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Abstract. In this work, we utilize T1-weighted MR images and Stack-
Net to predict fluid intelligence in adolescents. Our framework includes
feature extraction, feature normalization, feature denoising, feature se-
lection, training a StackNet, and predicting fluid intelligence. The ex-
tracted feature is the distribution of different brain tissues in different
brain parcellation regions. The proposed StackNet consists of three layers
and 11 models. Each layer uses the predictions from all previous layers
including the input layer. The proposed StackNet is tested on a pub-
lic benchmark Adolescent Brain Cognitive Development Neurocognitive
Prediction Challenge 2019 and achieves a mean absolute error of 82.42
on the combined training and validation set with 10-fold cross-validation.
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1 Introduction

Fluid intelligence (Gf) refers to the ability to reason and to solve new problems
independently of previously acquired knowledge. Gf is critical for a wide vari-
ety of cognitive tasks, and it is considered one of the most important factors in
learning. Moreover, Gf is closely related to professional and educational success,
especially in complex and demanding environments [7]. The ABCD Neurocogni-
tive Prediction Challenge (ABCD-NP-Challenge 2019) provides 8556 subjects,
age 9-10 years, with T1-weighted MR images and fluid intelligence which is
withheld for testing subjects. The motivation of the ABCD-NP-Challenge 2019
is to discover the relationship between the brain and behavioral measures by
leveraging the modern machine learning methods.

A few recent studies use structural MR images to predict fluid intelligence.
Paul et al. [13] demonstrated that brain volume is correlated with quantitative
reasoning and working memory. Wang et al. [19] proposed a novel framework
for the estimation of a subject’s intelligence quotient score with sparse learning
based on the neuroimaging features. In this work, we utilize the T1-weighted
MR images of adolescents to predict their fluid intelligence with a StackNet.
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While whole brain volumes have been examined in relation to aspects of intel-
ligence, to our knowledge there has been no previous work which examines the
predictive ability of whole brain parcellation distributions for fluid intelligence.
The main contributions of our work are two-fold: (1) to predict pre-residualized
fluid intelligence based on parcellation volume distributions, and (2) to show the
significance of the volume of each region on the overall prediction.

2 Materials and Methods

2.1 Dataset

The Adolescent Brain Cognitive Development Neurocognitive Prediction Chal-
lenge (ABCD-NP-Challenge 2019) [4,6,8,15,18] provides data for 3739 training
subjects, 415 validation subjects and 4402 testing subjects (age 9-10 years).
MR-T1 image is given for each subject, but the fluid intelligence scores are only
provided for the training and validation subjects. MR-T1 images are distributed
after skull-stripped and registered to the SRI 24 atlas [16] of voxel dimension
240×240×240. In addition to the MR-T1 images, the distributions of gray mat-
ter, white matter, and cerebrospinal fluid in different regions of interest according
to the SRI 24 atlas are also provided for all subjects. The fluid intelligence scores
are pre-residualized on data collection site, sociodemographic variables and brain
volume. The provided scores should, therefore, represent differences in Gf not
due to these known factors.

2.2 StackNet Design

StackNet [10] is a computational, scalable and analytical framework that resem-
bles a feed-forward neural network. It uses Wolpert’s stacked generalization [20]
in multiple levels to improve the accuracy of classifier or reduce the error of
regressor. In contrast to the backward propagation used by feed-forward neural
networks during the training phase, StackNet is built iteratively one layer at a
time (using stacked generalization), with each layer using the final target as its
target.

There are two different modes of StackNet: (i) each layer directly uses the
predictions from only one previous layer, and (ii) each layer uses the predictions
from all previous layers including the input layer that is called restacking mode.
StackNet is usually better than the best single model contained in each first layer.
However, its ability to perform well still relies on a mix of strong and diverse
single models in order to get the best out of this meta-modeling methodology.

We adapt the StackNet architecture for our problem based on the following
ideas: (i) including more models which have similar prediction performance, (ii)
having a linear model in each layer (iii) placing models with better performance
on a higher layer, and (iv) increasing the diversity in each layer. The resulting
StackNet, shown in Fig. 1, consists of three layers and 11 models. These models
include one Bayesian ridge regressor [9], four random forest regressors [1], three
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extra-trees regressors [5], one gradient boosting regressor [3], one kernel ridge
regressor [12], and one ridge regressor. The first layer has one linear regressor and
five ensemble-based regressors, the second layer contains one linear regressor and
two ensemble-based regressors, and the third layer only has one linear regressor.
Each layer uses the predictions from all previous layers including the input layer.

