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Abstract In this paper we introduce novel regulariza-

tion techniques for level set segmentation that target

specifically the problem of multiphase segmentation.

When the multiphase model is used to obtain a par-

titioning of the image in more than two regions, a new

set of issues arise with respect to the single phase case

in terms of regularization strategies. For example, if

smoothing or shrinking each contour individually could

be a good model in the single phase case, this is not

necessarily true in the multiphase scenario.

In this paper, we address these issues designing en-

hanced length and area regularization terms, whose min-

imization yields evolution equations in which each level

set function involved in the multiphase segmentation

can “sense” the presence of the other level set functions

and evolve accordingly. In other words, the coupling of

the level set function, which before was limited to the

data term (i.e. the proper segmentation driving force),

is extended in a mathematically principled way to the

regularization terms as well. The resulting regulariza-

tion technique is more suitable to eliminate spurious

regions and other kind of artifacts. An extensive ex-

perimental evaluation supports the model we introduce

in this paper, showing improved segmentation perfor-

mance with respect to traditional regularization tech-

niques.
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1 Introduction

Image segmentation is one of the most studied prob-

lems in image analysis and many different approaches to

segmentation have been introduced in the past. Among

these, variational models based on the solution of par-

tial differential equations (PDEs) have become increas-

ingly popular in the last decade. They can be cate-

gorized into two different subgroups: region-based [1–

12] and edge-based methods [13–22]. Region-based ap-

proaches offer an advantage over edge-based segmenta-

tions in that they do not rely on edge detection, which

can be sensitive to noise and clutter. Also, region-based

algorithms are generally less dependent on initializa-

tion since they exploit global information of the image

statistics.

A fundamental variational approach to region-based

image segmentation was first presented by Mumford

and Shah in [23], where the authors minimized a func-

tional to approximate the image in a piecewise smooth

way, penalizing at the same time the excessive length of

the contours between regions. Later on, Chan and Vese

minimized this functional within the level set frame-

work [24], for both piecewise constant [7] and smooth

approximations of the image. In their work the authors

represented two partitions as the positive and negative

sub-level sets of a Lipschitz continuous function φ and

they evolved φ in order to minimize the variance of

each partition. Robustness to spurious noisy pixels is

obtained by introducing two regularizing terms in the

cost function, which penalize respectively the length of



2

the contour (i.e. the zero level set of φ) or the area of

the region inside the contour. In summary the energy

function to be minimized can be written as the sum of

three different contributions:

E = Ed + µEl + νEa (1)

where Ed is the data term (i.e. the term which carries

information about the image content), El is the term

penalizing the length and Ea is the one penalizing the

area, while µ and ν are two scalar weighting coefficients.

Most of the literature in region-based segmentation tar-

gets the choice of the data term Ed and several vari-

ants have been proposed, such as extensions to include

higher order statistics [25,12,26], to cast the problem

in a probabilistic framework [9,10] or in a classification

framework [4–6], to include additional information in

the form of shape prior [27–31,25] (for other variants

see [2,3,32] and references therein).1

Much less attention has been devoted to improve

the regularization terms El and Ea. For example, the

length of the contour can be replaced with a geodesic

length with a metric based on the image gradient [13,

34,10]. This would penalize the presence of a contour

more in a flat region than in correspondence of a high

gradient region. For other contributions in this direction

we refer the reader to [13,10] and references therein. All

these cited contributions targeted the binary segmenta-

tion case, i.e. the single level set function, also known as

single phase case. When the multiphase model is used,

a new set of issues arise that, to the best of our knowl-

edge, have not been addressed in the literature. This

paper can be considered a contribution in this direc-

tion.

Specifically, while smoothing contours can be a good

regularization model in the single phase case to avoid

the presence of boundaries wrapping around noisy spu-

rious pixels, this does not necessarily hold true in the

multiphase case. This problem becomes crucial in seg-

menting complex natural images (see Fig. 1 for ex-

ample, where the segmentation is obtained using the

4-regions Chan-Vese model described in [33]), where

many of these spurious regions arise, particularly in

1 Throughout this paper we adopt the data term introduced
by Chan and Vese in [7] and then extended to the multiphase
scenario in [33]. This data-driven cost function, which aims at
minimizing the variance of each partition, can be written as fol-

lows:

ECVd =

N∑
i=1

∫
Ω

(u0(x)− ci)2χi(x)dx (2)

where N is the number of regions/segments, u0 is the original im-

age, ci and χi for i = 1, . . . , N are the means and the characteris-
tic functions of each segment. In the 4-region case, (2) specializes

in (43)

(a)

(b) (c)

(d) (e)

Fig. 1 (a) Original image. (b,c,d,e) Comparison between the

segmentations obtained using the traditional multiphase regular-
ization approach (left column) and the proposed method (right

column) – in both cases the data term is the one proposed by

Chan and Vese in [33]. In (b) and (c) we compare the 4 regions
obtained using the two different regularization techniques. The

areas within the green boxes are magnified in (d) and (e) to show

that the spurious regions (highlighted within the green circles),
present using the traditional regularization (d), are instead absent

if the proposed method is applied (e). Figures are best viewed in

color.

correspondence of objects boundaries (that is where two

level set functions can change sign simultaneously). The

reason why traditional regularization based on smooth-

ing is not enough to get rid of these spurious regions

is explained pictorially in Fig. 2. Here two extremely

smooth surfaces are running parallel and spatially close

to each other. The multiphase segmentation model can

produce a spurious region located between the two bound-

aries. The traditional length and area regularization

terms, which act on each contour independently, would

not get rid of this spurious region since the two con-

tours are already sufficiently smooth. Therefore there

is a need to rethink the regularization terms in a multi-

phase perspective, introducing the possibility for each

contour to “sense” the presence of the other contours

and evolve accordingly.

The main contributions of this paper are targeting

these issues and can be summarized as follows:
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Fig. 2 a) Two level set functions running parallel and close to
each other. The two black lines are the zero level sets. b) Projec-

tion of the zero level sets on the image plane, showing the result-

ing multi-phase segmentation. Note the presence of a small spu-
rious region between the two interfaces. Traditional regulariza-

tion techniques, based on smoothing (i.e. length regularization)
or shrinking (i.e. area regularization) each contour independently

from the other contours, are not suitable for getting rid of this

region.

– Formulation of a length regularization term El, in

which smoothing happens selectively, depending on

the reciprocal position of the contours.

– Formulation of an area regularization term Ea, in

which shrinking/expanding is conditioned on the

presence of other contours, providing a more prin-

cipled regularization effect.

– Extensive experimental validation of the proposed

regularization models.

