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ABSTRACT
Outdoor surveillance cameras have become prevalent as part
of the urban infrastructure, and provided a good data source
for studying urban dynamics. In this work, we provide a
spatial-temporal analysis of 8 weeks of video data collected
from the large outdoor camera network at UCSB campus,
which consists of 27 cameras. We first apply simple vision al-
gorithm to extract the crowdedness information in the scene.
Then we further explore the relationship between the traf-
fic pattern observed from the cameras with activities in the
nearby area using additional knowledge such as campus class
schedule. Finally we investigate the potential of discovering
aggregated human movement pattern by assuming a sim-
ple probabilistic model. Experiment has shown promising
results using the proposed method.

Categories and Subject Descriptors
H.1 [MODELS AND PRINCIPLES]: Miscellaneous

General Terms
Design, Measurement, Experimentation
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1. INTRODUCTION
There is a growing interest in studying and analyzing ur-

ban dynamics for purposes such as traffic forecasting, city
planning and facility management. However, obtaining and
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modeling large, real world observational data is a challenging
and costly task. In the past, researchers have used different
digital traces of city-wide urban infrastructure as medium to
study urban dynamics. For example, González et al. used
cellular network data to study city dynamics and human
mobility [5]. McNamara et al. [10] and Liu et al. [8] used
data collected from RFID-enabled metro systems to monitor
and predict co-location patterns among mass transit users.
Froehlich et al. analyzed the digital footprint of bicycle us-
age from shared bicycling system to uncover patterns of hu-
man behavior and infer cultural and geographic aspects of
the city [4]. All these methods utilize implicit data source
to study urban dynamics.

On the other hand, outdoor cameras have become preva-
lent as part of the urban infrastructure. They provide an ex-
cellent data source to directly observe and understand urban
dynamics. Previously, researchers have attempted to study
videos from outdoor cameras, but they mainly focused on a
few cameras covering small area and did not consider any
relationship between visual data and external knowledge of
the scene [6]. Here we demonstrate the potential of urban
dynamic understanding through multiple cameras covering a
large area. In particular, we collected videos from a network
consisting of 27 cameras at the University of California at
Santa Barbara (UCSB) [7] spanning a period of eight weeks.
We show that better scene understanding can be achieved
by analyzing the videos with simple vision techniques along
with additional information of the area, such as campus class
schedule. The main contributions of this paper are:

• Gaining insights of the urban scene through analyzing
videos in a large camera network. To the best of our
knowledge, this is the first attempt to understand the
dynamic scenes in large area through a camera network
over an extended period.

• Reducing uncertainty in visual observation through
information fusion. By incorporating campus class
schedules, we can better explore the relationship be-
tween the traffics observed from the cameras with ac-
tivities in the nearby area.

• Demonstrating the potential of discovering aggregated
human movement pattern. Assuming a simple proba-
bility model, we can obtain a fine-scale spatial-temporal
estimation of the pattern.



Figure 1: (a) UCSB campus: Squares with alphabets indicate buildings; Circles with numbers indicate camera
locations; Color of the circle indicates camera category (Yellow: global camera; Green: local camera; Orange:
global camera but wrongly classified as local camera. See section 3.2 for details). (b)-(e) snapshots of sample
camera views. Major paths for non-motorized traffic are marked in red arrows.

The rest of the paper is organized as follows. Section 2 ex-
plains the camera network dataset for our experiment. Sec-
tion 3 shows the details of our approach to analyze the videos
to obtain spatial-temporal understanding of the scenes. In-
teresting findings from our reasoning will be shown in this
section. Finally we will have our conclusion and future work
at section 4.

2. THE UCSB CAMPUS DATASET
We collected our data from a recently deployed camera

network at UCSB campus [7]. The network consists of over
40 stationary cameras covering wide area of the campus. In
our experiments, we only use data from a subset of 27 cam-
eras as show in Figure 1, due to the reason that many cam-
eras are still under frequent testing. All of the 27 cameras
are fixed outdoor cameras monitoring either campus bike
paths or pedestrian walkways, i.e. observing non-motorized
traffics. Since all the outdoor cameras in this network are
powered by batteries, they operate only on discrete time
periods. The recording time covers Monday to Friday, and
each camera captures 200 minutes of video every day. The
200 minutes are spread to ten 20-minute recording windows
centered on the hour from 8am to 5 pm (e.g. 7:50am-8:10am,
8:50am-9:10am, . . . , 4:50pm-5:10pm). In other words, there

are 50 20-minute recordings Vh in a week for each camera
(h = 1, 2, . . . , 50). Our entire dataset spans a period of eight
weeks (April and May) in the Spring quarter of 2010, and
consists of more than 3000 hours of video in total.

