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Abstract. The volume of stroke lesion is the gold standard for pre-
dicting the clinical outcome of stroke patients. However, the presence of
stroke lesion may cause neural disruptions to other brain regions, and
these potentially damaged regions may affect the clinical outcome of
stroke patients. In this paper, we introduce the tractographic feature
to capture these potentially damaged regions and predict the modified
Rankin Scale (mRS), which is a widely used outcome measure in stroke
clinical trials. The tractographic feature is built from the stroke lesion
and average connectome information from a group of normal subjects.
The tractographic feature takes into account different functional regions
that may be affected by the stroke, thus complementing the commonly
used stroke volume features. The proposed tractographic feature is tested
on a public stroke benchmark Ischemic Stroke Lesion Segmentation 2017
and achieves higher accuracy than the stroke volume and the state-of-the-
art feature on predicting the mRS grades of stroke patients. In addition,
the tractographic feature also yields a lower average absolute error than
the commonly used stroke volume feature.

Keywords: Modified Rankin Scale (mRS) · Stroke · Clinical outcome
prediction · Tractographic feature · Machine learning

1 Introduction

According to the World Health Organization, 15 million people suffer strokes
each year, the second leading cause of death (5.8 million) and the third leading
cause of disability worldwide [8,13]. Around 87% of strokes are ischemic strokes,
which result from an obstruction within a blood vessel in the brain [18]. The
corresponding lack of oxygen results in different degrees of disability of people,
and the modified Rankin Scale (mRS) is commonly used to measure the degree
of disability or dependence in the daily activities of stroke patients [2, 5, 22].

Several studies [2, 12, 14, 17, 21, 23] demonstrate significant correlations be-
tween stroke volume and mRS grades, with larger lesions predicting more severe
disability. However, only a few studies [3, 4, 15] extracted different features, in-
cluding first-order features and deep features, other than volume from stroke
lesion to predict the mRS grades of stroke patients. The study of Maier and
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Handels [15] is most relevant to our work. They extracted 1650 image features
and 12 shape characteristics from the stroke volume, the volume surrounding
the stroke and the remaining brain volume, and they applied a random forest
regressor with 200 trees on these 1662 features to predict the mRS grades of
stroke patients. However, the presence of stroke lesion may disrupt other brain
regions that may affect the clinical outcome of stroke patients.

The main contribution of this paper is the introduction of a new second-order
feature, the tractographic feature, that couples the stroke lesion of a patient
with the average connectome information from a group of normal subjects. The
tractographic feature describes the potentially damaged brain regions due to
the neural disruptions of the stroke lesion. Ideally one would like to use the
diffusion images from the stroke patient, but this is not a realistic scenario. For
instance, the patient with mental in their body is unsafe for getting an MRI
scan. Instead, we use the “normal” subject data from the HCP project with
the assumption that the parcellations and the associated tracts computed from
that data are a reasonable approximation to extract the connectivity features.
These tractographic features coupled with the stroke lesion information are used
to predict the mRS grades of stroke patients. The concept of the tractographic
feature was first proposed by Kao et al. [9] who used these to predict the overall
survival of brain tumor patients. We modify their method to adapt to the size of
the lesions and propose a new weighted vector of the tractographic feature. Our
experimental results demonstrate that the proposed approach improves upon the
state-of-the-art method and the gold standard in predicting the clinical outcome
of stroke patients.

2 Materials and Methods

2.1 Dataset

Ischemic Stroke Lesion Segmentation (ISLES) 2017 [10,16] provides 43 subjects
in the training dataset. Each subject has two diffusion maps (DWI, ADC), five
perfusion maps (CBV, CBF, MTT, TTP, Tmax), one ground-truth lesion mask
and clinical parameters. The ground-truth lesion mask built in the follow-up
anatomical sequence (T2w or FLAIR) and the corresponding mRS grade was
given on the same day. The clinical parameters include mRS grade ranging from
0 to 4, time-to-mRS (88 to 389 days), TICI scale grade from 0 to 3, time-since-
stroke (in minutes), and time-to-treatment (in minutes). Since TICI scale grade,
time-since-stroke, and time-to-treatment were missing for some subjects, these
three clinical parameters are not used in this work. The dimension and voxel
spacing of MR images are different between each subject, but they are the same
within each subject. We only focus on the subjects who obtain an mRS grade at
3 months (90 days) following hospital discharge since ascertainment of disabil-
ity at 3-month post-stroke is an essential component of outcome assessment in
stroke patients [5], and the tractographic data may change at a different time.
Therefore, only 37 subjects are considered in this paper.
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2.2 Tractographic Feature

The tractographic feature describes the potentially damaged region impacted
by the presence of the stroke lesion through the average connectome informa-
tion from 1021 Human Connectome Project (HCP) subjects [20]. For each HCP
subject, q-space diffeomorphic reconstruction [24] is used to compute the diffu-
sion orientation distribution function. Fig. 1 shows the workflow of building a
tractographic feature for a stroke patient.

