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Abstract. We address the problem of segmenting an image into a previ-
ously unknown number of segments from the perspective of graph parti-
tioning. Specifically, we consider minimum multicuts of superpixel affin-
ity graphs in which all affinities between non-adjacent superpixels are
negative. We propose a relaxation by Lagrangian decomposition and a
constrained set of re-parameterizations for which we can optimize ex-
actly and efficiently. Our contribution is to show how the planarity of
the adjacency graph can be exploited if the affinity graph is non-planar.
We demonstrate the effectiveness of this approach in user-assisted image
segmentation and show that the solution of the relaxed problem is fast
and the relaxation is tight in practice.

1 Introduction

The formalization of the image segmentation problem as a multicut problem
has recently attracted considerable attention [2,3,6,9,10,15,17]. This problem
consists in finding a partition of a weighted superpixel adjacency graph into
connected components (segments) such that the set of edges that straddle differ-
ent segments (the multicut) has minimum total weight. A positive edge weight
penalizes and a negative edge weight rewards all segmentations in which the con-
nected superpixels are in different segments. The weights depend on the image
in a way this is typically learned from data. They are called an affinity.

With the notable exception of [10], recent work has focused on the problem
described so far in which affinities are only defined for pairs of adjacent su-
perpixels. This has been motivated by three reasons. First and primary is that
affinities between adjacent superpixels can be estimated reasonably well with
methods such as the global probability of boundary [4]. Second is that the num-
ber of affinities grows linearly in the number of superpixels which is beneficial
for modeling and optimization. Third is that superpixel adjacency graphs are
planar which affords a relaxation of the multicut problem that can be solved
efficiently and is tight in practice [17], although the multicut problem for planar
graphs remains NP-hard [5].

In this paper, we study the generalization of the problem that allows for
negative affinities between non-adjacent superpixels. The objective is to find a
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2 Andres, Yarkony et al.

Fig. 1. a) In natural images, we often observe pixels at different locations that clearly
belong to different segments but no clear position where the segment boundary should
be located. This occurs whenever there is a smooth transition from the color of one
region to another color of another region. In this case, affinities between adjacent super-
pixels do not provide strong cues which leads to errors in the segmentation. We show
in Section 5 that negative affinities between non-adjacenct superpixels can overcome
this problem. b) At the same time, positive affinities between non-adjacent superpixels
do not convey strong cues because separate segments can have similar texture.

segmentation of the superpixel adjacency graph such that the sum of affinities
between superpixels in different segments in minimal. We propose a relaxation
by Lagrangian decomposition and a constrained set of re-parameterizations for
which we can optimize exactly and efficiently. We demonstrate the effectiveness
of this approach in user-assisted image segmentation and show that the solution
of the relaxed problem is fast and the relaxation is tight in practice.

Our concentration on negative non-local affinities is motivated by the follow-
ing observations: In natural images, we often observe pixels at different locations
that clearly belong to different segments but no clear position where the segment
boundary should be located. This occurs whenever there is a smooth transition
from the color of one region to another color of another region (Fig. 1a). In this
case, affinities between adjacent superpixels do not provide strong cues which
leads to errors in the segmentation. We show in Section 5 that negative affini-
ties between non-adjacenct superpixels can overcome this problem. At the same
time, positive affinities between non-adjacent superpixels do not convey strong
cues because separate segments can have similar texture (Fig. 1b). A conceptual
difficulty of non-local positive affinities is discussed in Appendix A.1.

2 Related Work

The multicut problem is known to be NP-complete, [7], even for planar graphs
[5]. In computer vision, this combinatorial optimization problem has been used
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to formalize image segmentation. To date, multicuts of superpixel adjacency
graphs [2,17] are among the closest, in terms of partition metrics, to the man-
made segmentations in the Berkeley Segmentation Benchmark [4].