This paper is organized as follows. In Section 2 we

briefly review regularization techniques in presence of

a single level set function, while Section 3 extends the

concepts to the multiphase scenario. In particular, Sec-

tion 3.1 deals with length regularization, while Section

3.2 is concerned with area regularization. After present-

ing experimental results in Section 4, we briefly con-

clude in Section 5.

2 Single Phase Length and Area

Regularizations

In single phase level set segmentation a curve C, the

boundary of an open set Ri(C) ∈ Ω (i.e. C = ∂Ri(C)),

is implicitly represented as the zero level set of a Lips-

chitz function φ : Ω 7→ R [24]. The function φ is positive

for the points within the set Ri(C) and negative else-

where (i.e. for the points within Ro(C) = Ω\Ri(C)).

Therefore the Heaviside function H(φ), along with its

complementary
(
1 − H(φ)

)
, can serve as an indicator

function for the points in Ri(C) and Ro(C) respectively

[7]:

χ1 = H(φ) =

{
1 if φ > 0

0 elsewhere
(3)

χ2 =
(
1−H(φ)

)
=

{
1 if φ < 0

0 elsewhere
(4)

As mentioned in the introduction, the length regular-

ization term is expressed as a term proportional to the

length of the contour [7]. Translating this concept using

a formal notation we can write:

El1 =

∫
Ω

|∇χ1(x)|dx =

∫
Ω

|∇χ2(x)|dx =

=

∫
Ω

|∇H
(
φ(x)

)
|dx =

∫
Ω

δ
(
φ(x)

)
|∇φ(x)|dx (5)

In order to compute the Euler-Lagrange equation for

the function φ such that the penalty term is minimized,

we need to consider slight regularizations of the func-

tions H and δ. We denote these regularized functions

as Hε and δε, and from now on we will proceed infor-

mally using them in place of the non-regularized ones.

For a formal proof of existence of minimizers for the

non-regularized case (i.e. ε = 0) we refer the reader to

Appendix A, while an extensive analysis of the behavior

in the limit (i.e. as ε→ 0) is presented in Appendix B.

Minimizing (5) using calculus of variations, we obtain

the PDE that evolves the level sets in the proximity of

the zero level set under a motion by mean curvature,

enforcing the smoothness of the contour:

∂φ(x)

∂t
= δε

(
φ(x)

)
div

(
∇φ(x)

|∇φ(x)|

)
(6)

As mentioned in the introduction, a second regulariza-

tion term can be expressed in terms of the area of the

region inside of the contour (i.e. χ1) [7]. Using the same

notation as above, we can write this term as:

Ea1 =

∫
Ω

χ1(x)dx =

∫
Ω

H
(
φ(x)

)
dx (7)

Minimizing using calculus of variations yields the PDE

which shrinks the contour, getting rid in this way of

small spurious regions:

∂φ(x)

∂t
= −δε

(
φ(x)

)
(8)

The use of the flows in equations (8) and (6), along

with the one that minimizes the data term, are perfectly

suitable in the case of binary segmentation (i.e. back-

ground/foreground segmentation using only one level

set function). On the other hand, in the following sec-

tion we will demonstrate that, for the multi-region seg-

mentation case, a reformulation of the traditional reg-

ularization term is needed in order to achieve accurate

and reliable results.
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3 Multiphase Length and Area Regularizations

The use of only one level set function φ, discussed in the

previous section, can provide a separation of the image

into only two segments, corresponding respectively to

the positive and negative sub-level sets of φ. In [33] the

authors showed how K level set functions can be used

to construct up to N = 2K different indicator functions

and therefore to represent up to N different regions.

Using this convention, in the case of N = 4 regions, we

can write the four characteristic functions as:

χ1 =Hε(φ1)Hε(φ2) =

{
1 if φ1>0 and φ2>0

0 elsewhere

χ2 =Hε(φ1)
(

1−Hε(φ2)
)

=

{
1 if φ1>0 and φ2<0

0 elsewhere

χ3 =
(

1−Hε(φ1)
)
Hε(φ2) =

{
1 if φ1<0 and φ2>0

0 elsewhere

χ4 =
(
1−Hε(φ1)

)(
1−Hε(φ2)

)
=

{
1 if φ1<0 and φ2<0

0 elsewhere

In the general case, the N indicator functions χi with

i = 1, . . . , N are given by all the possible sign combina-

tions of the K level set functions φj , with j = 1, . . . ,K.

In the following we design novel multiphase regular-

ization terms, such that, during the regularization pro-

cess, the contours could sense the presence of the other

nearby contours and evolve accordingly. In particular

we require the regularization term (i.e. combination of

area and length regularization) to satisfy the following

two properties:

1. the effect of the regularization must not separate

two overlapping contours,

2. two contours running close to each other must ei-

ther snap onto each other or move apart from

each other, due to the regularization term.

This section is composed of two parts: Sec. 3.1 concern-

ing the length term and Sec. 3.2 concerning the area

term. In each part, for the sake of clarity and readabil-

ity, we will start discussing about the 4 regions case

(i.e. two level set functions φ1 and φ2) and then we will

generalize our model to the N regions case.

3.1 Length Regularization

3.1.1 Four Regions Case

In the 4 regions case, the ideal length regularization

term (i.e. the effective total length of the contour) can

be written as:

El2 =
1

2

4∑
i=1

∫
Ω

|∇χi(x)|dx (9)

(a)

++
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(b) (c) (d)

(e) (f) (g) (h)

Fig. 3 (a) and (e) two level set functions φ1 and φ2 (the zero
level set is marked in black). (b) The correspondent segmenta-

tion in four regions. (f) The ground truth boundaries. (c) and

(d) Regularization using (10) for ε = 1 and ε = 5 respectively.
Notice that the overlapping parts are counted twice. (g) and (h)

Regularization using (11) for ε = 1 and ε = 5 respectively.

Unfortunately the minimization of this term using cal-

culus of variation leads to an extremely complicated

expression, due to the coupling of the two level set

functions φ’s, not easily implementable. The solution

provided by Vese and Chan in [33] consists in a simpli-

fication of the problem, decoupling the dependency of

the length term upon the two level set functions. The

simplified term they introduced is the following:

El2 =

2∑
i=1

∫
Ω

|∇Hε

(
φi(x)

)
|dx (10)

=

2∑
i=1

∫
Ω

δε
(
φi(x)

)
|∇φi(x)|dx

The main drawback of this model consists in the fact

that some parts of the contours (i.e. the overlapping

parts) are counted twice (see Fig. 3). Therefore noth-

ing guarantees that two overlapping contours will not

separate during the evolution process, since separating

or merging contours does not change the regularization

cost function in use. This can potentially violate Prop-

erty 1 stated at the beginning of the section.