Fig. 1. The workflow for constructing a tractographic feature from a stroke region.

Given the stroke lesion in the subject space, we first map the stroke lesion to
the Montreal Neurological Institute (MNI) space [6]. Second, we place one seed
within each voxel of the brain region, and a deterministic diffusion fiber tracking
method [25] is used to find all possible tracts passing through the stroke volume
inside the brain from the average diffusion orientation distribution function of
1021 HCP subjects. Topology-informed pruning [26] is used to remove false-
positive tracts. Third, an existing brain parcellation atlas is used to create a
disruption matrix D, which describes the degree of disruption between different
brain parcellation regions due to the presence of the stroke lesion.

D =


d11 d12 . . . d1N
d21 d22 . . . d2N
...

...
. . .

...
dN1 dN2 . . . dNN

 (1)

dij notes the number of tracts starting from a region i and ending in a re-
gion j, and N is the total number of brain parcellation regions in the existing
atlas. Then, this disruption matrix is normalized by its maximum value, i.e.,
D̂ = D/dm where D̂ is the normalized disruption matrix, and dm is the maximum
element of the disruption D. Afterward, we sum up each column in this normal-
ized disruption matrix D̂ to form a row vector L =

∑N
i=1 d̂ij = [l1, l2, . . . , lN ].
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From the stroke lesion, we build a weight vector γ = [s1, s2, . . . , sN ], which is
the distribution of the stroke volume in the different brain parcellation regions.
si is the volume of the stroke lesion in the i-th brain parcellation region. In the
end, the row vector L is multiplied by this weight vector γ element-wisely to
form the tractographic feature T .

T = γ ◦L (2)

◦ is the Hadamard-product. This vector T is the proposed tractographic feature
extracted from stroke lesion without any diffusion information of a patient. In
this paper, the Automated Anatomical Labeling (AAL) [19] template is used
to define 116 brain regions so the dimension of the tractographic feature is 116.
The reasons for choosing AAL rather than other existing atlases are (i) this atlas
contains an optimal number of brain regions that could make each region large
enough to compensate possible stroke-induced lesion effect or distortion, and (ii)
this atlas contains cortical, subcortical and cerebellar regions, which could be
equally important for mRS prediction. The source code is available on GitHub1.

Parameters of Fiber Tracking

DSI Studio2 is used to build the fiber tracts for each subject. Table 1 shows the
tracking parameters3 we used in this paper. The type of the stroke lesion is set
to ROI (–roi=stroke lesion) that found all possible tracts passing through the
stroke lesion.

Parameters of Connectivity Matrix

DSI studio is used to create the connectivity matrix 4 followed by fiber tracking.
Automated Anatomical Labeling is chosen to form a 116 × 116 connectivity
matrix. The type of the connectivity matrix is set to end , the value of each
element in the connectivity matrix is the count of fiber tracts , and the threshold
to remove the noise in the connectivity matrix is set to 0 .

2.3 Evaluation Metrics

The employed evaluation metrics are (i) the accuracy, which is the percentage of
the predicted mRS scores matching the corresponding ground-truth mRS scores,
and (ii) the average absolute error between the predicted mRS scores and the
corresponding ground-truth mRS scores.

1 https://github.com/pykao/ISLES2017-mRS-prediction
2 https://github.com/frankyeh/DSI-Studio
3 parameter id=F168233E9A99193F32318D24ba3Fba3Fb404b0FA43D21D22cb01ba02a01d
4 http://dsi-studio.labsolver.org/Manual/command-line-for-dsi-studio

https://github.com/pykao/ISLES2017-mRS-prediction
https://github.com/frankyeh/DSI-Studio
http://dsi-studio.labsolver.org/Manual/command-line-for-dsi-studio
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Table 1. Tracking parameters of building the fiber tracts for stroke patients in this
paper. More details of parameters can be found at http://dsi-studio.labsolver.org/
Manual/Fiber-Tracking.