Recent work on the multicut problem for computer vision application has
afforded an exact cutting plane algorithm for general graph that is applicable if
edge weights are strong [3], efficient greedy algorithms suitable for large prob-
lems and problems where edge weights are weak [6], as well as diverse linear
programming (LP) relaxations [9,10,12,15,17]. The Lagrangian decomposition
we propose in this paper is built on [17] which considers optimal multicuts of
planar graphs. Our decomposition extends [17] by allowing for the introduction
of negative affinities between non-adjacent superpixels.

3 Image Segmentation by Multicuts

We now introduce the mathematical framework for our discussion. We consider a
graph (V, E) in which vertices indicate superpixels and weighted edges quantify
an affinity between superpixels. A partition of the node set is encoded as a
labeling = € {0, 1}¥ of edges. We use z. = 0 to indicate that the pair of vertices
connected by edge e are in the same segment and use z. = 1 to indicate that the
pair are in separate segments. We call edge e uncut if x, = 0 and cut if z. = 1.
The multicut of a partition is the set of all edges that are cut.

Edge weights # € R define an objective function over partitions. Here,
0. is called the affinity of the superpixels connected by the edge e. Negative
values indicate a reward for superpixels to be in separate segments and positive
values indicate a cost for superpixels to be in separate segments. A partition that
minimizes the sum of the affinities of cut edges is called a minimum partition.
The corresponding multicut is called a minimum multicut. We write the objective
value of a multicut (indicated by) = as the inner product 67 x.

Not all binary labelings x correspond to partitions. Consider a graph of three
superpixels a, b, ¢ which are connected by edges ab, ac, bc. Consider also the
labeling ., = 1,24 = 0,25, = 0. This labeling states that superpixels a and b
are in separate segments while saying that both a and b are in the same segment
as ¢, which is contradiction.

A necessary and sufficient condition for a labeling to define a partition is that
there are no edges e such that x. = 1 within a connected component [8]. This
condition can be written as a set of inequalities as follows: For every cycle of
edges c and every edge f in ¢, if xy = 1, then at least one other edge in the cycle
is cut. These inequalities are called the cycle inequalities. The multicut problem
can be written as an integer program with cycle inequalities.

in 67 1

L M)

subject to Z Te > Tf Ve € cycles(V, E) Vf € c (2)
ecc\f

z. €{0,1} Ve€ekFE .
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Independent edge Planar multicut Two cycle
sub-problem sub-problem sub-problems

Fig. 2. We propose a Lagrangian decomposition of the multicut problem that consists
of the following sub-problems: 1. the independent edge sub-problem, 2. the planar
multicut sub-problem, 3. a set of cycle sub-problems.

4 Lagrangian Decomposition

We now propose a Lagrangian decomposition of the multicut problem that
consists of the sub-problems depicted in Fig. 2. In the independent edge sub-
problem, edges can be cut or uncut independently. In the planar multicut sub-
problem, any solution must be a partition of the vertices and thus obey the
cycle inequalities. Affinities between non-adjacent superpixels are not included
in the planar multicut sub-problem. In a cycle sub-problem an edge between
non-adjacent superpixels is associated with a path between the corresponding
vertices of that edge. A cycle sub-problem enforces that the number of edges cut
in that cycle is not equal to one, thus enforcing the cycle inequalities for that
cycle.

We use 6%, 9P™° and ¢ to denote the affinities of the independent edge,
planar multicut and the c-th cycle sub-problem, respectively. The corresponding
solutions are %€, 2P, x¢. For short hand, we refer to edges between adjacent
superpixels as planar edges and edges between non-adjacent superpixels as non-
planar edges. We use ONF to denote the affinities of the non-planar edges and
0¥ to denote the affinities of planar edges. We index non-planar edges with
é and planar edges with e. Given the sub-problems, we write the Lagrangian
decomposition below.