In order to always enforce this property, we need to

redesign the length term, making sure that it represents

the effective total length of the contour (i.e. without

counting any part twice) as in (10), but with a more

approachable formulation than the one in (9). The so-

lution we propose consists in subtracting from (9) a

term which compensates for those segments where two
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contours are overlapping.

El2 =

2∑
i=1

∫
Ω

|∇Hε

(
φi(x)

)
|dx

− γ
∫
Ω

|∇Hε

(
φ1(x)

)
||∇Hε

(
φ2(x)

)
|dx (11)

=

2∑
i=1

∫
Ω

δε
(
φi(x)

)
|∇φi(x)|dx

− γ
∫
Ω

δε
(
φ1(x)

)
|∇φ1(x)|δε

(
φ2(x)

)
|∇φ2(x)|dx

where γ is a constant coefficient. If the point x0 belongs

to the zero level set of only one of the two level set

functions φi’s (let us assume w.l.o.g. that is on the zero

level set of φ1), we have that:

δε
(
φ1(x0)

)
= δε(0)

δε
(
φ2(x0)

)
≈ 0

δε
(
φ1(x0)

)
δε
(
φ2(x0)

)
≈ 0

Assuming the φi’s being signed distance functions (i.e.

|∇φi(x)| = 1 ∀x ∈ Ω), the contribution of the point

x0 to the whole integral is therefore δε(0). We want to

choose the constant coefficient γ, such that the contri-

bution of a point x1, which belongs to the zero level

set of both φi’s, is still δε(0) (note that, if x1 does not

belong to both zero level sets, the term that multiplies

γ in (11) vanishes and hence the value of γ is irrelevant

at those locations) . This will prevent from counting x1

twice, as it happens with the cost function by Vese and

Chan in (10). By simple algebra we obtain:

γ =
1

δε(0)
(12)

For a more formal explanation regarding the choice of

this normalization coefficient γ we refer the reader to

Appendix B. Minimizing (11) w.r.t. φ1 (or equivalently

φ2) using calculus of variations and parameterizing the

descent via a virtual time variable t, we obtain the fol-

lowing PDE, which evolves φ1 in the direction of steep-

est descent of the cost function:

∂φ1(x)

∂t
= δε

(
φ1(x)

)[
1− 1

δε(0)
δε
(
φ2(x)

)
|∇φ2(x)|

]
· div

(
∇φ1(x)

|∇φ1(x)|

)
(13)

The term within the square brackets can be viewed

as an adaptive coefficient for the curvature term. In

the case of the regularizing term proposed by Vese and

Chan (10), this coefficient is constant equal to 1, provid-

ing a smoothing effect which does not sense the presence

of the other level set function φ2. On the other hand,

in the proposed model the coefficients depends upon φ2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 First row: Evolution using the traditional length term
(10). (a) Initial configuration (b,c) Two stages of the evolution.

Second row: Evolution using the proposed length term (11). (e)

Initial configuration (f,g) Two stages of the evolution. Note that
the overlapping parts of the contours are not separated by the

proposed regularization, while that is not the case if the tradi-

tional regularization is used.

and therefore provides a smoothing coupled with the

information provided by φ2.

Since δε(z) is a function which attains its maximum

for z = 0, the term within the square brackets is always

greater than or equal to zero. This prevents the flow

from becoming a negative motion by mean curvature

and therefore retains the well-posedness of the PDE

(13). We will show that this is true not only for K = 2

(i.e. two level set functions), but for any choice of K ≥
2.

In addition, expressing the cost in terms of the ef-

fective length of the contour (i.e. making sure that the

contribution of each point belonging to at least one con-

tour is always δε(0)) has the consequence of enforcing

Property 1. In fact, if two contours are overlapping at

a particular location x, it is straightforward to see that

the term within the square brackets in (13) vanishes,

preventing the regularization effect from separating the

contours. We visually demonstrate this property in Fig.

4.

An attempt to solve the problem of designing a cost

function that truly represents the length of the multi-

phase contour is briefly described by Vese in [35]. In this

paper the author modifies (10), to take into account the

parts of the contour counted twice, as follows:

E#
l2 =

∫
Ω

|∇H
(
φ1(x)

)
|dx (14)

+

∫
Ω

|∇H
(
φ2(x)

)
|
(
2−H(φ1(x))−H(−φ1(x))

)
dx

There are two main drawbacks which differentiate this

solution from the one proposed in this paper. First of

all (14) requires the function H to be the ideal step

function (in particular, H needs to be defined contin-
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uous from the right, that is H(0) = 1). In numeri-

cal implementation, H is usually regularized such that

H(z) = 1 − H(−z), which would make the term
(
2 −

H(φ1(x)) − H(−φ1(x))
)

in (14) constantly equal to 1

and therefore ineffective. On the other hand, the model

proposed in this paper maintains its properties also

upon regularization of the step functions. In addition,

the term in (14) is not symmetric with respect to φ1
and φ2, which means that the evolution equation of φ1
will differ from the one of φ2. This desirable symmetry

property is instead achieved by the proposed term, see

(11).

3.1.2 N Regions Case

In the general case, i.e. in the case of N regions repre-

sented via K level set functions, we construct the K-

component vector:

Ψ(x)=

[
|∇Hε

(
φ1(x)

)
|,|∇Hε

(
φ2(x)

)
|, . . . ,|∇Hε

(
φK(x)

)
|
]T

Denoting ei the K-dimensional indicator vector, which

has all zeros except a one at index i, we can write the

general expression for the regularization cost function

in differential form as:

elK(x) =

K∑
i=1

eTi Ψ(x)+

+
−1

δε(0)

K−1∑
i1=1

K∑
i2=i1+1

(
eTi1Ψ(x)

)(
eTi2Ψ(x)

)
(15)

+

(
−1

δε(0)

)2 K−2∑
i1=1

K−1∑
i2=i1+1

K∑
i3=i2+1

(
eTi1Ψ(x)

)(
eTi2Ψ(x)

)(
eTi3Ψ(x)

)
+ . . .

+

(
−1

δε(0)

)K−2 2∑
i1=1

· · ·
K∑

iK=iK−1+1

(
eTi1Ψ(x)

)
. . .
(
eTiKΨ(x)

)
+

(
−1

δε(0)

)K−1(
eT1 Ψ(x)

)
. . .
(
eTKΨ(x)

)
The integral form of the regularization term is then

obtained integrating elK over the domain:

ElK =

∫
Ω

elK(x)dx (16)

With the following lemma, we prove that the value

of (16) represents the effective length of the contour

(i.e. no parts are counted twice). As explained for the 4

regions case, this will ensure that Property 1 is always

satisfied.

