
Obtaining Higher Rates for Steganographic
Schemes while Maintaining the Same

Detectability

Anindya Sarkar†, Kaushal Solanki†† and and B. S. Manjunath†

†Department of Electrical and Computer Engineering,
University of California,

Santa Barbara, CA 93106
††Mayachitra Inc.,

5266 Hollister Avenue,
Santa Barbara, CA 93111

anindya@ece.ucsb.edu,solanki@mayachitra.com,manj@ece.ucsb.edu

Abstract. This paper focuses on modifying the decoder module for an
active steganographic scheme to increase the effective data-rate with-
out affecting the embedding module. Three techniques are suggested to
improve the error correction framework, an essential component of an
active steganographic scheme. The first involves puncturing where the
code-length is increased by adding a suitable number of additional era-
sures. The second technique involves channel modeling and soft-decision
decoding which is adaptive to the individual embeddable image coef-
ficient. The third method adjusts the erasure threshold depending on
the design hiding quantizer so as to achieve a higher data-rate. Combin-
ing these techniques, the effective data-rate is increased by 10%-50% for
Yet Another Steganographic Scheme (YASS), a popular active stegano-
graphic scheme.
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1 Introduction

Steganography is the art of secure communication where the existence of the
communication itself cannot be detected by an external agent. The art of detect-
ing such secret communication is known as steganalysis. Covert communication
is typically enabled by embedding the secret message into an innocuous looking
host or cover signal to form a composite or stego signal. The task of an adversary,
the steganalyst (the “warden”), is to discover the presence of covert communica-
tion, which requires use of statistical and/or perceptual analysis to distinguish
between plain cover and stego signals. This is the scenario of passive steganaly-
sis, wherein, the steganalyst can observe the communication but cannot modify
the covers. In many cases, an adversary can simply thwart any covert commu-
nication by mildly modifying the signals being communicated without needing



to know whether they are cover or stego, leading to what is commonly known
as active steganography [3,7,12]. An active warden has a limited attack budget
so as not to significantly affect innocent users, who typically are the majority.

The past decade has seen great strides being made in these competing fields
of steganography and steganalysis. Images are, arguably, the most popular host
media, which is evident from the vast amount of literature in image steganogra-
phy and steganalysis. Blind steganalysis schemes, employing powerful machine
learning algorithms and specifically designed image features that capture changes
due to data hiding, are quite successful in detecting the presence of very low rate
covert communication in image hosts [8, 10,16].

In this paper we focus on practical aspects of active steganographic schemes,
which has received relatively less attention in the literature so far. An active
steganographic system can be modeled as a communication channel, wherein,
both the data hider and the attacker have limited distortion budgets to modify
the host signal. This is in addition to the statistical security that the underlying
data hiding scheme must provide. Thus, an important component of a data hid-
ing method that can survive attacks is the use of error correcting codes (ECC).
This paper focuses entirely on the error correction aspects of a stego scheme,
leveraging ideas from the digital communication literature, so as to provide no-
ticeable improvement in the operating point for the rate-detectability trade-off.
We utilize a better modeling of the underlying data hiding channel (scalar quan-
tization index modulation (QIM) [5] based hiding) to compute more accurate
likelihood ratios, erasure thresholds, and code rates. In this paper, we consider
a benign attack scenario (JPEG compression) for the channel attack.

We employ a popular active steganographic scheme, Yet Another Stegano-
graphic Scheme (YASS) [17], as a platform to demonstrate the improvements.
YASS involves data embedding in the discrete cosine transform (DCT) domain of
randomly chosen block locations. The error correction framework is provided by
serial concatenated turbo codes (repeat accumulate codes [6]). The noise channel
consists of the JPEG compression attack and our steganalysis framework com-
prises of a collection of calibrated and uncalibrated features, which was shown
to be effective for detecting YASS-based hiding in [9].

Although much of the discussion in the paper is specific to YASS, we must
note that if a proper model for the channel attack can be obtained, i.e., if it
is possible to reliably estimate a suitable transition probability matrix for the
given channel, the methods proposed in the paper can be applied. We do not
change the embedder and thus the detectability against steganalysis remains
unchanged. However, by better channel modeling and appropriate modifications
to the decoder, the effective data-rate can be increased, without compromising on
the undetectability and robustness, which forms the crux of this paper.

Paper Outline: The problem formulation and main contributions are pre-
sented in Sec. 2, followed by a brief overview of the YASS methodology in Sec. 3.
A brief description of the composite data hiding channel is presented in Sec. 4.
The puncturing scheme and its implications are explained in Sec. 5. Suitable
channel modeling for the soft-decision decoding are discussed in Sec. 6. In Sec. 7,

2



we explain how the erasure rate can be suitably varied to maximize the effective
data-rate. Experimental results and overall performance improvements over the
previous decoding methods are presented in Sec. 8.