: eie T  .ie : grme T, .pmc : 9c T .c 3
pre 3 min (0)7a + min (677) 2" + ) min (692" (3)
ceC
subject to
0 + 6"+ 67 =0 (4)

ceC

4.1 The Planar Multicut Sub-problem

Each of the sub-problems is tractable, except for the planar multicut sub-problem
which is NP-hard [5]. To make this sub-problem tractable, we constrain the re-
parameterization. Specifically, we enforce that the minimal objective value of
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the planar multicut sub-problem is zero'. Consequently, the empty multicut is
optimal and thus, optimization is tractable. In order for the objective value of
the planar multicut sub-problem to be zero, it is sufficient to enforce that every
2-colorable segmentation? has a non-negative value [17].

We introduce a matrix Z in which each row corresponds to a 2-colorable
segmentation. We index 2-colorable segmentations by r. For every index r and
every edge e, Z.. = 1 indicates that e is cut in the r-th 2-colorable segmenta-
tion. The constraint that every 2-colorable partition has a non-negative value is
formalized below.

Z6Pme > (5)

4.2 The Independent Edge Sub-problem

The affinities §°¢ in the independent edge sub-problem have important proper-
ties. First, we establish #°° < 0 for every e € E. Suppose there exists an edge
e such that 6§ > 0. Then, ¢ = 0 in any optimal solution of the independent
edge sub-problem. Notice that setting P™¢ := #P™¢ 4 g and ¢ := 0 does
not loosen the bound of Lagrangian decomposition and does not decrease the
optimal value of the planar multicut sub-problem. Thus, we can restrict the
re-parameterization to allocate non-positive affinity to every edge in the inde-
pendent edge sub-problem. Furthermore, this means we can take the value of
the independent edge sub-problem to be the sum of the terms in 6% as cutting
every edge in the independent edge sub-problem is an optimal solution.

Another important property is that the affinity in the independent edge sub-
problem for a given edge e is lower bounded by min(f,,0). This property is
established in Appendix A.2

4.3 The Cycle Sub-problems

The affinities ¢ in the cycle sub-problem have two importrant properties at the
optimal re-parameterization. These properties are established in Appendix A.3.
The first property is that the values of the affinities of the planar edges in a
given cycle sub-problem are exactly opposite of the value of the affinity of the
corresponding non-planar edge. Thus, the affinities in each cycle sub-problem
are defined by one parameter. We denote the parameter associated with the
c-th cycle as 1°. The affinity of the non-planar edge is —¢¢ and the affinity
of each planar edges is ¥°. We use 1 to denote the concatenation of all °.
Second that the affinity of the non-planar edges is strictly non-positive ¢ > 0.
Notice also that the optimal value of each cycle sub-problem is zero so the term
corresponding to them in (3) can be removed.
! Notice that we impose a requirement on #”™ not a requirement on zP™¢.
2 A 2-colorable segmentation is a partition of the set of superpixels into connected
subsets (segments) such that every segment can be given a different color from all
adjacent segments, using only two colors overall.
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The second property is that the sum of the affinities of the copies of a given
non-planar edge é across cycle sub-problems can be no less than 65F. We use a
matrix W to define this constraint. We index W by é, ¢ where W5, = 1 indicates
that non-planar edge é is present in the c-th cycle sub-problem. The constraint
is written formally below.

Wi > N (6)

4.4 Value of a Re-parameterization

We now discuss the value of a given re-parameterization. Since the optimal
values of the cycle sub-problems and the planar multicut sub-problem are zero,
the value of a given re-parameterization is the optimal value of the independent
edge sub-problem. If we re-write the re-parameterization condition in (4), we
notice that ¢ = § — 7™ — 5~ #°. We now discuss the mapping of 1 values
to >, 0° This is done via a matrix operation Y. Matrix Y is indexed by e, ¢
where Y., = 1 indicates that planar edge e is present in cycle c. We write the
value of a re-parameterization that obeys all of the constraints discussed in this
section below.
rg}? (eie)tXie — 1T9ie _ 1T(6.P _ gprme _ Y¢) + 1T(¢ + HNP) ) (7)
The term 17 (6% —6P™¢ —Y9)) corresponds to the value of the contribution to
the objective from planar edges. The term 17 () 4+ 6N) corresponds to the value
of the contribution to the objective from non-planar edges. We now write the
constraint that each planar edge have non-positive affinity in the independent
edge sub-problem.