3. SPATIAL-TEMPORAL REASONING

3.1 Visual Processing
Before we can explore the dynamics of the campus, we

need to extract information from the videos to describe the
scene. We chose to describe the scene by the level of crowd-
edness. In a typical vision setting, this is done in several
steps, detecting people, tracking them over time, and count-
ing the number of tracks. However, each of these steps is
itself a challenging task, and they usually come with high
computation cost and low accuracy. Motivated by the re-
cent work of [2, 9], we argue that precise people counting
might not be necessary to describe the scene. Instead, we
propose to estimate the crowdedness of the scene by looking
at the local motion within the video frames. This is because
local motion are mostly caused by human movement given
fixed camera setting. For each Vh, we extract the optical
flow [1] in each frame. The clip is divided into shots of du-
ration Tw mins (e.g., Tw = 1/4 = 15seconds). For each shot,



we then calculate the average optical flow, and define it as
As(T ; c, h) (Activity Score at time T = 0, 1, . . . , 20

Tw
− 1 in

camera c centered at hour h). Given most of the motion
within the camera view is caused by human movement, we
think that the average optical flow within a short duration
Tw serves as a good indication of how crowded a scene is.
Figure 2 shows a snapshot from camera 1 and its corre-

sponding As(T ; 1, h) with Tw = 20 over a week, averaged
across the eight-week observation period1. This camera is
mounted next to a bus station. A repeating “5pm spike”
appears across all weekday, which reveals the usual com-
mute patterns for this station. The relative magnitude of
the “5pm spike” is lower on Friday, which corresponds to the
fact that many people leave earlier on Friday afternoon.

Figure 2: Camera 1 and its As(T ; 1, h) with Tw = 20.

Figure 3 shows the As(T ; c, h) of two other cameras with
finer granularity (Tw = 0.25 = 15sec). We can easily observe
that average activity is higher on Monday, Wednesday and
Friday. In addition, both As(T ; 15, h) and As(T ; 18, h) de-
crease consistently in the afternoon, which also correspond
to typical university traffic pattern. From the snapshot, we
can see that As(T ; c, h) indeed reflects the crowdedness of
the scene.

3.2 Camera-Building Correlation
In a campus scenario, most human movement (except for

weekend/holidays) are caused by students attending classes
at different buildings. Given this assumption, there should
be a strong correlation between camera’s observationAs(T ; c, h)
and class schedules. In UCSB campus, most classes start on
the hour (e.g. 9am), which overlaps with our recording win-
dows. For each building b at hour h, we defineN(b, h), which
is the total number of students attending classes inside the
building at that time. These information are available to
the public through class schedules listed on university web
page. In our experiments, we have obtained class schedules
for 17 buildings, which contain most of the classrooms for
lecturing. Squares with labels in Figure 1(a) show the loca-
tions of these buildings. The rest of the unlabeled buildings
are mostly research laboratories and offices, which usually
cause much less traffics/activies across campus. Figure 4
illustrates the schedule information for building E.
For each camera, one obvious question to ask is that, what

are the buildings related to the activities observed by this
camera. This question can be answered if we have camera
calibration parameters, campus blueprint, and most impor-
tantly human mobility patterns (i.e., which route students
usually take to reach a building). All these information is

1The camera network at UCSB [7] is still at the experimental
stage, the duration of Vh varies. Also, student movement on
campus exhibits a strong weekly temporal regularity, thus
we simply average As(T ;h, c) over eight weeks.

Figure 3: As(T ; c, h) with Tw = 0.25 and c = 15, 18

Figure 4: N(b, h), b: building E

not easy to obtain given the large area being covered. Here
we look at the problem from a different angle by utiliz-
ing building’s schedule. We first start with a global/local
camera classification step. If a camera observes the main
campus entrance/exit, central bus station, or major bike
paths/pedestrian walkways, we call it a global camera. Ob-
servation from these cameras should correlate well with the
ensemble schedule of all buildings. To evaluate this, we
use the canonical correlation between entire set of build-
ings B and camera c. Given the set of building B, define
random variable XB =

∑
b∈B N(b, h) with 50 observations

(h = 1 . . . 50) in a week.
For camera c, define random vector

Yc = [As(T ; c, h)]T=0,1,..., 20
Tw

−1, (1)

with 50 observation (h = 1− 50) in a week.
If activities observed by camera c are mainly caused by

students going to buildings in B, we expect a high canon-
ical correlation ρ(XB, Yc). Canonical correlation analysis
(CCA) finds two set of optimum basis vectors WX and WY

for XBand Yc such that the correlation of the projections of
them onto the basis vectors are maximized. CCA is defined



as,

ρ(XB, Yc) =
Cov(WXXB,WY Yc)√

Cov(WXXB,WXXB)Cov(WY Yc,WY Yc)
,

(2)
where Cov() means covariance. The solution to maximize
ρ(XB, Yc) can be found with a set of eigenvalue equations [3].
The rational to use CCA is mainly due to different dimen-
sions of XB and Yc. In addition, by projecting them into
an optimal subspace, it minimizes the effect of pattern vari-
ations introduced by unknown information, and scale vari-
ation in the camera views etc. With a simple threshold th,
we can then classify cameras into two categories, global and
local cameras.
Figure 1.a shows classification result2 with th = 0.85

