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ABSTRACT

We investigate the problem of image classification within a super-
vised learning framework that exploits implicit mutual information
in different visual features and their associated classifiers. In our
proposed two stage hierarchical processing, visual features are first
clustered with the objective of maximizing diversity. Majority vote
within each cluster is used to enforce diversity. Many partitioning
variations are evaluated using K-nearest neighbor to obtain the high-
est inter-cluster entropy. In the second step, a richer measure of
discrimination is obtained using a fully connected conditional ran-
dom fields (CRF) over clusters. The unary and interaction potentials
are defined over mutual information within each cluster and inter-
dependencies across clusters respectively. Experimenting over five
distinct datasets, we demonstrate an average performance gain of
30% compared with state of the art techniques.

Index Terms— Image classification, Feature interaction, Diver-
sity maximization, Conditional Random Fields (CRF)

1. INTRODUCTION
A typical image classification workflow includes computing one of
more visual descriptors from a given image, training appropriate
classifiers to discriminate among various classes, and then using the
learned model to classify a given image sample. Alternatively, many
different classifier models can be built from these descriptors (Fig-
ure 1) where the classifier models are then aggregated (Figure 2).
There is an extensive literature on combining weak classifiers, for
example, Fisher Vectors [1], VLAD [2], Random Forests [3] and Ad-
aBoost [4] where most model averaging techniques treat weak clas-
sifiers independently. Recent relationship modeling techniques such
as graphical models [5], fuzzy techniques [6], neural network [7, 8]
or other relationship modeling [9, 10] have shown a better discrim-
ination over higher order interactions. This paper presents a novel
and efficient way of aggregating classifier information by exploiting
the mutual information implicit in the feature descriptors from which
the classifiers are trained.

Our proposed method builds on existing work on classification
based on standard visual descriptors. Weak classifiers are built using
these descriptors to construct class labels in a supervised framework.
Multiple descriptors for each image results in a label vector, where
each component of the vector is the result of classifying one visual
descriptor corresponding to that image. These vectors are then clus-
tered using inter-cluster entropy as the objective function. We then
define our mutual information with the co-occurrence statistics of
cluster labels. Using these clusters, we then build a second stage
classifier with a fully connected conditional random fields (CRF) to
obtain a richer discrimination model. This CRF model learns the im-
plicit dependencies among the visual descriptors. Extensive experi-
mental results of this two-level classification approach demonstrates
the significant performance gain in image classification over state of
the art methods.
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Average  Accuracy: 0.29 

Fig. 1: Individual performance (F1-Score) of Random Forests clas-
sifier with different visual features on MIT8 Scene dataset

2. APPROACH
Consider the classification problem with M weak classifiers and N
classes. Let us assume that each weak classifier returns two values;
x: the classification score (hard prediction of single label), and y:
corresponding regression score (soft prediction score for the predic-
tion x). Let S be a set of images in a dataset, where each image
s can only take one label l from a label set L. Given image s and
an arbitrary classifier, the goal is to predict the correct label l∗ such
that;

l∗ = argmax
l

P (l|x,y) (1)

where y is a sequence of M classification scores and x is a sequence
of M corresponding confidence scores,

x = [x1, ..., xM ] and y = [y1, ..., yM ] (2)

Referring to Figure 2, for example, yM and xM are the label pre-
dictions and corresponding confidence score using the Color-Shape-
Descriptor (CSD). In our experiments, we use Random Forests clas-
sifier for this first layer of classification since it provided the best
performance on our datasets. However, we note that without loss of
generality, the following discussion is applicable independent of the
classifier used in the first layer.

2.1. Diversity Maximization with Clustering

The first level of classification results in the (x,y) vectors as ex-
plained above. Recall that each component yi of y vector corre-
sponds to a decision based on a particular feature (as in yM corre-
sponding the label based on CSD shown in (Figure 2) We would
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Fig. 2: Overview of descriptor aggregation: A number of descrip-
tors are computed for each image and each of these descriptors are
independently classified, resulting in a label vector y whose dimen-
sionality M corresponds to the number of descriptors. The elements
of y are then clustered based on label similarities (Algorithm 1).
Mutual information among these computed clusters are then mod-
eled with conditional random fields (CRF). This two stage cluster-
ing/classification method is then used to label unknown image sam-
ples.

now like to cluster these different visual descriptors based on how
similar their decisions are. For this we explore different clustering
configurations with different parameter settings, with the objective
of finding the best descriptor subsets that are similar in their labels
over the entire training set. We would like to emphasize here that this
clustering results in forming clusters of visual features and NOT the
data items associated with the feature (as is typical with most image
classification methods). At this point, we would have a very large
number of cluster sets, each set could potentially correspond to a par-
ticular choice of the clustering method with the particular number of
clusters. An exhaustive search over these cluster configurations re-
sults in identifying the best partitioning of visual descriptors. We use
the maximum entropy criterion that maximizes inter-cluster separa-
tion while minimizing the intra-cluster entropy. This is explained by
algorithm 1 and the overall framework is shown in Fig. 3.