Lemma 1 For any point x0 ∈ Ω belonging to the zero

level set of n level set functions (1 ≤ n ≤ K), the value

of elK(x0) is approximately δε(0), regardless the value

of n.

Proof In this case, in fact, the vector Ψ(x0) has n en-

tries equal to δε(0) and the rest of the entries are ap-

proximately zero. We can therefore re-write (15) as:

elK(x0) = δε(0)

(
n

1

)
+
−1

δε(0)

(
δε(0)

)2(n
2

)
(17)

+

(
1

δε(0)

)2(
δε(0)

)3(n
3

)
+ . . .

+

(
−1

δε(0)

)K−1(
δε(0)

)K(n
K

)
Therefore we have that2:

elK(x0) = δε(0)

K∑
k=1

(−1)k−1

(
n

k

)

= δε(0)

n∑
k=1

(−1)k−1

(
n

k

)
(18)

=−δε(0)

[ n∑
k=0

(−1)k
(
n

k

)
− 1

]

Now from a basic property of the binomial coefficient

we have:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk (19)

which implies for x = 1 and y = −1:

n∑
k=0

(−1)k
(
n

k

)
= 0 (20)

Substituting (20) into (18) concludes the proof.

Minimizing (16) w.r.t. φ1 (the derivation for the other

φi, with i = 2, . . . ,K, is identical) using calculus of vari-

ations and parameterizing the descent, as done before,

via the variable t, we obtain the following evolution

2 Note that
(
n
k

)
= 0 if k > n.
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equation for φ1:

∂φ1(x)

∂t
= δε

(
φ1(x)

)[
1 +

−1

δε(0)

K∑
i2=2

(
eTi2Ψ(x)

)
+

(
−1

δε(0)

)2 K−1∑
i2=2

K∑
i3=i2+1

(
eTi2Ψ(x)

)(
eTi3Ψ(x)

)
+ . . . (21)

+

(
−1

δε(0)

)K−2 3∑
i2=2

. . .

K∑
iK=iK−1+1

(
eTi2Ψ(x)

)
. . .
(
eTiKΨ(x)

)
+

(
−1

δε(0)

)K−1(
eT2 Ψ(x)

)
. . .
(
eTKΨ(x)

)]
· div

(
∇φ1(x)

|∇φ1(x)|

)
To guarantee the well-posedness of the PDE (21), we

need to show that the quantity within the square brack-

ets is always greater than or equal to zero for any point

in the domain. In order to accomplish this, we need the

following Lemma.

Lemma 2 Let K ∈ N and let y ∈ RK . Moreover, let

yi denote the i-th component of y. Assume that 0 ≤
yi ≤ 1, for i = 1, . . . ,K. Define the quantity

fK(y) = 1−
K∑
i2=2

yi2 +

K−1∑
i2=2

K∑
i3=i2+1

yi2yi3 + · · ·+ (22)

+ (−1)K−2
3∑

i2=2

. . .

K∑
iK=iK−1+1

yi2 . . . yiK + (−1)K−1 y2 . . . yK

Then

fK(y) ≥ 0. (23)

Proof We will proceed by induction. In the case of K =

2 we have:

f2(y) = 1− y2 (24)

which is greater than or equal to zero, since by definition

0 ≤ y2 ≤ 1. We now show that for K = m, we have

that fm(y) ≥ 0 if we assume that fm−1(y) ≥ 0. In fact,

fm(y) can be re-written in the following way:

fm(y) = 1−
(
ym +

m−1∑
i2=2

yi2

)

+

(
ym

m−1∑
i2=2

yi2 +

m−2∑
i2=2

m−1∑
i3=i2+1

yi2yi3

)
+ . . . (25)

+ (−1)m−2

(
ym

3∑
i2=2

. . .

m−1∑
im−1=im−2+1

yi2 . . . yim−1
+ y2 . . . ym−1

)
+ (−1)m−1 ym y2 . . . ym−1

Now separating the terms where ym is present from the

other ones, one can see that:

fm(y) = (1− ym)fm−1(y) (26)

Since 0 ≤ ym ≤ 1 by definition and fm−1(y) ≥ 0 by

induction hypothesis, we conclude that also fm(y) ≥ 0.

The following result is a consequence of the above Lemma.

Corollary 1 The quantity within the square brackets

in (21), is always greater than or equal to 0 for any

x ∈ Ω.

Proof Define

Ψ̄(x) :=
1

δε(0)
Ψ(x). (27)

Hence the quantity within square bracket in (21), can

be rewritten as:

1−
K∑
i2=2

Ψ̄i2 +

K−1∑
i2=2

K∑
i3=i2+1

Ψ̄i2 Ψ̄i3 + · · ·+

+ (−1)K−2
3∑

i2=2

. . .

K∑
iK=iK−1+1

Ψ̄i2 . . . Ψ̄iK + (−1)K−1 Ψ̄2 . . . Ψ̄K

where we dropped the dependency of Ψ̄ upon x for the

sake of clarity. Since, Ψ̄(x) is the normalized version

of Φ(x) by δε(0), we have that 0 ≤ Ψ̄i(x) ≤ 1, for i =

1, . . . ,K. Then the result follows from Lemma 2.

3.2 Area Regularization

3.2.1 Four Regions Case

For the 4 regions case, similarly to what has been done

for the length in (10), a naive version of the area regu-

larization term can be written as:

Ea2 =

2∑
i=1

∫
Ω

Hε

(
φi(x)

)
dx (28)

Minimizing this term leads to a shrinking force that

acts independently on each level set function φi. The

lack of a term which couples the two level set functions

prevents them from sensing each other’s position dur-

ing the evolution. Reasoning along the lines of what we

have done for the length term, we modify (28) by con-

sidering that it does not faithfully represent the area

of the partitions. In fact the area term as defined in

(28) penalizes three partitions out of four (i.e. all the

partitions for which at least one level set function is

positive). In addition, the partition where both φ1 and

φ2 are positive is penalized twice as much as the others.
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φ1
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- +

φ1

φ2

(d)

Fig. 5 Effect of the evolution under the area regularization force,

for all the possible combinations of signs of two concentric level
set functions. Solid arrows: proposed area regularization. Empty

arrows: standard area regularization [33].