2 Problem Setup

QIM-based Hiding Framework: The hiding is performed using quantiza-
tion index modulation [5]. An embeddable coefficient is converted to the nearest
even/odd integer depending on whether the bit to be embedded is 0/1, respec-
tively. For perceptual transparency, we do not use quantized AC DCT coefficients
in [-0.5,0.5] for hiding; a DCT coefficient in this range is converted to zero and
the corresponding bit is assumed to be “erased”. An erasure is denoted as e in
the paper. A list of commonly used acronyms is presented in Table 1.

Table 1. Commonly used Acronyms

Acronym Full form

QIM Quantization Index Modulation (a commonly used embedding method)

RA code Repeat Accumulate code (a coding scheme for providing error resilience)

QF quality factor (determines extent of JPEG compression)

ECC Error Correction Coding (adds redundancy to data-bits to survive channel attacks)

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

LLR log-likelihood ratio which denotes the soft confidence level in an embeddable coef-
ficient while decoding

B big-block size used in the YASS framework

λ the number of top AC DCT coefficients, encountered during zigzag scan, used for
hiding per 8×8 block

λ′ for a puncturing scheme, the hiding band, per 8×8 block, has λ′ (> λ) coefficients

QFh the design quality factor used for hiding

QFa the output quality factor at which the stego image is JPEG compressed

qopt the minimum RA code redundancy factor which allows successful decoding

[x] rounded off value of x

δdec at the decoder side, coefficients in [−δdec, δdec] are assumed to be erasures

Nc fraction of the embeddable DCT coefficients in the range [c− 0.5, c+ 0.5]

N[a,b] fraction of the embeddable DCT coefficients in the range [a, b]

Turbo codes have shown the most powerful performance for the additive
white Gaussian noise (AWGN) and the erasures channels, among many specific
channel models. Our approach is practical and the techniques are backed by
experimental results and improvements. The following aspects are considered.

(i) Puncturing: After encoding the data-bits using a given ECC of known re-
dundancy, the code-length can be further increased by placing erasures at
certain locations. Puncturing has long been known to improve the perfor-
mance of turbo codes [1,2]. It helps the encoding process in two ways: (i) it
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allows finer choice of embedding rates (rather than 1/q where q is a positive
integer redundancy factor), and (ii) it allows the use of large codewords, a
key factor contributing to the near-capacity performance of turbolike codes.
We provide experimental evidence that puncturing increases the effective
hiding rate for certain channels .

(ii) Soft-decision decoding with coefficient-based LLR Allocation: When
the channel model is known a priori, the use of soft-decision decoding invari-
ably improves the convergence probability and accuracy of an ECC decoder.
We conduct experimental channel modeling to compute soft confidence val-
ues to be set for the log-likelihood ratio (LLR) to be used by the decoder (a
sum-product algorithm).

(iii) Varying erasure rate: In the QIM-erasure data hiding channel considered
in the paper, the decoder can vary a threshold to control the erasure rate.
Such a control may not be available in conventional communication channels.
We provide simple analysis to compute the optimal value of the threshold
δdec (coefficients in the range [−δdec, δdec] are assumed to be erased) that
maximizes the data hiding rate, given the QIM quantizer (for JPEG case,
the quality factor QFh). These are verified by experiments with real image
datasets.

Since the statistical security is demonstrated for the YASS [17] framework,
we now provide a brief description of the YASS stego scheme.

3 Brief Overview of YASS

The security of YASS can be attributed to the randomized choice of hiding
locations. The idea of YASS was conceived keeping in mind the fact that the
steganalysis features (for JPEG images) mainly consist of block-based features,
i.e. computed on the 8×8 block. If the hiding is performed using a block-based
approach which is not aligned with the JPEG-based blocks, the steganalysis
features will be out-of-sync with the features that are modified by the hiding.
For hiding in randomly chosen block locations, the image needs to be converted
from the compressed domain (if a JPEG image is the input) to the pixel domain.

YASS Framework: The input image is decompressed if it is in JPEG format
and then divided into blocks of size B×B (B > 8), where B is called the big-
block size. For each big-block, a 8×8 sub-block is pseudo-randomly chosen to
hide data. The encoder and decoder share the same key by which they can access
the same set of 8×8 blocks. For every sub-block, its 2D DCT is computed and
then divided by a JPEG quantization matrix at a design quality factor (QF),
denoted by QFh. A band of λ AC DCT coefficients lying in the low and mid-
frequency range is used for hiding. After data embedding, the resultant image is
JPEG compressed at a QF of QF a.