0" — 67" — Y <0 (8)

We use (6) to ensure that each non-planar edge has non-positive affinity in the
independent edge sub-problem. We write the constraint that the affinity in the
single edge sub-problem for a given edge e is lower bounded by min(d.,0) as
follows.

min([0, 67]) < 8 — 6P — Y4p (9)

In summary, the lower bound of Lagrangian decomposition is the optimal value
of the linear program below.

ax 17(6F — grme — yop) + 17 (4 + 0°F) 10
subject to Z6P™° >0 11

(10)
(11)
— Wip > NP (12)
OF — P —Yeh <0 (13)
min([0, —07]) < - — Y4 (14)
Y>>0 (15)
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4.5 Optimization of the Lower Bound

Since we can not enumerate all of the constraints of the form Z6P™¢ > 0 or
enumerate all the cycle sub-problems, we adopt a cutting plane approach in
the dual. Given a set of cycle sub-problems and a set of 2-colorable partitions
Z, we solve the LP in (10)—(15), then compute the most violated constraint
corresponding to a 2-colorable partition. This is done by minimizing the following
objective over the set of 2-colorable partitions which we denote as P; .

min 7™ X (16)
XeP,

We can compute the minimum value 2-colorable segmentation X in time
O(N3/?1og(N)) where N is the number of planar edges [14]. This computation
is fast in practice (less than a second in all our applications). For every segment
in X, we add the constraint corresponding to the cut that separates this segment
from the other segments. We repeat this until the minimum value 2-colorable
partition has nearly 0 value. At any point in optimization, we can lower bound
the optimal value of the planar multicut sub-problem by 3/2 times the value of
the optimal 2-colorable partition as described in [17].

Next, we solve the dual of the Lagrangian decomposition, which provides a
non-integral partition. We then find violated cycle inequalities in the non-integral
partition and add the corresponding sub-problems to Lagrangian decomposition.
The addition of cycle sub-problems corresponds to adding columns to Y and W.
The dual of Lagrangian decomposition is written below. It is derived in the
supplement. We use ¢ to simplify notation where ¢ = min(0, —6%).

1 T (pP NP\ T T
20.w20,320,830 V(" +¢+0"") -9 27y

— (") w+ ((-07)T —9")B (17)
subject to (ZTy+p) =146 (18)
Who>YTg-vT14+1-Y%s (19)

The vector Z7+ defines a non-integral partition. The vector w determines
which non-planar edges are cut. Here ws; = 1 indicates that edge é is uncut
and ws = 0 indicates that edge é is cut (not a typo). Violated cycle inequalities
are then found in this partition and the corresponding cycle sub-problems are
added to Lagrangian decomposition. Violated cycle inequalities only correspond
to cycles involving a non-planar edge. Violated cycle inequalities can be found
using Dijkstra’s algorithm to find a path between the superpixels connected by
any non-planar edge é for which the fractional number of cut edges is minimal.
If the fractional number of cut edges on this path is less than 1 —ws, we add the
cycle sub-problem containing this path to the Lagrangian decomposition. The
iteration terminates when no violated cycle inequalities are found in Zt7y.



8 Andres, Yarkony et al.

4.6 Constructing a Segmentation

We now consider two approaches for converting of Z7+ to an integral partition.
The first approach, which is called simple rounding, is based on rounding Z7 to
a partition. We cut every edge e such that (Z7), > T where T is a parameter.
We uncut all cut edges within connected components. To select the optimal T'
we can try all unique values of Z7+ or a fixed number of values uniformly spaced
over the interval [0, 1]. Notice that Z7+ > T defines which non-planar edges are
cut.

For a more principled approach, we solve an integer program that constructs
a partition using a weighted sum of the 2-colorable segmentations with non-zero
~. In practice, the number of 2-colorable segmentations with non-zero « is small
(tens in our applications). We now discuss the integer program explicitly.