The idea we apply to modify this term is to penalize

only half of the partitions. In particular, we introduce

a coupling term such that only partitions with only one

level set function being positive are penalized:

Ea2 =

2∑
i=1

∫
Ω

Hε

(
φi(x)

)
dx−2

∫
Ω

Hε

(
φ1(x)

)
Hε

(
φ2(x)

)
dx

(29)

The PDE corresponding to the steepest descent mini-

mization of (29) with respect to φ1 is:

∂φ1(x)

∂t
= −δε

(
φ1(x)

)[
1− 2Hε

(
φ2(x)

)]
(30)

The evolution equation for φ2 is obtained interchang-

ing φ1 and φ2 in (30). The coefficient within the square

brackets is important since it forces two contours spa-

tially close to each other to snap onto one another or to

move away from each other, preventing the formation

of contours running close and parallel to each other. For

example, let us assume that φ1 and φ2 are concentric,

with φ2 laying inside the region where φ1 is positive.

The term within the square brackets will be positive for

the PDE regulating the evolution of φ1, forcing its con-

tour to shrink, while negative in the case of φ2, forcing

its contour to expand. The resulting coupled evolution

will see the zero level set of φ1 shrinking and snapping

onto the expanding zero level set of φ2. Other possible

situations are pictorially represented in Fig 5 and com-

pared with the regularization using the standard area

term. With the standard regularization, for half of the

possible configurations, the two contours either both

shrink or expand. This does not contribute to remov-

ing contours that are close and parallel to each other,

and in turn would yield non-desirable double edges in a

segmentation process. On the other hand, using the pro-

posed area regularization, every possible configuration

corresponds to a situation in which two contours spa-

tially close are forced to either snap onto one another or

move away from each other. Therefore this term guar-

antees that Property 2 is always satisfied. In addition, if

x belongs to both contours, the term within the square

brackets in (30) vanishes, (since Hε(0) = 1/2). This

guarantees that Property 1 is always satisfied as well. In

Fig. 6, we show the evolution of two level set functions

under the traditional and the proposed regularization

term.

3.2.2 N Regions Case

In the case of N regions represented via K level set

functions, we can write the area-penalizing cost func-

tion as:

EaK(x) =

∫
Ω

eaK(x)dx (31)

where

eaK(x) =

K∑
i=1

Hε

(
φi(x)

)
+
(
−2
)1 K−1∑

i1=1

K∑
i2=i1+1

Hε

(
φi1(x)

)
Hε

(
φi2(x)

)
(32)

+
(
−2
)2K−2∑
i1=1

K−1∑
i2=i1+1

K∑
i3=i2+1

Hε

(
φi1(x)

)
Hε

(
φi2(x)

)
Hε

(
φi3(x)

)
+ . . .

+
(
−2
)K−2

2∑
i1=1

· · ·
K∑

iK=iK−1+1

Hε

(
φi1(x)

)
. . . Hε

(
φiK (x)

)
+
(
−2
)K−1

Hε

(
φi1(x)

)
. . . Hε

(
φiK (x)

)
In the following we show that this term takes value

1, if x belongs to a region characterized by an odd num-

ber of positive level set functions, and 0 elsewhere. In

this way half of the partitions is penalized and the other

half is favored (providing a principled extension of the

two regions (i.e. one phase) case, in which the region

where φ is positive is penalized and the complementary

region is therefore favored). This will ensure that, as in

the case of the 4 regions term, Property 1 and Property

2 are always satisfied.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 First row: Level set evolution using the traditional area
term (a) Initial configuration (b,c) Two stages of the evolution.

Second row: Evolution using the proposed area term (e) Initial

configuration (f,g) Two stages of the evolution. Note that using
the traditional regularization the two contours shrink indepen-

dently. On the other hand, using the proposed regularization, the

parts of the contours that are close to each after few iterations
snap onto each other.

Lemma 3 For every point x ∈ Ω, let K0 be the num-

ber of level set functions such that φi(x) > 0, or equiv-

alently Hε

(
φi(x)

)
= 1. We then have:

eaK(x) =

{
1 if K0 is odd

0 if K0 is even
(33)

Proof Considering that Hε

(
φi(x)

)
is approximately ei-

ther 1 or 0, we can rewrite (32) as:

eaK(x) =

(
K0

1

)
+
(
− 2
)1(K0

2

)
+
(
− 2
)2(K0

3

)
+ . . . (34)

+
(
− 2
)K−2

(
K0

K − 1

)
+
(
− 2
)K−1

(
K0

K

)
or in a more compact way:

eaK(x) =

K∑
k=1

(
− 2
)k−1

(
K0

k

)

=

K0∑
k=0

(
− 2
)k−1

(
K0

k

)
+

1

2
(35)

Now, rewriting the basic property of the binomial coef-

ficient in (19) as:

(x+ y)K0

y
=

K0∑
k=0

(
K0

k

)
xn−kyk−1 (36)

and choosing x = 1 and y = −2 yields:

− (−1)K0

2
=

K0∑
k=0

(
− 2
)k−1

(
K0

k

)
(37)

Combining (35) and (37) we obtain:

eaK(x) =
1− (−1)K0

2
(38)

which concludes the proof.

Minimizing (31) w.r.t. φ1 (the derivation the other φi,

with i = 2, . . . ,K, is similar) using calculus of varia-

tions and parameterizing the descent via the variable t,

we obtain the following evolution equation for φ1:

∂φ1(x)

∂t
= −δε

(
φ1(x)

)[
1 +

(
− 2
)1 K∑

i2=2

Hε

(
φi2(x)

)
+
(
− 2
)2 K−1∑

i2=2

K∑
i3=i2+1

Hε

(
φi2(x)

)
Hε

(
φi3(x)

)
+ . . . (39)

+
(
− 2
)K−2

3∑
i2=2

. . .

K∑
iK=iK−1+1

Hε

(
φi2(x)

)
. . . Hε

(
φiK (x)

)
+
(
− 2
)K−1

Hε

(
φi2(x)

)
. . . Hε

(
φiK (x)

)]
.

The following Lemma shows that for every point x such

that φi(x) = 0 for at least one of the i = 2, . . . ,K, then

the term within the square brackets goes to zero (we

assume as usual that Hε(0) = 1/2). This guarantees

that Property 1 holds true.

Lemma 4 Let K ∈ N and let y ∈ RK . Moreover, let

yi denote the i-th component of y. Define the quantity

fK(y)=1+(−2)1
K∑
i2=2

yi2 +(−2)2
K−1∑
i2=2

K∑
i3=i2+1

yi2yi3 + · · ·+

+ (−2)K−2
3∑

i2=2

. . .