To emphasize the role of YASS, it decides the hiding locations (pseudo-
randomly chosen block locations) and the hiding coefficients (AC DCT coef-
ficients belonging to the hiding band for the randomly chosen blocks). Unless
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otherwise mentioned, the data-rate computation experiments use B=9, QFa=75,
for the YASS framework.

4 Brief Description of the Hiding Channel

The effective data-hiding channel and the ECC framework used are shown in
Fig. 1. We use a repeat accumulate (RA) code [6] as the ECC framework due to
the high erasure rate associated with quantized DCT-domain hiding channels.

Composite Hiding Channel: The RA coding framework determines how
u, a sequence of N ′ bits, is mapped to the encoded sequence c, a sequence of
N ′q bits, assuming the ECC to have a redundancy factor of q. The conversion
from u to c is explained in Fig. 1. After RA-encoding, this sequence c acts
as the input sequence for QIM-based embedding. For the coefficients lying in
the erasure zone, the code-bits get mapped to e (erasures); for the remaining
coefficients, the code-bits get properly embedded. The ternary sequence (with
symbols {0, 1, e}) obtained after embedding is denoted by z. Then, the stego
image is JPEG compressed (other global noise attacks are also possible) and the
same set of embeddable coefficients (as identified at the encoder) is identified at
the decoder. The ternary sequence, derived at the decoder side, is denoted by ĉ.
Thus, the effective data-hiding channel is represented by a 2×3 mapping, from
c to ĉ.
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Fig. 1. The mapping between c, the binary RA code-bit sequence to ĉ, the ternary
sequence obtained from the LLRs at the decoder output, is shown here for the QIM-RA
framework - the “channel” between z and ĉ refers to the JPEG compression channel
that introduces errors and erasures in the mapping from z to ĉ.

Numerical Examples: Some examples of the mapping between c and z
({0, 1} → {0, 1, e}, denoted by a 2×3 matrix Pc,z), z and ĉ ({0, 1, e} → {0, 1, e},
denoted by a 3×3 matrix Pz,ĉ), c and ĉ ({0, 1} → {0, 1, e}, denoted by a 2×3
matrix Pc,ĉ), are presented below in Table 2. Since the modifications to the
decoding framework require a thorough understanding of the channel transition
probability matrices, we present these numerical examples.
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Table 2. Using B=9, QFa=75 for YASS, the transition probability matrices are com-
puted for different hiding conditions. The results are averaged over 250 images.

Hiding Setup Pc,z Pz,ĉ Pc,ĉ

QFh=30, λ=6

[
0.2346 0.0000 0.7654
0.0000 0.3747 0.6253

]  0.9982 0.0018 0.0000
0.0011 0.9989 0.0000
0.0000 0.0002 0.9998

 [ 0.2341 0.0007 0.7652
0.0004 0.3743 0.6253

]

QFh=75, λ=8

[
0.4249 0.0000 0.5751
0.0000 0.6084 0.3916

]  0.8333 0.1673 0.0000
0.0963 0.8880 0.0157
0.0000 0.0792 0.9208

 [ 0.3557 0.1317 0.5126
0.0602 0.5503 0.3895

]

The effective 2×3 mapping from c to ĉ is used to compute the channel ca-
pacity C by maximizing the mutual information I(c, ĉ) between the sequences c
and ĉ (1) - a discrete memoryless channel is assumed.

Cc,ĉ = max
p(c)

I(c, ĉ) = max
p(c)

∑
c∈{0,1}

∑
ĉ∈{0,1,e}

p(c, ĉ) log
(
p(c|ĉ)
p(c)

)
(1)

Given an image, is it possible to obtain these transition probability matrices
without actually simulating the entire channel? We now express these matrices
in terms of N[a,b], the fraction of embeddable quantized DCT coefficients in [a, b].

Table 3. Expression for a 2×3 transition probability matrix Pc,z

p0,0 = 1− p0,e p0,1 = 0 p0,e =
(N[−0.5,0.5] +N(0.5,1) +N(−1,−0.5))

2

p1,0 = 0 p1,1 = 1− p1,e p1,e =
(N[−0.5,0.5])

2

Explaining Pc,z: (as shown in Table 2) When a lower QFh is used, the
quantization applied to the DCT coefficients is coarser and hence, the fraction
of embeddable DCT coefficients that lies in the erasure zone increases. Therefore,
the (1, 3)th (0→ e mapping) and (2, 3)th (1→ e mapping) elements in Pc,z are
higher for QFh of 30 (coarser JPEG quantization) than when QFh = 75 (finer
JPEG quantization), as seen from Table 3.