Fig. 1. The architecture of proposed StackNet. For the ensemble-based regressor, the
number of trees and the maximum depth of each tree are indicated in the first and
second number, respectively.

2.3 Predicting Gf using Structural MR Images and StackNet

Fig. 2 shows the framework of predicting the fluid intelligence scores using MR-
T1 images and a StackNet. The framework is implemented with the scikit-learn
[2,14] Python library. In the training phase, features are extracted from the
MR-T1 images of training and validation subjects. We then apply normalization
and feature selection on the extracted features. In the end, these pre-processed
features are used to train the StackNet in Fig. 1. In the testing phase, features
are extracted from the MR-T1 images of testing subjects, and the same feature
pre-processing factors are applied to these extracted features. Thereafter, the
pre-processed features are used with the trained StackNet to predict the fluid
intelligence of the testing subjects. Details of each step are described below.

The ABCD-NP-Challenge 2019 data includes pre-computed 122-dimension
feature that characterizes the volume of brain tissues, i.e., gray matter, white
matter, and cerebrospinal fluid, parcellated into SRI-24 [16] regions. The feature
extracted for each subject is defined as fi(j) where i is the index of subject and
j ∈ {1, 2, ..., 122} is the index of feature dimension.

Normalization: We apply a standard score normalization on each feature di-
mension, f i(j) = (fi(j)−µ(j))/σ(j) where i is the index of subject, j is the index
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Fig. 2. The framework of predicting fluid intelligence using MR-T1 images and a Stack-
Net.

of feature dimension, and f i(j) and fi(j) are the normalized and raw feature
dimension j of subject i, respectively. µ(j) and σ(j) are the mean and standard
deviation of feature dimension j, respectively.

Feature Selection: Feature selection consists of three steps: (i) reducing the
noise of data and generating an accurate representation of data through princi-
pal component analysis (PCA) [17] with maximum-likelihood estimator [11] (ii)
removing the feature dimensions with the low variance between subjects, and
(iii) selecting 24 feature dimensions with the highest correlations to the ground-
truth Gf scores through univariate linear regression tests. Thereafter, the feature
dimensions shrink from 120 to 24.

Training a StackNet: Because the mean of the pre-residualized fluid intel-
ligence for the training dataset (µ = 0.05, σ = 9.26) and validation dataset
(µ = −0.5, σ = 8.46) are quite different, we combine these two datasets (µ =
0, σ = 9.19) for hyperparemeter optimization and training a StackNet.

Predicting Fluid Intelligence: In the testing phase, we first apply the same
pre-processing factors used in the training phase to the extracted features of
testing subjects. We then use the trained StackNet with these pre-processed
features to predict the fluid intelligence scores of testing subjects.

Evaluation Metric: The mean squared error (MSE) is used to calculate the
error between the predicted Gf scores and the corresponding ground-truth Gf
scores.
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2.4 Computing Feature Importance

We would like to discover the correlation between the Gf score and the brain
tissue volume in a region. Thus, we compute the importance of each feature
dimension, and higher importance represents a higher correlation. However, af-
ter feature selection, the original data space of dimension 122 is projected and
reduced to a new space of dimension 24. In this new space, we first compute the
importance of each feature dimension and then backward propagate it to the
original data space of dimension 122. The details are explained as follows.

After dimensionality reduction, we obtain the individual correlations between
the remaining 24 feature dimensions and the ground-truth Gf scores. These cor-
relations are first converted to F values and then normalized w.r.t. the total F
values of feature dimensions, i.e., F 1+F 2+...+F 24 = 1, where F k is the normal-
ized F value of feature dimension k ∈ {1, 2, ..., 24}. These normalized F values are
used to build a normalized F vector as F 1×24 = [F 1, F 2, ..., F 24]. We then use
the corresponding eigenvectors and eigenvalues from the PCA transformation
to build two matrices, U122×24 = [ #»u 1,

#»u 2, ...,
#»u 24] and Λ1×24 = [λ1, λ2, ..., λ24],

where #»u k and λk are the corresponding eigenvector and eigenvalue for F k, re-
spectively. The dimension of #»u k is 122. We also normalize the eigenvalue vec-
tor w.r.t. the total value of eigenvalues, i.e., Λ1×24 = Λ1×24/λt, where λt =
λ1 + λ2 + ...+ λ24. The normalization for eigenvalues is required to ensure that
they have the same scale as the F values. Thereafter, we use F ,Λ and U to build
the feature importance matrix I122×24 = [F 1λ1

#»u 1, F 2λ2
#»u 2, ..., F 24λ24

#»u 24]. In
the end, we sum up the absolute value of each element in every row of the matrix
I122×24,

#»

I 122×1 =

24∑
n=1

|Fnλn
#»un|

#»

I 122×1 is the feature importance vector in the original data space, and we also
normalize it w.r.t. its total importance and rescale it,

#»

I nrm = 100 · #»

I 122×1/

122∑
m=1

#»

I m

Now,
#»

I nrm is the normalized feature importance vector in the original data
space of dimension 122, and each value of this vector represents the importance
of a brain tissue volume in a region for the task of predicting the Gf scores.
Higher importance represents higher correlation to the Gf score.