Parameter Value

Termination Index qa
Threshold 0.15958

Angular Threshold 90
Step Size (mm) 0.50

Smoothing 0.50
Min Length (mm) 3.0
Max Length (mm) 500.0

Topology-Informed Pruning (iteration) 1
Seed Orientation All orientations

Seed Position Voxel
Randomize Seeding Off

Check Ending Off
Direction Interpolation Tri-linear

Tracking Algorithm Streamline(Euler)
Terminate if 2,235,858 Tracts
Default Otus 0.60

3 Experimental Results

First experiment: In this experiment, we compare the mRS prediction per-
formance of the tractographic feature with other first-order features extracted
from the lesion mask. These first-order features include the volumetric feature,
spatial feature, morphological feature and volumetric-spatial feature depicted in
Table 2. The framework of the first experiment is shown in Fig. 2.

Fig. 2. The framework of the first experiment. In the end, the predicted mRS grade is
rounded to an integer.

We first register the stroke lesions from subject space to the MNI space in
order to overcome the differences of the voxel spacing and image dimension be-
tween different subjects. The tractographic feature and other first-order features
are extracted from these normalized stroke lesions. After feature extraction, we
apply a standard feature normalization on the extracted features to ensure that

http://dsi-studio.labsolver.org/Manual/Fiber-Tracking
http://dsi-studio.labsolver.org/Manual/Fiber-Tracking
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each dimension of the features has the same scale. Then, we remove the dimen-
sions of the features with zero variance between subjects and apply a recursive
feature elimination with leave-one-out cross-validation to find the best subset
of feature that yields the lowest average mean absolute error. In the training
phase, we train one random forest regressor for each type of feature, i.e., five
random forest regressors are trained. Each random forest regressor has 300 trees
of which maximum depth is 3. In the testing phase, we use different types of
features with the corresponding trained random forest regressors to predict the
mRS grades of stroke patients, and the predicted mRS grade is rounded to an
integer. We evaluate the mRS prediction performance of different types of fea-
tures with leave-one-out cross-validation on ISLES 2017 training dataset. The
quantitative results are reported in Table 3. From Table 3, the tractographic
feature has the highest accuracy and lowest average absolute error on predicting
the mRS grades of stroke patients compared to other first-order features.

Table 2. First-order features extracted from the stroke lesion.

Type of feature Descriptions

Volumetric feature Volumetric feature is the volume of the lesion in the MNI
space, and it only has one dimension.

Spatial feature Spatial feature describes the location of the lesion in the
brain. The centroid of the lesion is extracted as the spatial
feature for each subject, and the spatial feature has three
dimensions.

Morphological feature Morphological feature describes shape information of the
lesion. The length of the major axis and minor axis of the
lesion, the ratio of the length of major axis and minor axis
of the lesion, the solidity and roundness of the lesion, and
the surface of the lesion are extracted as the morphological
feature. The morphological feature has six dimensions for
each subject.

Volumetric-spatial feature Volumetric-spatial feature describes the distribution of the
stroke lesion in different brain parcellation regions from an
existing structural atlas. Automated Anatomical Labeling
(AAL) [19] is used to build the volumetric-spatial feature
so the dimension of the volumetric-spatial feature is 116.

Second experiment: We compare the mRS prediction performance of the
tractographic feature with the state-of-the-art feature proposed by Maier and
Handels [15]. We implement their feature extraction method on ISLES 2017
dataset. First, 1650 image features and 14 shape features are extracted from
the lesion volume and the apparent diffusion coefficients (ADC) maps in the
subject space. Thereafter, these two types of features are concatenated to build a
1664-dimension feature. Then, we apply the same feature normalization, feature
selection, cross-validation, and random forest regressor as the first experiment to
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predict the mRS of stroke patients. The quantitative results of the state-of-the-
art feature are also shown in Table 3. From Table 3, the tractographic feature also
achieves higher accuracy and similar average absolute error (p = 0.81) compared
to the state-of-the-art feature.

Table 3. The mRS prediction performance of different types of features on ISLES 2017
training dataset with leave-one-out cross-validation. The bold numbers show the best
performance. (The average absolute error is reported as mean ± std.)