Why is Pc,z(1, 1) < Pc,z(2, 2) (i.e. p0,0 < p1,1) ? All quantized DCT coeffi-
cients in the range [-0.5,0.5] get mapped to erasures. For a coefficient in [-0.5,0.5],
it is equally likely for the input bit to be 0 or 1. For DCT coefficients in the range
(0.5,1) and (-0.5,-1), the coefficients get mapped to 1 and -1, respectively, when
1 is to be embedded; however, these coefficients are mapped to zero (erasures)
when 0 is to embedded. Hence, p1,1 > p0,0.

We now express the transition probability terms in Pz,ĉ in terms of the noise
distribution Pr(n) (n is the noise signal that affects the mapping from z to ĉ)
and the decoder-side erasure cutoff δ.
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p0,0 = ∀k 6=0,k∈Z

2k+0.5∑
x=2k

Nx.P r(n ≤ ([x] + 0.5− x))+

∀k 6=0,k∈Z

2k∑
x=2k−0.5

Nx.P r(n ≥ ([x]− 0.5− x)), p0,1 = 1− p0,0, p0,e = 0

p1,1 = ∀k 6=0,k∈Z

2k−0.5∑
x=2k−1

Nx.P r(n ≤ ([x] + 0.5− x))+

∀k 6=0,k∈Z

2k+1∑
x=2k+0.5

Nx.P r(n ≥ ([x]− 0.5− x))

+
1∑

0.5

Nx.P r(n ≥ (δ − x)) +
−0.5∑
−1

Nx.P r(n ≤ (−δ − x))

p1,e =
1.5∑
0.5

Nx.P r(n ≤ (δ − x)) +
−0.5∑
−1.5

Nx.P r(n ≥ (−δ − x))

p1,0 = 1− (p1,1 + p1,e)

pe,e =
0.5∑
0

Nx.P r(n ≤ (δ − x)) +
0∑
−0.5

Nx.P r(n ≥ (−δ − x))

pe,1 = 1− pe,e, pe,0 = 0

Explaining Pz,ĉ: (as shown in Table 2) Focussing now on Pz,ĉ, the question
comes up as why this matrix is asymmetric? It is observed that pe,1 > pe,0, and
p0,1 > p1,0. For coefficients in the range [-0.5, 0.5], channel noise can result in
the coefficients being rounded off to ±1. Therefore, pe,1 > pe,0 (the noise value
should be significantly high to shift a coefficient from the range [-0.5,0.5] to a
range (1.5,2.5) or (-1.5,-2.5)).

For a coefficient to be mapped from 1→ 0, coefficients in the range [0.5,1.5]
(or [-1.5,0.5]) can get mapped to (1.5,2.5) (or (-2.5,-1.5)). When a coefficient
corresponds to a 0 → 1 mapping, a coefficient in the range [1.5,2.5] (or [-2.5,-
1.5]) can get mapped to [0.5,1.5] or [2.5,3.5] (or [-1.5,0.5] or [-3.5,-2.5]). There is
very low probability of a ‘0’ getting mapped to an erasure, i.e. to the [-0.5,0.5]
zone. On the other hand, it is more likely for a 1 → e mapping to occur. This
happens when a coefficient in [0.5,1.5] (or [-1.5,-0.5]) gets mapped to (-0.5,0.5).

5 Puncturing for Better Performance

Puncturing is a technique used to obtain a m
n code from a “basic” rate 1

2 code.
Puncturing (code bit deletions) effectively decreases the code-length. E.g. when
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we have a RA codeword of 200 bits and the optimal redundancy factor qopt is
4, we can embed 200/4 = 50 data-bits. The effective codeword length is now
increased to 300; the extra 300-200=100 bits are assumed to be erasures. With
respect to puncturing, the input is a 300-bit code-word and 100 bits are deleted
from it, leaving a 200-bit code-word. If the new value of the optimal redundancy
factor≤ 5, the new data rate will be increased as b300/5c > 50. When puncturing
is done, the number of additional erasures needs to be decided; it is seen that the
effective data-rate is increased for a certain range of additional erasures. Simply
put, puncturing allows us to choose a finer embedding rate for a given setup.

The hiding band consists of λ AC DCT coefficients per 8×8 block. Let the
number of B × B blocks used for hiding be NB . Thus, the total number of
coefficients available for hiding N = λ.NB . While puncturing, it is assumed that
the hiding band consists of λ′ (λ′ > λ) coefficients per 8×8 block.

We empirically observe that for more noisy channels, performance improve-
ment is not obtained on using a higher number of erasures. The experimentally
computed qopt using RA codes is significantly higher than the redundancy factor
for an ideal channel code, d 1

Cc,ĉ
e (1). The average value of (qopt − d 1

Cc,ĉ
e), com-

puted for 250 images, is reported in Fig. 2. It is seen that the RA code performs
closer to capacity ((qopt − d 1

Cc,ĉ
e) becomes smaller) for larger λ, i.e. for longer

code-lengths. It is seen that the RA code is most away from capacity for chan-
nels with very high error rates (when QFh=75) or very high erasure rates (when
QFh=30). In Fig. 2, “I-LLR” and “C-LLR” refer to the “image-dependent” and
“coefficient-dependent” LLR allocation methods, explained later in Sec. 6.1 and
Sec. 6.2, respectively.