We use X to describe the integral partition that we are constructing. We use
a vector 7 to describe a fractional multicut. We index 4 with r where 4, defines
how much of the r-th 2-colorable partition is included in X. Vector 4 has only
indices corresponding to non-zero indices of . We use & to define which of the
non-planar edges are uncut. We use @ to penalize non-planar edges being uncut.

Our ILP is built on the following constraints. We enforce that a planar edge
with negative affinity e can only be cut if the multicut defined by 4 cuts this
edge at least once. We enforce that a planar edge with positive affinity e can
only be uncut if, for every partition r, Z.s%, = 0. We enforce that a non-planar
edge é can only be cut in X if the cycle inequalities from the primal LP are
satisfied. We write this optimization as an ILP below. The solution of this ILP
does not make up a substantial portion of the computation time in practice.

min  (67)" X, — (0"")"& +170NF (20)

X004
st. Xe< > 4 Vest. 0.<0 (21)

rs.t. Z(re)=1
3. < X, Vrst Z(re)=1; Yest. 0, >0 (22)
Ge>1— > A Vest.W(ece)=1 (23)
rs.t. [Je€c  Z(r,e)=1]

X.e{0,1} Ve (24)
e € {0,1} Ve (25)
4 €10,1]  Vr (26)

Once X is constructed, cut edges within connected components are uncut and
the partition is returned. In practice, the objective value of the segmentation ob-
tained by solving the ILP is nearly the same as the lower bound (cf. Section 5.2).
The entire Lagrangian decomposition algorithm is detailed in Algorithm 1.
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Algorithm 1: Semi-Planar Multicuts
Initialize Z=[], W=[], Y=[|;
while true do
while true do
Solve LP in (10)
T +arg mingzc
Z + [ZU7]
if 5 —AeZe ~ 0 then
break

end

o —AeTe

end
7 < solve LP in (17)

for é do
Use Dijkstra’s algorithm to find a path between the superpixels

connected by edge é for which the fractional number of cut edges is
minimal. If this number is less than 1 — we, add a cycle sub-problem
corresponding to this path to the Lagrangian decomposition.
end

end

~ < solve LP in (17)

round Z7+ using ILP in (20) or apply simple rounding on Z%~ to produce a

final segmentation X.

5 Application

5.1 Effectiveness

To demonstrate the effectiveness of Algorithm 1, we implement a workflow for
inter-active image segmentation that requires only trivial user input for both the
joining and cutting of segments. In the beginning, the user is presented with an
optimal multicut of a superpixel segmentation. This multicut is computed using
only affinities between adjacent superpixels. Subsequently, any combination of
two types of input is accepted to correct errors in the segmentation: 1. Scribbles
on the image to indicate pixels that belong to the same segment, 2. Pairs of
points in the image to indicate pixels that belong to different segments.

The evidence provided by scribbles is incorporated into the multicut prob-
lem by constraining variables to 0. The evidence provided by pairs of points is
incorporated as a non-local affinity with sufficiently large negative weight. Al-
ternatively, these affinities could also be incorporated as hard constraints. Hard
constraints are processed similarly to non-local affinities with finite negative
weight, except that the corresponding variable is fixed to 1 and the constant
contribution to the objective function, —oo, is ignored. Either way, every pair of
points excludes from the solution set all segmentations in which the points are
in different segments.

At any point in time, the user can request that the augmented problem with
additional constraints be solved to obtain an updated segmentation. There is no
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200

Fig. 3. The fraction by which the
value of a segmentation output by
Alg. 1 deviates from the global op-
timum (first axis) is small for a
large number of instances (second
axis). 132 of 200 instances are solved
to optimality. For 170 of the 200
instances, the error is less than
one percent. Depicted is the upper
bound on the error provided by the

-
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o

0 k) gap between the value of a segmen-
1010 18ppe1050u:12 0n1|:0act01r%f E!rg, 1o 10 tation and the LP lower bound.