K∑
iK=iK−1+1

yi2 . . . yiK + (−2)K−1 y2 . . . yK

assume w.l.o.g. that yK = 1/2 (the function is invariant

to permutations of the components of y). Then

fK(y) = 0. (40)

Proof Reasoning along the lines of Lemma 2 we can

rewrite fK(y) as:

fK(y) = (1− 2yK)fK−1(y) (41)

Since yK = 1/2 by hypothesis, the proof is complete.

Summarizing this Section, we have introduced two

new formulations for the length and area regularization

terms. We have demonstrated that their combined ef-

fect satisfies the two desirable properties listed at the

beginning of the section. In Fig. 7 we pictorially show

the effect of the combination of these two regularization

terms on the evolution of two interacting contours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 First row: Evolution using the traditional length and area
terms [33] (a) Initial configuration (b,c) Two stages of the evolu-

tion. Second row: Evolution using the proposed length and area

terms (e) Initial configuration (f,g) Two stages of the evolution.

4 Experimental Evaluation

In this section, we provide both a qualitative and a

quantitative comparison of the performance of the pro-

posed regularization techniques with traditional mul-

tiphase regularization techniques. To achieve this, we

compare segmentation results obtained using the same

data term (i.e. Ed in equation (1)) but changing the

two regularization terms (El and Ea). As a data term

to drive the segmentation, we chose to use the popu-

lar Chan Vese term [7,33], which aims to minimize the

variance of the partitions.

In order to obtain a quantitative evaluation of the

segmentation results, we compared the performance of

our algorithm on the Berkeley Segmentation Data Set

(BSDS) benchmark. The BSDS is composed of 100 im-
ages and for every image several human segmentations

are provided. These human segmentations are consid-

ered ground truth and are used to compute precision

(p) and recall (r) as measures of the accuracy of the

segmentation. Precision is the probability that a pixel

indicated as a boundary pixel by the segmentation al-

gorithm is truly a boundary pixel. Recall is the prob-

ability that a true boundary pixel in the ground truth

is correctly detected by the algorithm. Then the F-

measure, i.e. the harmonic mean of precision and recall

(F = 2pr
p+r ), is presented as a measure of performance.

In Fig. 8, we compare the F-measures obtained by

the two different regularization techniques using the 4-

region (i.e. two level set functions) segmentation model.

The results are obtained by varying µ and ν, respec-

tively the coefficients of the length and area term as

in eq. (1). From the plots we can make the following

important observations. First, the peak in the overall

performance is reached using the proposed regulariza-

tion technique. Second, we observe that the area term
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0.58

µ coefficient

F
 M

ea
su

re

4 Region Segmentation

 

 

Proposed Regularization with ν=0
Proposed Regularization with ν=1
Proposed Regularization with ν=2
Traditional Regularization with ν=0
Traditional Regularization with ν=1
Traditional Regularization with ν=2

Fig. 8 F-measure plots comparing the proposed regularization

schemes with the traditional ones for the 4-region segmentation

model. The coefficient µ is the weight of the length term El, while
ν is the weight of the area term Ea.

Ea, which uses the traditional regularization approach,

was only detrimental to the overall segmentation (no-

tice how the performance keeps dropping as the coef-

ficient of the area term ν is increased). On the other

hand, it becomes a useful regularizing contribution to

the segmentation in our proposed regularization ap-

proach since the best scores are actually achieved choos-

ing ν = 1. Third, the results are in general less sensitive

to parameter tuning using the proposed regularization

since the performance decreases more slowly from the

peak if the optimal parameter configuration is altered.

This confirms the intuition that the proposed formu-

lation, being more principled, is more robust than the

traditional one.

Fig. 9, which compares the F-measures obtained us-

ing the 8-region (i.e. three level set functions) segmen-

tation model, is less informative than the previous one

since the 8-region model is often too redundant for seg-

menting the images in the BSDS (as evidenced by the

experiments presented in [36]) and therefore the perfor-

mance is lower than the one obtained using the 4-region

model. Nonetheless we can still observe the same type

of behavior manifested by the 4-region experiments, in

the sense that the proposed regularization schemes out-

perform the traditional regularization on a wide range

of parameter configurations. Also notice how the F-

measure plots slowly decay using the proposed method,

in contrast with a more pronounced drop for the tra-

ditional regularization methods, demonstrating the in-

herent robustness of our approach.

Fig. 10 illustrates how critical the choice of effective

multiphase regularization is in the case of volumetric

segmentation. In this example we show the segmenta-
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Fig. 9 F-measure plots comparing the proposed regularization
schemes against the traditional ones for the 8-region segmenta-

tion model. The coefficient µ is the weight of the length term El,

while ν is the weight of the area term Ea.

tion of a three-dimensional CT scan in 4 regions (bone,

muscle, fat and air, see Fig. 10(a))3. In Fig. 10(b) the

3D model of phase 1 (i.e. the rib cage) demonstrates

that, using the traditional length and area regulariza-

tion terms, it is not possible to remove many spurious

isolated pixels. These noisy pixels are generated by two

zero level set surfaces running almost parallel to each

other locally. Since nothing is constraining or forcing

the surfaces to stick to each other and given that these

surfaces are already sufficiently smooth, the traditional

regularization terms, which smoothes or shrinks each

surface independently, are not able to get rid of these

spurious pixels. On the other hand, Fig. 10(c) illustrates

how, after only 10 iterations of the proposed regular-

ization, these noisy regions are completely eliminated.

In the last example (Fig. 11) we visually compare

the effect of the two regularization flows on the same

image segmentation task. In particular, we are inter-

ested in inspecting the effect of the area term Ea, which,

in the case of the proposed scheme, enforces the valid-

ity of Property 2 described at the beginning of Sec-

tion 3. The image to be segmented in 4 regions is the

one shown in Fig. 11 (a). Fig. 11(b) shows the situa-

tion in terms of the level set functions after 500 iter-

ations using the traditional regularization terms with

µ = 100 and ν = 1. The green edge is the zero level

set of φ1 and the red one is the zero level set of φ2.

Notice how double edges are clearly visible all around

the wings of the butterfly, demonstrating how the tradi-

tional scheme is not able to cope with these situations.

We now want to show what happens if the area term

3 High resolution versions of these results are available at:

http://vision.ece.ucsb.edu/~lbertelli/research.html

weight ν is significantly increased. Fig. 11(c,d) show the

final segmentation using proposed and traditional area

regularization terms respectively, starting from the con-

figuration in Fig. 11(b). Using the proposed area term,

double edges disappeared completely (Fig. 11(c)). On

the other hand, the detrimental effect of the traditional

area regularization term is shown in Fig. 11(d), where

some double edges are removed, but at the expense of

desirable edges, as depicted in the green circles. In ad-

dition, notice how some double edges are still present

regardless of how large the area coefficient is (see red

circles). Finally snapshots of the evolution presented

in the bottom two rows exemplify the importance of

guaranteeing Properties 1 and 2: With the proposed

regularization, contours sense each other and are able

to snap onto each other, removing spurious regions. On

the other hand, contours shrink irrespectively of their

reciprocal position under the traditional regularization

process, which can have detrimental effects as shown by

the final segmentation result in Fig. 11(d).