To vary the effective noise level in the channel (this affects the 3×3 transition
probability matrix that denotes the mapping between z and ĉ), the design quality
factor used for hiding, QFh, is varied. With a fixed value of QFa, the output
JPEG quality factor, the effective channel noise increases as QFh is increased.
Why does the effective noise increase as QFh approaches QFa? As QFh increases,
the DCT coefficients are divided element-wise by a finer quantization matrix (the
elements in the JPEG quantization matrix become smaller). For a quantization
matrix coefficient of ∆, the noise should exceed ∆

2 to cause a decoding error.
Therefore, as QFh ⇑ =⇒ ∆ ⇑ =⇒ noise robustness ⇓.

The bpnc improvements on using varying degrees of additional erasures for
different hiding conditions are shown in Tables 4 and 5. For QFh=70 and 75,
the bpnc starts to decrease as λ′ > λ, and hence, the corresponding bpnc results
after erasure addition are not reported.

6 Suitable LLR Allocation for Soft Decision Decoding

RA codes are an example of serial concatenated turbo codes, where the com-
ponent decoders are based on the BCJR algorithm [4]. The BCJR algorithm
takes as input the a-posteriori probability of each code-bit, which is used to
compute the log-likelihood ratio (LLR) at each code-bit location, as defined in
(2). The forward and backward Viterbi-decoding algorithms running through
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Fig. 2. The variation of the performance with λ and QFh is computed over 250 im-
ages. Here, “I-LLR” and “C-LLR” refer to the “image-dependent” and “coefficient-
dependent” LLR allocation methods, respectively.

Table 4. The average bpnc values are computed over 250 images using the QIM-RA
framework and puncturing. Here, (2, 6) denotes that λ=2 and λ′=6. The %-gain is

expressed as
maxλ′≥λ bpnc(λ, λ′)− bpnc(λ, λ)

bpnc(λ, λ)
. We use B=9, δdec=0.5 and QFa=75.

QFh = 30 QFh = 40

(2,2) (2,3) (2,4) (2,5) (2,6) %-gain (2,2) (2,3) (2,4) (2,5) (2,6) %-gain

0.0318 0.0380 0.0425 0.0422 0.0395 30.50 0.0526 0.0628 0.0644 0.0628 0.0580 22.43

(4,4) (4,5) (4,6) (4,7) (4,8) %-gain (4,4) (4,5) (4,6) (4,7) (4,8) %-gain

0.0586 0.0687 0.0732 0.0705 0.0691 24.91 0.0885 0.0969 0.0999 0.0989 0.0977 12.88

(8,8) (8,9) (8,10) (8,12) (8,14) %-gain (8,8) (8,9) (8,10) (8,12) (8,14) %-gain

0.1169 0.1189 0.1213 0.1201 0.1170 3.76 0.1390 0.1400 0.1416 0.1449 0.1417 4.24

(12,12) (12,13) (12,14) (12,15) (12,18) %-gain (12,12) (12,13) (12,14) (12,15) (12,18) %-gain

0.1387 0.1395 0.1401 0.1398 0.1390 1.01 0.1644 0.1669 0.1690 0.1681 0.1672 2.80

Table 5. The same experiments, as in Table 4, are now shown for QFh of 50 and 60.

QFh = 50 QFh = 60

(2,2) (2,3) (2,4) (2,5) (2,6) %-gain (2,2) (2,3) (2,4) (2,5) (2,6) %-gain

0.0508 0.0609 0.0630 0.0607 0.0572 24.02 0.0427 0.0446 0.0421 0.0367 0.0345 4.45

(4,4) (4,5) (4,6) (4,7) (4,8) %-gain (4,4) (4,5) (4,6) (4,7) (4,8) %-gain

0.0932 0.1016 0.1040 0.1032 0.1019 11.59 0.0865 0.0908 0.0937 0.0917 0.0884 8.32

(8,8) (8,9) (8,10) (8,12) (8,14) %-gain (8,8) (8,9) (8,10) (8,12) (8,14) %-gain

0.1485 0.1508 0.1540 0.1536 0.1481 3.70 0.1427 0.1438 0.1464 0.1415 0.1373 2.59

(12,12) (12,13) (12,14) (12,15) (12,18) %-gain (12,12) (12,13) (12,14) (12,15) (12,18) %-gain