Fig. 4. Alg. 1 terminates after 4.73 s

in the mean, 4.16 s in the median

and 28.05 s in the worst case of

3] F-- D]» T - the 200 instances. This is signifi-

.y L D} v + cantly faster than the an exact al-

gorithm for general graphs [3] that

107" 10° 10" 102 10° 10* takes 51.32 s in the mean, 7.79 s in

Runtime [s] the median and 3307.42 s (55 min-

utes) in the worst case.

requirement for the user to focus on one or the other type of errors, nor to prefer
one over the other type of input. Results that confirm the effectiveness of the
algorithm and the consistency of our implementation are depicted in Fig. 5.

5.2 Quality of Bounds and Runtime

To examine the bounds provided by Alg. 1 and to compare its runtime to that of
the exact algorithm for general graphs [3], we set up segmentation problems with
negative non-local affinities for the 200 test images of the BSD500 benchmark. To
ensure that experiments are unbiased, i.e. not subjective to specific user input,
we construct these problems automatically as follows.

Starting with the same superpixels and affinities between adjacent super-
pixels as in [17], we search the proximity of every superpixel for the superpixel
whose mean color differs maximally from that of the first superpixel. For every
image, we add the 50 strongest non-local affinities. Both, our implementation of
Alg. 1 and the optimized C++ implementation [1] of [3], use IBM ILOG Cplex
as an LP and ILP solver, respectively. We use Blossom V [11] for computing the
optimal 2-colorable partitions.

The fraction by which the value of a segmentation output by Alg. 1 deviates
from the global optimum is depicted on the first axis in Fig. 3. More precisely,
it is the upper bound on this deviation provided by the gap between the value
of a segmentation and the LP lower bound. This gap is zero for 132 of the 200
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benchmark images, indicating that these problems are solved to optimality by
Alg. 1. For 170 of the 200 instances, the error is less than one percent.

The distribution of runtimes for the 200 problems is depicted in Fig. 4. Unlike
the exact algorithm for general graphs whose worst-case runtime is prohibitive,
Alg. 1 is fast enough for inter-active applications.

6 Conclusions

We motivated the use of negative affinities between non-adjacent superpixels in
the multicut formulation of the image segmentation problem. For the resulting
NP-hard combinatorial optimization problem, we proposed a relaxation by La-
grangian decomposition and a constrained set of re-parameterizations for which
we can optimize exactly and efficiently by solving an LP. We implemented a cut-
ting plane approach in the dual, along with an algorithm to construct segmen-
tation from fractional solutions. This algorithms finds optimal to near optimal
solutions of segmentation problems with non-local negative affinities for natural
images. In our applications, it is more than 10 times faster on average than an
exact algorithm based on integer programming.

A Appendix

A.1 Difficulty of Positive Non-local Terms

We now consider why positive non-local terms are difficult. Let v and w be
superpixels connected by a positive non-local term whose corresponding edge is
xg. Let S(v,w) the set of all rings such that if all edges in a particular ring are
cut then the positive edge xj must also be cut. The corresponding addition to
the LP relaxation is written below.

Vr e S(pi,p2) xr+ er <|r| . (27)
eer

These constraints that appear elegantly in the form of separator inequalities
in [13] are remarkably fragile and almost always result in fractional solutions to
even trivial multicut problems. Moreover, these fractional solutions are uninfor-
mative with regards to what the optimal solution is. As an example, consider
five superpixels sq, Sp, S, S4, Se in the plane. Let s, be surrounded on all sides
by sp, S¢, Sq, let s be a neighbor of s;, s¢, sq and disconnected from s,. Also, let
Sq, and s, be paired by an infinitely strong positive term. The remaining terms

are described as follows:

Os, .55 =0s,.5. =055, =00 (28)
Os. s = bs5. = 05,05, = —1 (29)
5,50 = Use,s0 = 05,54 = 00 (30)

Clearly, the optimal solution is to put each superpixel in the same connected
component, and the cut cost is zero. However, the optimal fractional solution is
to cut each repulsive edge with value —2/3, and objective value is -2.
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Fig. 5. To demonstrate the effectiveness of Algorithm 1, we implement a workflow for
inter-active image segmentation that requires only trivial user input for both the joining
and cutting of segments. Presented with an initial and typically imperfect segmentation,
the user can scribble on the image (red) to indicate pixels that belong to the same
segment and click on pairs of points (green) that belong to different segments. The
latter are incorporated as non-local negative affinities.