5 Conclusion

In this paper we presented effective regularization tech-

niques for multiphase level set based image segmen-

tation. In particular, we reformulated the traditional

length term to penalize the effective length of the mul-

tiphase contour and the area term to penalize half of

the existing partitions. Mathematically this yields regu-

larization equations in which the different level set func-

tions involved in the segmentation process are coupled

to each other, guaranteeing that the evolution of one

of them affects the evolution of the others. In turn,

this guarantees that Properties 1 and 2 are enforced.

This is in contrast with traditional approaches, where

this coupling is granted only by the data term (i.e. the

term driving the segmentation), not in the regulariza-

tion term. We qualitatively and quantitatively demon-

strated that the segmentation results obtained using

the proposed regularization technique outperforms the

ones obtained via the traditional regularization.

A Existence of Minimizers

We now want to formally prove the existence of minimizers for
the proposed cost functional, when characteristic functions are

used in place of their mollified regularizers. We now restrict our

attention, without loss of generality, to the two phases (4 regions)
case. The N regions scenario can be treated in a similar fashion.

The functional F (χE1
, χE2

) : BV (Ω)×BV (Ω) 7→ R that we are
trying to minimize can be written as

F(χE1
, χE2

) = D(χE1
, χE2

) + µL(χE1
, χE2

) + νA(χE1
, χE2

),

(42)
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(a)

(b) (c)

Fig. 10 (a) Segmentation of a volumetric CT scan in 4 regions (bone, muscle, fat and air). (b) Segmentation using the traditional

length and area regularization terms. The zoom depicts the presence of many spurious isolated pixels that cannot be eliminated with
this appraoch. (c) These artifacts are completely eliminated after applying only 10 iterations of the proposed regularization techniques.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11 (a) Original image. (b) Situation after 500 iterations using the traditional regularization terms with µ = 100 and ν = 1.

The green edge is the zero level set of φ1 and the red one is the zero level set of φ2. Double edges are clearly visible all around the

wings of the butterfly. (c) Steady state solution after setting ν = 160 using the proposed regularization scheme, starting from the
configuration in (b). Double edges are completely disappeared. (d) Steady state solution after setting ν = 160 using the traditional

regularization scheme, starting from the configuration in (b). Areas with the presence of double edges are highlighted in red, while
areas with missing edges are circled in green. (e,f,g,h) Snapshots of the evolution using the proposed regularization. Edges close to
each other sense their reciprocal presence and they evolve accordingly (in this case snapping onto each other, see edges pointed by the

arrows). (i,j,k,l) Snapshots of the evolution using the traditional regularization. Contours shrink regardless of their reciprocal position.
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where χE1 : Ω 7→ R and χE2 : Ω 7→ R are the characteristic
functions of the sets E1 and E2 of finite perimeter, which there-

fore belong to the space of bounded variations BV (Ω).
D(χE1

, χE2
) is the data term, defined along the lines of Chan

and Vese [7] as

D(χE1 , χE2 ) =

∫
Ω

(u0 − c1)2χE1χE2

+

∫
Ω

(u0 − c2)2χE1
(1− χE2

) (43)

+

∫
Ω

(u0 − c3)2(1− χE1
)χE2

+

∫
Ω

(u0 − c4)2(1− χE1 )(1− χE2 ).

In order to define L(χE1
, χE2

), we introduce ∂E1 as the perime-

ter of set E1 and Π(∂E1) as the measure of the perimeter. We

can then write our proposed length term as

L(χE1 , χE2 ) = Π(∂E1) +Π(∂E2)−Π(∂E1 ∩ ∂E2). (44)

Similarly, in order to define A(χE1
, χE2

) we introduce Λ(E1)

as the measure of the area of set E1. The proposed area term
becomes then

A(χE1
, χE2

) = Λ(E1) + Λ(E2)− 2Λ(E1 ∩ E2). (45)

In proving the existence of the minimizer we proceed along the
lines of [37], using the following basic result regarding bounded

variation spaces [38] (other similar ideas can be found in [39]).

Result 1 Consider the Banach space BV (Ω) endowed with the

norm

||u||BV (Ω) = ||u||L1(Ω) + |Du|(Ω). (46)

If (un)n≥1 is a bounded sequence in BV (Ω), then there exists a

subsequence (unj ) of (un) and a function u ∈ BV (Ω), such that

unj → u strongly in L1(Ω) as nj →∞, and

|Du| ≤ lim
nj→∞

inf |Dunj |. (47)

If u and (un) are characteristic functions, i.e. u = χE and (un) =

(χnE), then (47) reads in terms of perimeters as

Π(∂χE) ≤ lim
nj→∞

inf Π(∂χ
nj
E ). (48)

We now prove the existence of the minimizer:

Theorem 1 If u0 ∈ L∞(Ω)4, then the following minimization
problem

inf
χE1

,χE2

F (χE1
, χE2

), [χE1
, χE2

] ∈ BV (Ω)×BV (Ω) (49)

χE1
∈ {0, 1}dx− a.e., χE2

∈ {0, 1}dx− a.e.,

has a solution.

Proof Let ([χnE1
, χnE2

])n≥1 be a minimizing sequence of F , i.e.

inf
χE1

,χE2

F(χE1
, χE2

) = lim
n→∞

F(χnE1
, χnE2

). (50)

Then there exist a constant M > 0 such that (we can see in fact
that by choosing χnE1

≡ 1 and χnE2
≡ 1 the functional is bounded

by ||u0||L2(Ω))

F(χnE1
, χnE2

) ≤M. (51)

4 We can assume, without loss of generality, that the original
image u0 is bounded, since it is the result of a sensor acquisition

and therefore its values are bound to be in the sensor range.

By making use of (42), where all three term are positive, we can
also write

L(χnE1
, χnE2

) ≤M. (52)

By construction, see (44), L(χnE1
, χnE2

) is also bounded from be-
low by:

max(Π(E1
n), Π(En2 )) ≤ L(χnE1

, χnE2
), (53)

which leads to the desired bound on the two measures of perime-

ters

max(Π(En1 ), Π(En2 )) ≤M. (54)

The two areas are bounded by the area of the domain, therefore

we can write

max(Λ(En1 ), Λ(En2 )) = max(||χnE1
||L1(Ω), ||χ

n
E2
||L1(Ω)) ≤ |Ω|.

