlab implementation on a machine with 8
GB RAM and 2.67 GHZ processor. The proposed algorithm is
tested on some challenging datasets and validated with objec-
tive results. As a future work, we plan to add complex crowd
behavioral model into the local object interaction likelihood
and account for static scene components such as entry/exit
locations into the scene priors.
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