0.1748 0.1772 0.1792 0.1811 0.1787 3.60 0.1738 0.1739 0.1740 0.1738 0.1680 0.12

the trellis depend on the initial estimates of the posterior probabilities which
decide the LLR values. We have consolidated upon a recently proposed method
to suitably initialize the LLR estimates at the decoder locations [15]. It has been
experimentally observed that proper initialization of LLR values leads to faster
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convergence at the decoder, i.e. convergence using a lower redundancy factor.
For a given image and an attack channel, the LLR values belonged to the 3-
tuple, (α,−α, 0), corresponding to 0, 1, and e, respectively, where α is a soft
confidence value decided based on the composite channel parameters (Pc,ĉ). We
repeat the discussion from [15] in Sec. 6.1 for ease of understanding. This LLR
allocation scheme works well, except for very noisy channels. For such channels,
we present a per-coefficient based, instead of a per-image based, LLR allocation
method in Sec. 6.2.

6.1 Image-based LLR Allocation

Let a certain image coefficient be equal to y and the corresponding embedded bit
be b. The LLR value LLR(y) denotes the logarithm of the ratio of the likelihood
that a 0 was transmitted through that coefficient (Pr(b = 0|y)) to the likelihood
that a 1 was transmitted (Pr(b = 1|y)).

LLR(y) = log
(
Pr(b = 0|y)
Pr(b = 1|y)

)
(2)

Let pe denote the effective error probability in the channel (mapping from c
to ĉ) and Nc denotes the fraction of embeddable DCT coefficients whose value
changes to c on rounding. In [15], the LLR value is estimated as follows:

LLR(y|[y] = c, c 6= 0) = ± log
(

(Nc +Nc−1/2 +Nc+1/2)(1− pe)
(Nc +Nc−1 +Nc+1 +Nc−2/2 +Nc+2/2)pe/2

)
,

(3)

where the ± signs are for c = even/odd, respectively, and
LLR(y) is kept at 0 when [y] = 0.

The distribution of the AC DCT coefficients has been approximated as Lapla-
cian [11, 14]. Always, Nc−1 > Nc > Nc+1 holds, for c ≥ 1, and Nc ≈ N−c, by
symmetry. If we assume Nc ≈ (Nc−1 +Nc+1)/2, then LLR(y) reduces to:

LLR(y|[y] = c, c 6= 0) = ± log
(

1
pe
− 1
)

(4)

It is experimentally observed that the LLR allocation methods using (3) and
(4) result in similar embedding rates. Hence, in subsequent experiments, the
image-dependent LLR is computed using the relatively simpler expression (4).
The next issue is computing pe for a given image and noise channel. In [15], it is
seen that knowledge of the image histogram (that governs Pc,z) and the output
JPEG QF (that governs Pz,ĉ) helps in accurate estimation of pe.

6.2 Coefficient-based LLR Allocation

This LLR allocation provides the same 3-tuple of LLR values
{
± log

(
1
pe
− 1
)
, 0
}

for all the embeddable coefficients in a certain image. For very noisy channels,
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we observe that qopt (the minimum RA-code redundancy factor for a given im-

age and a hiding channel) is far-off from the d 1
Cc,ĉ
e. The solution is to perform a

more in-depth analysis of the LLR allocation. We decide whether a 0/1 is embed-
ded based on the fact that a certain image coefficient rounds off to an even/odd
integer. E.g. if a coefficient in the received image is valued at 4, we are “more
confident” that it corresponds to a 0-embedding than if the coefficient were val-
ued at 3.6 or 4.4. Denoting the JPEG compression introduced noise signal by
n, for the coefficient valued at 4 to correspond to a bit-error, the noise should
exceed (4-3.5)=0.5 in magnitude. When the corresponding coefficients equal 3.6
(or 4.4), a bit-error can be caused when the noise exceeds 0.1 in magnitude. Due
to the highly Laplacian-like pdf of n, Pr(n > 0.5) is significantly less likely than
Pr(n > 0.1). We have experimentally observed that using a per-coefficient LLR
allocation scheme is more advantageous than using a per-image LLR allocation.

Let y be the received DCT coefficient, (x − 1) be an even integer and [y] =
(x−1). For a decoding error to occur, the noise signal should exceed ((x−0.5)−y);
then y would get mapped to x. It is assumed, due to the Laplacian pdf, that the
value of the noise signal n is generally limited to [-1,1].

LLR(y) = ± log
(
Pr(b = 0|y)
Pr(b = 1|y)

)
= ± log

(
1− Pr(n > (x− 0.5− y))
Pr(n > (x− 0.5− y))

)
(5)

where [y] = (x − 1), the ± signs are for (x − 1) being an even/odd integer,
respectively, and LLR(y) is 0 when round(y) = 0.