Type of feature Accuracy Average absolute error

Tractographic feature 0.622 0.487± 0.683
Volumetric feature 0.514 0.595 ± 0.715

Volumetric-spatial feature 0.568 0.621 ± 0.817
Morphological feature 0.378 0.703 ± 0.609

Spatial feature 0.351 0.919 ± 0.882
Maier and Handels [15] 0.595 0.460± 0.597

4 Discussion and Conclusion

From the first experiment, the tractographic feature has the best mRS prediction
accuracy and the lowest average absolute error compared to other first-order fea-
tures. The main reason is that the tractographic feature integrates volumetric-
spatial information of the stroke lesion and the average diffusion information
from a group of normal subjects that describes the potentially damaged regions
impacted by the stroke lesion. These potentially damaged regions are formatted
in the disruption matrix D from Eq. (1), and the weight vector γ from Eq. (2)
carries spatial and volumetric information of the stroke lesion to the tracto-
graphic feature T . In addition, it is worth noting that the volumetric-spatial
feature is the same as the weight vector γ of the tractographic feature, and the
mRS prediction performance of volumetric-spatial feature is improved by con-
sidering the average connectome information from a group of normal subjects.

The second experiment demonstrates that the tractographic feature also has
better mRS prediction accuracy than the state-of-the-art feature [15]. It should
be noted that their approach requires ADC maps that are not necessarily al-
ways available, and using only the lesion shape information degrades the overall
performance significantly in their approach. We also note that the tractographic
feature is of much lower dimensions (116) compared to the state-of-the-art fea-
ture (1664).

In both experiments, we apply the recursive feature selection with cross-
validation on different types of features, and this procedure reduces one di-
mension of feature recursively until finding the best subset of the feature with
the lowest mean absolute error. For the tractographic feature, this reduces the
dimensionality from 116 to 8. This selected tractographic feature comes from
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eight AAL regions shown in Fig. 3(left and right inferior temporal gyrus, right
Rolandic operculum, left middle frontal gyrus, orbital part and triangular part
of right inferior frontal gyrus, left angular gyrus and left putamen).

Fig. 3. Selected tractographic feature from eight AAL regions including left (in red)
and right (in pink) inferior temporal gyrus red, right Rolandic operculum (in orange),
left middle frontal gyrus (in yellow), orbital part (in green) and triangular part (in
blue) of right inferior frontal gyrus, left angular gyrus (in purple) and left putamen (in
grey) after applying the recursive feature selection with cross-validation on the original
tractographic features. These tractographic features are extracted from 37 ISLES 2017
training subjects. Best viewed in color.

After feature selection, we use a random forest regressor to predict the mRS
grades of stroke patients. The random forest regressor gives the importance to
each dimension within a given type of feature shown in Fig. 4.

For the selected tractographic feature, left inferior temporal gyrus yields the
highest average importance compared to the other seven regions within 37 ISLES
2017 training subjects on the task of predicting the mRS grades. The reasons left
inferior temporal gyrus has the greatest effect on the mRS of stroke patients are
(i) this region is important for language processing and speech production [1],
and (ii) a large number of fiber tracts, passing through this region, goes across



Predicting Clinical Outcome of Stroke Patients with Tractographic Feature 9

Fig. 4. Region importance of eight selected AAL brain parcellation regions given by a
random forest regressor with 300 trees whose maximum depth is 3. The average values
are marked in the green triangles. Left inferior temporal gyrus (LITG) yields a higher
mean importance (0.26) than right Rolandic operculum (RRO, 0.14), left middle frontal
gyrus (LMFG, 0.13), orbital part (ORIFG, 0.11) and triangular part (TRIFG, 0.10)
of right inferior frontal gyrus, left angular gyrus (LAG, 0.09), left putamen (LP, 0.09)
and right inferior temporal gyrus (RITG, 0.08) within 37 ISLES 2017 training subjects
on the task of predicting the mRS grades of stroke patients. Best viewed in color.
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the splenium of the corpus callosum which connects the visual, parietal and
auditory cortices [7, 11] (See Fig. 5).

Axial View Coronal View Sagittal View

Fig. 5. The fiber tracts passing through the left inferior temporal gyrus from the aver-
age connectome information of 1024 HCP subjects. We place a seed in each voxel inside
the whole brain to find all possible tracts passing through the left inferior temporal
gyrus. Best viewed in color.

In conclusion, the paper presents for the first time the use of tractographic
features for predicting the clinical outcome of stroke patients. The tractographic
feature leads to promising mRS prediction results on ISLES 2017 dataset but
needs to be further validated using a larger and representative independent
dataset in order to rule out a potential methodical bias and over-fitting effects.
The proposed tractographic feature has a potential to be improved if we build a
disruption matrix from each HCP subject given the stroke lesion in MNI space
and construct the average disruption matrix from these individual disruption
matrices.

Limitation The proposed tractographic feature cannot be generated if the
stroke lesion is not located in the brain parcellation regions.
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