3 Results and Discussion

We examine the Gf prediction performance of individual models and StackNet
on the combined dataset with 10-fold cross-validation, with the quantitative
results shown in Table 1. The baseline is calculated by assigning the mean fluid
intelligence (µ = 0) to every subject in the combined dataset. From Table 1, the
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performance of each model is better than the baseline of guessing the mean every
subject, and the performance of the StackNet is better than every individual
model within itself because it takes advantage of stacked generalization.

Table 1. The quantitative results of 11 models and StackNet with 10-fold cross-
validation on the combined dataset. The bold number highlights the best performance.

Model MSE

Baseline 84.50
BayesianRidge 82.62
Ridge(alpha=512) 82.61
KernelRidge(alpha=512) 82.61
GradientBoostingRegressor(n estimators=40, max depth=3) 83.60
RandomForestRegressor(n estimators=1000, max depth=7) 83.07
RandomForestRegressor(n estimators=1000, max depth=9) 83.09
RandomForestRegressor(n estimators=800, max depth=11) 83.07
RandomForestRegressor(n estimators=800, max depth=13) 83.11
ExtraTreesRegressor(n estimators=1800, max depth=9) 83.16
ExtraTreesRegressor(n estimators=2200, max depth=11) 83.10
ExtraTreesRegressor(n estimators=3200, max depth=15) 83.16
StackNet 82.42

The proposed StackNet in Fig. 1 is different from the StackNet which is used
to report the MSE on the validation leader board. The StackNet used to report
the MSE on the validation leader board has two layers and 8 models, and it
achieves an MSE of 84.04 and 70.56 (rank 7 out of 17 teams) on the training
and validation set, respectively. However, we noticed that statistics between the
training set and validation are quite different, so we decided to combine these
two datasets and work on this combined dataset (µ = 0 and σ = 9.19) using 10-
fold cross-validation. In addition, we also ensured that the mean and standard
deviation of each fold is similar to the mean and standard deviation of combined
dataset. The source code is available on GitHub1.

Second, we compute the importance of each dimension of the extracted fea-
ture by leveraging the F score from feature selection and eigenvectors and eigen-
values from PCA as described in Section 2.4. Each dimension of the extracted
feature corresponds to the volume of a certain type of brain tissue in a certain
region. Table 2 and Table 3 show the top 10 most and least important feature
dimensions for the task of predicting Gf, respectively, and higher importance
represents higher correlation to the Gf scores.

In conclusion, we demonstrate that the proposed StackNet with the distri-
bution of different brain tissues in different brain parcellation regions has the
potential to predict fluid intelligence in adolescents.

1 https://github.com/pykao/ABCD-MICCAI2019

https://github.com/pykao/ABCD-MICCAI2019
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Table 2. The top 10 most important variables for the task of predicting Gf

Variable description Importance

Pons white matter volume 1.18
Right insula gray matter volume 1.13

Right inferior temporal gyrus gray matter volume 1.11
Corpus callosum white matter volume 1.08

Cerebellum hemisphere white matter right volume 1.07
Cerebellum hemisphere white matter left volume 1.06
Left inferior temporal gyrus gray matter volume 1.06

Left insula gray matter volume 1.06
Left superior frontal gyrus, orbital part gray matter volume 1.05

Left opercular part of inferior frontal gyrus gray matter volume 1.05

Table 3. The top 10 least important variables for the task of predicting Gf

Variable description Importance

Right hippocampus gray matter volume 0.53
Right amygdala gray matter volume 0.54

Left hippocampus gray matter volume 0.56
Right caudate nucleus gray matter volume 0.58

Right lobule IX of cerebellar hemisphere volume 0.60
Right lobule X of cerebellar hemisphere (flocculus) volume 0.60
Left lobule X of cerebellar hemisphere (flocculus) volume 0.61

Right superior parietal lobule gray matter volume 0.61
Left middle temporal pole gray matter volume 0.63
Left lobule IX of cerebellar hemisphere volume 0.63
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