When [y] = x and x is an even integer, then LLR(y) is expressed as:

LLR(y) = ± log
(
Pr(b = 0|y)
Pr(b = 1|y)

)
= ± log

(
1− Pr(n < ((x− 0.5)− y))
Pr(n < ((x− 0.5)− y))

)
(6)

where the ± signs are for x being an even/odd integer, respectively.

7 Variation of the Erasure Rate

Erasures are used to better account for symbols where the probability of a bit-
error is quite high. For a given channel, by increasing the erasure threshold, the
erasure rate is increased and the error rate is decreased - the flip-side is that the
rate of correctly mapped symbols also decreases. It is experimentally observed
that if the erasure rate is suitably adjusted, the decrease in the rate of correctly
mapped symbols is offset by the decrease in the error rate, and the hiding rate
is increased.

This method results in increased hiding rates for channels where the effec-
tive error rate is high, i.e. it dominates over the erasure probability term. It is
experimentally observed that for channels with high error rates (e.g. channels
with QFh of 50-75), using an increased erasure rate results in a higher effective
hiding rate. For channels with low error rates (e.g. channels with QFh ≤ 30),
decreasing the erasure rate increases the hiding rate.
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We now show an example of how the effective mapping Pc,ĉ changes as the
erasure cutoff (δdec) increases. As δdec is increased from 0.5 (assume that δdec ≤
1), coefficients in the range [0.5, δdec] get mapped to erasures now, and these
were mapped to 1 (bit ‘1’ is embedded) when δdec = 0.5. Thus, p1,1 decreases
and p1,e increases. Similarly, as the erasure range is increased (from (0.5,0.5)
to (−δdec, δdec)), pe,e increases while pe,1 decreases. From (1), it is seen that
Cc,ĉ depends on the transition probability matrix Pc,ĉ, whose parameters are
expressed in terms of N[a,b], Pn and δdec. Thus, for a given distribution of the
image DCT coefficients and an assumed noise distribution for fixed values of λ,
QFh and QFa, the capacity can be expressed as a function of δdec.

Table 6. The average values for Pz,ĉ, Pc,ĉ and Cc,ĉ are computed over 250 images,
using B=9, QFh=75, QFa=75 and λ=8.

δdec Pz,ĉ Pc,ĉ Cc,ĉ

0.5

 0.8333 0.1673 0.0000
0.0963 0.8880 0.0157
0.0000 0.0792 0.9208

 [ 0.3557 0.1317 0.5126
0.0602 0.5503 0.3895

]
0.1910

0.6

 0.8333 0.1673 0.0000
0.0963 0.8570 0.0467
0.0000 0.0378 0.9622

 [ 0.3557 0.1009 0.5434
0.0602 0.5258 0.4140

]
0.2050

0.7

 0.8333 0.1673 0.0000
0.0963 0.8092 0.0944
0.0000 0.0163 0.9837

 [ 0.3557 0.0834 0.5609
0.0602 0.4967 0.4431

]
0.2074

0.8

 0.8333 0.1673 0.0000
0.0963 0.7465 0.1572
0.0000 0.0061 0.9939

 [ 0.3557 0.0745 0.5697
0.0602 0.4599 0.4799

]
0.1986

We empirically show the best cutoffs to use for different values of QFh in
Fig. 3. The 2×3 mapping between c and z is image-dependent and is unaffected
by δdec. Table 6 shows how the channel capacity varies with the erasure cutoff
δdec, where the embedder side hiding parameters are left unchanged.

8 Results

We show how the effective hiding rate is increased by a combination of the
three factors. The %-age improvement in the bpnc is shown for different hiding
parameters in Table 7.

For steganalysis, we use a set of 3400 high-quality JPEG images which were
originally at a QF of 95 and they were JPEG compressed at a QF of 75 for the
experiments. For the experiments, we crop out the central 512×512 region inside
each image - the cropping is done for both the cover and stego images.

Steganalysis Feature Used: KF-548 - To improve upon the 274-dimensional
calibrated feature [13], Kodovský and Fridrich [9] proposed the use of a 548-
dimensional feature set KF-548 which accounts for both calibrated and un-
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Fig. 3. Variation in bpnc with change in δdec for different choices of QFh - the best
choices for δdec are 0.3, 0.6, 0.6 and 0.7 for QFh of 30, 50, 60 and 75, respectively.

Table 7. The average bpnc results are presented for different hiding conditions. Here,
I-LLR refers to the use of image-dependent LLR for decoding. “Puncture” refers to the
use of the best combination (λ, λ′) for a given λ that maximizes the bpnc. “Erasure”
refers to the use of the best choice of δdec, the decoder cutoff, for a given QFh, after
puncturing. “C-LLR” refers to the use of the coefficient-dependent LLR, after punc-
turing and using best choice of δdec. Here, %-gain refers to the fractional gain obtained
after using (puncture + erasure + C-LLR), as compared to using only I-LLR. It is
to be emphasized that Pd is unchanged as bpnc is increased for the same
hiding parameters by varying the decoder module.