and Tw = 1. Camera 10-12 and camera 15-18 cover the
two main entrance/exit area (west and northwestern respec-
tively); camera 13 covers the central bus stop; camera 19-23
cover the main bike path in the heart of the campus. All
these cameras are correctly classified as global cameras, ex-
cept for camera 20. We suspect the wrong classification of
camera 20 is due to bad video quality (e.g. many short and
missing recordings). All the rest of the cameras are classi-
fied correctly as local cameras as they only observe traffics
linking to specific nearby buildings.

3.3 Fine-scale spatial-temporal estimation
For each classified local camera, we can further identify

buildings which are strongly related to it. This can be done
using similar techniques, i.e., computing CCA with Xb and
Yc. In particular, for each local camera c, we calculate its
CCA ρ(Xb, Yc) with each of its nearby buildings b. A sim-
ple threshold th2 will give us a hint of what buildings are
likely to cause activities seen by the camera c. Without ex-
act knowledge (ground truth) on individual student’s travel
trajectory, it is hard to validate this method. Here we test
our method on camera 26 to demonstrate the idea. With
th2 = 0.8 and Tw = 1, building B, D and E are found to be
the ones related to camera 26. This corresponds very well
with the finding we get after one week of human observation.
If the activities in camera c is due to students going to

buildings in the set Bc (e.g., B26 = {B,D,E}, we assume
the following relation

As(T ;h, c) =
∑
b∈Bc

βbN(b, h)f(T ; kb, θb), (3)

where f defines movement patterns caused by student. kb >
0 and θb > 0 are their parameters. βb weight the impacts of
traffics to different buildings in the camera view. A gamma
distribution, a typical probabilistic distribution for waiting
time, is assumed to model f .

f(T ; kb, θb) = T kb−1 e−T/θb

θ
kb
b Γ(kb)

(for 0 ≤ T <
20

Tw
) (4)

Figure 5 shows the fitted f(T ; kb, θb) and estimated βb

for camera 26 with Tw = 0.25 (see Figure 3). Overall, it
matches very well with our one week human observation.
Some interesting findings are the followings: the peak traffics
to each building occurs 6−7 minutes ahead of class starting

2Residential areas are located on the West and South of the
UCSB campus. Major paths for non-motorized traffic are
marked using red arrows.

time; traffic flow toward building B and E are relatively
continuous; traffic flow to building D appears to be a short
impulse, which is because students tend to hang around in
a corner coffee area (not observable by the camera) before
entering class together. Other findings are omitted here due
to the length constrain.

Figure 5: Fitted temporal pattern for camera c = 26.

4. CONCLUSIONS
In this paper, we have demonstrated the potential of spatial-

temporal scene understanding through large camera net-
work. In particular, we used simple vision algorithm to
extract the crowdedness of the scene, and explored its re-
lationship with campus activities based on class schedules.
Similar analysis can be applied to other urban area with
more diverse sources of information, e.g., theater schedule,
mall/restaurant open time, office hours etc. In the future,
we will deploy other sensors such as GPS to gain more quan-
titative ground-truths of human movement.

5. REFERENCES
[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A

unifying framework. International Journal of Computer
Vision, 56(3):221–255, 2004.

[2] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy
preserving crowd monitoring: Counting people without
people models or tracking. In CVPR, 2008.

[3] C.Tofallis. Model building with multiple dependent
variables and constraints. Journal of the Royal Statistical
Society Series D: The Statistician, 48(3):1–8, 1999.

[4] J. Froehlich, J. Neumann, and N. Oliver. Sensing and
predicting the pulse of the city through shared bicycling. In
IJCAI’09.

[5] M. C. Gonzalez, C. A. H. R., and A.-L. Barabási.
Understanding individual human mobility patterns. Nature,
453:779–782, June 2008.

[6] D. Kuettel, M. D. Breitenstein, L. V. Gool, and V. Ferrari.
What’s going on? discovering spatio-temporal dependencies
in dynamic scenes. In CVPR, 2010.

[7] T. Kuo, Z. Ni, C. D. Leo, and B. Manjunath. Design and
implementation of a wide area large-scale camera network.
In IEEE Workshop on Camera Networks, 2010.

[8] L. Liu, A. Biderman, and C. Ratti. Urban mobility
landscape: Real time monitoring of urban mobility
patterns. In CUPUM’09.

[9] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos.
Anomaly detection in crowded scenes. In CVPR, 2010.

[10] L. McNamara, C. Mascolo, and L. Capra. Media sharing
based on colocation prediction in urban transport. In
MobiCom ’08.