A.2 Lower Bound on Affinities in the Independent Edge
Sub-problem

We now establish that min([0, —0F]) < —P™¢ —Y1). To do this, we rely on a the-
orem established in [16] which states that given affinities # for an instance of the
planar multicut problem, the affinities in the planar multicut sub-problem —§?™¢
are lower bounded by min([—8, 0]). In [16], no non-planar edges are considered.
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Given optimal parameters v, we have a description for a planar multicut
problem instance. Thus, the parameters of the independent edge sub-problem
and the planar multicut sub-problem satisfy the following inequality.

min([—0F + Y, 0]) < —P™° . (31)
Suppose that, at the optimal re-parameterization, the constraint
min([0, —0F]) < —6P™¢ — Yo) (32)

is not satisfied. Thus, there must be a planar edge e such that the constraint is
unsatisfied for. In this case, there must exist a cycle sub-problem c¢ containing e
such that ¢¢ > 0. We now define o and o as follows.

a = —min([—6.,0]) — 2™ =Y (33)
o =max([0,¢° + a]) — ¢° . (34)

Now set 1¢ = max([0, ¢° +a]). For each edge f # e in ¢ set 07" = 0" — 0.
Notice that the bound remains constant, no additional edges are unsatisfied
and the constraint of the form min([0, —07]) < —#P™¢ — (Y4)), is —o closer to
being satisfied. This process can be repeated until the constraint min([0, —6F]) <
—gP™c — Y1) is satisfied for all edges.

A.3 Properties of Cycle Sub-problems

We now consider the constraints (6) on the parameters of the cycle sub-problems
discussed in Section 4.3. We establish that they do not loosen the lower bound of
Lagrangian decomposition as follows. Assume that we have maximized the lower
bound of Lagrangian decomposition and that these constraints are violated. We
then alter the re-parameterization without loosening the bound so as to enforce
the relevant constraints for a single cycle. This process can be repeated for every
cycle in which the constraints are violated.

Consider a given cycle sub-problem ¢ and no structure in the affinities. Sup-
pose that there are zero or two or more edges with non-positive affinity. If this is
the case, move all negative affinity to the independent edge sub-problem and all
positive affinity to the planar multicut sub-problem. If the non-planar edge has
positive affinity, move the positive affinity to other copies of that edge in cycle
sub-problems and the independent edge sub-problem. Preserve that the affinity
in the independent edge sub-problem for each edge is non-positive. Finally, re-
move cycle sub-problem c from the decomposition. Notice that these alterations
to the re-parameterization do not loosen the lower bound of the decomposition.

Now consider the case where there is one negative affinity edge in cycle sub-
problem c. Set the affinity of the edge with negative affinity to the opposite
of the affinity of the edge with the smallest non-negative affinity. We denote
the value of the smallest non-negative affinity as ¢°. Now, set all affinities on
edges with non-negative affinity to ¢°. This last step is done because no optimal
configuration of cycle sub-problem c cuts a non-negative affinity edge e unless
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that edge has affinity equal to ¢°. We send the “excess” positive affinity from
cycle sub-problem c¢ to the planar multicut sub-problem, which does not loosen
the lower bound of the decomposition.

Since the addition of cycle sub-problems induces non-planar edges to but

uncut or induces planar edges along a path connecting the ends of a non-planar
edge to be cut, it is clear that the affinity associated with the non-planar edge
in each given cycle sub-problem is non-positive.
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