QFh λ I-LLR puncture Erasure C-LLR %-gain QFh λ I-LLR puncture Erasure C-LLR %-gain

30 2 0.0318 0.0425 0.0570 0.0578 81.76 50 2 0.0508 0.0630 0.0640 0.0650 27.95

30 4 0.0586 0.0732 0.0833 0.0846 44.37 50 4 0.0932 0.1040 0.1064 0.1070 14.81

30 8 0.1169 0.1213 0.1226 0.1245 6.50 50 8 0.1485 0.1540 0.1555 0.1580 6.40

30 12 0.1387 0.1401 0.1420 0.1440 3.82 50 12 0.1748 0.1811 0.1839 0.1880 7.55

60 2 0.0427 0.0446 0.0476 0.0519 21.55 70 2 0.0230 0.0230 0.0257 0.0278 20.87

60 4 0.0865 0.0937 0.0972 0.1034 18.38 70 4 0.0644 0.0644 0.0701 0.0768 19.25

60 8 0.1427 0.1464 0.1537 0.1615 13.17 70 8 0.1132 0.1132 0.1241 0.1345 18.82

60 12 0.1738 0.1745 0.1858 0.1957 12.60 70 12 0.1379 0.1379 0.1555 0.1719 24.66

calibrated features. Here, the reference feature is used as an additional feature
instead of being subtracted from the original feature.

Half of the images are used for training and the other half for testing. We
use a support vector machine (SVM) based classifier for steganalysis, where the
SVM is trained using the KF-548 feature. The probability of classifying a test
image correctly as cover or stego - the detection accuracy Pd (Pd=50% implies
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undetectable hiding, and as the detectability improves, Pd increases towards
100%) is obtained using KF-548. The steganalysis results are reported in Ta-
ble 8. Based on the hiding parameters, it is seen that a higher QFh gives better
bpnc-vs-Pd trade-off, i.e. higher bpnc for similar Pd values. E.g. a bpnc of about
0.11 is obtained at a Pd of 0.68 at QFh=75, while similar Pd values result in
bpnc of 0.086 and 0.103 at QFh = 50 and 60, respectively.

Table 8. The steganalysis results are reported using KF-548. Pd refers to the detection
accuracy. “I-LLR” refers to the bpnc obtained using image-dependent LLRs while
“final” refers to the bpnc obtained after using all the three proposed techniques -
puncturing, suitably varied erasure cutoff, and coefficient-based LLRs.

Hiding Setup Pd(%) I-LLR final %-gain

QFh=50, λ=2 65.00 0.0508 0.0650 27.95

QFh=50, λ=3 69.00 0.0710 0.0860 21.13

QFh=60, λ=3 65.80 0.0665 0.0795 19.55

QFh=60, λ=4 70.06 0.0865 0.1034 19.54

QFh=75, λ=4 55.00 0.0445 0.0564 26.74

QFh=75, λ=6 60.40 0.0680 0.0849 24.85

QFh=75, λ=8 68.00 0.0882 0.1099 24.60

We substituted the DCT-domain hiding with DWT-domain hiding and the
same decoding strategies are used for improving the bpnc, as shown in Table 9.

Table 9. The advantages of using the proposed decoder modifications are presented
for the DWT domain, in place of the DCT domain, while the YASS based framework
of randomly choosing a 8×8 block inside a B ×B big-block is retained.

QFh λ I-LLR Puncture Erasure C-LLR %-gain Pd(%)

50 4 0.0678 0.0764 0.0803 0.0848 25.07 70.99

60 4 0.0616 0.0619 0.0656 0.0710 15.26 66.93

70 4 0.0249 0.0249 0.0286 0.0348 39.76 57.75

75 4 0.0106 0.0106 0.0117 0.0169 59.43 55.56

9 Conclusions

In this paper, we have demonstrated three simple methods to increase the effec-
tive data-rate at the decoder side without affecting the embedder process. These
methods have been tested on the YASS framework where they have produced
10%-40% improvement in the hiding rate, without affecting the detectability.
The methods have been based on the repeat accumulate code based framework,
which has been shown to be close to capacity achieving for most hiding condi-
tions. The only hiding condition where the RA code is still somewhat away from
being capacity-achieving is for small code-lengths with channels having high
error-rates or high erasure rates, and that leaves scope for further improvement.
The decoding techniques proposed here are generic and can be incorporated in
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other steganographic schemes, which involve different methods for hiding coeffi-
cient selection, different transform domains for embedding, and different iterative
decoding frameworks.
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