(55)

We demonstrated that the sequence [χnE1
, χnE2

] ∈ BV (Ω)×BV (Ω)
and therefore, by virtue of Result 1, we have the existence of a

minimizer [χE1
, χE2

] ∈ BV (Ω) × BV (Ω). Hence χE1
and χE2

are two minimizers of F in the space of characteristic functions
of finite perimeter.

B Behavior in the limit for ε→ 0

We now want to formally prove that for ε → 0 the length term

of the cost functional (L(χE1 , χE2 )) becomes the measure (in a
measure theoretic sense) of the contour of the multi-phase level

set model, as claimed in the paper. First of all, we formulate the

length cost functional in (44) in terms of the two level set func-
tions (φ1 and φ2) and by using mollified Heaviside functions. We

will describe a generic mollified Hε as the convolution between
H and a mollifier ηε (positive, even and monotonically decreas-

ing away from 0)5, where ε is the parameter that regulates the

smoothness of the mollifier (limε→0 ηε = δ). Hence we can write

Lε(φ1, φ2) =

∫
Ω

∣∣∇((ηε ∗H)(φ1)
)∣∣+

∫
Ω

∣∣∇((ηε ∗H)(φ2)
)∣∣

−
∫
Ω

γ
∣∣∇((ηε ∗H)(φ1)

)∣∣ ∣∣∇((ηε ∗H)(φ2)
)∣∣ , (56)

where γ is chosen as a normalizing factor such that the function

Cε
(
φ2(x, y)

)
= γ

∣∣∣∣∇((ηε ∗H)(φ2(x, y)
))∣∣∣∣, (57)

attains value 1 on the zero level set of φ2, that is

Cε
(
φ2(x, y)

)
= 1 if φ2(x, y) = 0. (58)

In this way, in the limit, the function

χ∂E2
= lim
ε→0
Cε = lim

ε→0
γ|∇

(
ηε ∗ χE2

)
| (59)

5 Note that these assumptions have been made to simplify the
notation of this proof, but similar considerations can be extended

to other types of mollifiers as well.
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becomes the indicator function for the boundary of the set E2

(i.e. the subset of Ω, where φ2 = 0).6 Now we can use the results

in [38] to show that in the limit

lim
ε→0
Lε(φ1, φ2) =

∫
Ω

|∇H(φ1)|+
∫
Ω

|∇H(φ2)|

−
∫
Ω∩∂E2

|∇H(φ1)|. (61)

We can notice in fact how the same measure theoretical properties
(demonstrated in [38] and exploited by [7,37]) that apply to the

first two integrals apply also to the last one, which is simply

differing from the first two in that it is computed on a subset of
the domain Ω.

We now prove that the method is stable for ε → 0. We will

make use of the same compactness results that was used to prove
the existence of minimizers. We would like to point out that this

proof was not present in [7,37], but we feel it can be important

to complete the argument.
Define

hε1 = (ηε ∗H)(φ1) and hε2 = (ηε ∗H)(φ2). (62)

We can now write the mollified versions of (43), (44) and (45) in

terms of hε1 and hε2.

Dε(hε1, hε2) =

∫
Ω

(u0 − c1)2hε1h
ε
2 +

∫
Ω

(u0 − c2)2hε1(1− hε2) (63)

+

∫
Ω

(u0 − c3)2(1− hε1)hε2

+

∫
Ω

(u0 − c4)2(1− hε1)(1− hε2),

Lε(hε1, hε2) =

∫
Ω

|∇hε1|+
∫
Ω

|∇hε2| −
∫
Ω

γ|∇hε1||∇hε2|, (64)

Aε(hε1, hε2) =

∫
Ω

hε1 +

∫
Ω

hε2 − 2

∫
Ω

hε1h
ε
2. (65)

Therefore

Fε(hε1, hε2) = Dε(hε1, hε2) + Lε(hε1, hε2) +Aε(hε1, hε2). (66)

Finally let

[gε1, g
ε
2] = arg inf

hε1,h
ε
2

Fε(hε1, hε2). (67)

The existence of a minimizer for (67) can be demonstrated along
the lines of Theorem 1.

Theorem 2 The sequence ([g
1/n
1 , g

1/n
2 ])n≥1 ∈ BV (Ω)×BV (Ω)

admits a subsequence ([g
1/nj
1 , g

1/nj
2 ])n≥1 ∈ BV (Ω) × BV (Ω)

such that, there exists a vector [g1, g2] bounded in BV (Ω) ×
BV (Ω) such that([
g
1/nj
1 , g

1/nj
2

])
→ [g1, g2] (68)

strongly in in L1(Ω) as nj →∞,

|Dg1| ≤ lim
nj→∞

inf
∣∣∣Dh1/nj1

∣∣∣ (69)

and

|Dg2| ≤ lim
nj→∞

inf
∣∣∣Dh1/nj2

∣∣∣ . (70)

6 If we assume |∇φ| = 1, then γ becomes a constant and its
explicit expression can be written as

γ =
1

(ηε ∗H)′(0)
. (60)

We would like to point out the choice of γ = 1/δε(0), made in

the paper, is a particular case of (60).

Proof We need to show that the sequence ([g
1/n
1 , g

1/n
2 ])n≥1 is

bounded in BV (Ω) × BV (Ω) (a bound independent of n), then

the proof follows by applying Result 1.

We begin by noting that choosing h
1/n
1 ≡ 1 and h

1/n
2 ≡ 1 we

have

Fε
(
h
1/n
1 , h

1/n
2

)
≤ ||u0||L2(Ω) = M, (71)

since Lε = 0 and Aε = 0. Therefore, in light of (67), we have

Fε
(
g
1/n
1 , g

1/n
2

)
≤M, (72)

from which we deduce bounds on the length and area terms as

well (since all three terms in (66) are positive)

Lε
(
g
1/n
1 , g

1/n
2

)
≤M (73)

Aε
(
g
1/n
1 , g

1/n
2

)
≤M. (74)

Therefore we have

max
(∣∣∣Dg1/n1

∣∣∣ (Ω),
∣∣∣Dg1/n2

∣∣∣ (Ω)
)
≤M (75)

max

(∣∣∣∣∣∣g1/n1

∣∣∣∣∣∣
L1(Ω)

,
∣∣∣∣∣∣g1/n2

∣∣∣∣∣∣
L1(Ω)

)
≤M, (76)

which demonstrates that the sequence ([g
1/n
1 , g

1/n
2 ])n≥1 is bounded

in BV (Ω)×BV (Ω) and hence completes the proof.
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