Training data Ytrain
Q×M contains a total of Q training samples

where M is the total number visual descriptors per sample. The
data is organized as rows in the matrix Y. The elements of this
matrix correspond to the predicted label for the particular data sam-
ple using one of M visual descriptors. Similarly, we construct the
validation matrix Yvalidation

V ×M . The label vectors from the training
data are clustered in many different ways. Each cluster configura-
tion Cm has a number of data partitions that are a function of both
clustering method used and the associated parameter settings (e.g.,
number of desired partitions). Assuming T such configurations, we
have Cm ∈ {C1, C2, ..., CT }. Note that each configuration Cm par-
titions the set of visual descriptors, where the number of such parti-
tions range from a minimum of 1 (all descriptors together) to a maxi-
mum of M (each descriptor is its own group). Consider Cm with M ′

partitions Cm = {Cm(1), · · · , Cm(l), · · · , Cm(M ′)}. We take a
majority vote for the labels associated with each of these partitions
{Cm(l)}, for each data in the training set, to create a new vector
y′ of length M ′. This is our signature vector that characterizes the

Fig. 3: Overall framework of proposed method. The training data
Xtrain

Q×M and Ytrain
Q×M (red box) is the output of arbitrary classifiers

with the corresponding ground truth labels. The rows correspond to
Q training images and the columns correspond to M label prediction
using a particular visual feature. Columns of input matrix are then
clustered using four clustering methods. All computed clusters are
evaluated with K-nearest-neighbor to obtain the best configuration
C*. A CRF model is then used to model dependencies between the
descriptors and their associated labels to further improve the classi-
fication performance.

corresponding data item for the cluster configuration Cm. Each clus-
ter configuration is then evaluated using a validation set with known
ground truth for the labels as follows.

For each item in the validation set and using the cluster configu-
rations Cm computed as above, we map the data items to the corre-
sponding reduced-dimensional label vectors y′(validation). Using
the Hamming distance as the metric, we then compute the K-nearest
neighbors of each y′(validation) from the y′(training). With the
choice of hamming distance we are able to directly measure label
similarities in computing the distance between two predictions. Fi-
nally, a majority vote is taken from this K-nearest neighbor set (using
the ground truth labels associated with the training data) to determine
the label for the data item from the validation set. If two labels have
the same plurality within each cluster we then select one at random.
Finally, the F -score (based on precision/recall) is computed over the
entire validation set, by comparing these predicted labels with the
associated ground truth labels (for validation set), thus giving a per-
formance metric for the corresponding cluster configuration.

These computations are repeated for each of the T cluster con-
figurations and the configuration with the best performance is se-
lected for the second layer. Note that these computations need to be
done only once. In the second layer, a CRF is trained over the lower
dimension feature vectors y′.
Why Clustering?: In principle the CRF model can be built using all
M values of prediction labels. The complexity of CRF model de-
pends highly on the number of connected nodes. A fully connected
graph with the original set of M features is not only computationally
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Algorithm 1 Clustering Optimization with K-NN

input: Prediction label data (Training) Ytrain
Q×M

Prediction label data (Validation) Yvalidation
V ×M

Ground truth labels Ltrain
Q×1 and Lvalidation

V ×1

Q: Number of samples in training set
V : Number of samples in validation set
T : Maximum number of cluster configurations
K: Parameter of K-nearest neighbor

output: Optimum cluster configuration C∗,
for all Cm ∈ {C1, ..., CT } do

1. Cluster Ytrain (Column-Wise)
2. Cluster Yvalidation with identical partitions as (1)
3. Compute majority vote for all clusters
4. Using (3) create a new data Y′ train

Q×M′ &Y′ validation
V ×M′

for all y′ validation ∈Y′ validation do
a. dHamming(y

′ train,y′ validation) =∑M′
m=1 I(y

′ train
m �= y′ validation

m ))
Where I(.) is an indicator function.

b. Sort y′ train with ascending order
c. Select top K corresponding Lvalidation

d. Assign lknn with a Majority Vote at (c)
e. Push the estimated label at d to Lknn

V ×1

end for
5. Evaluate F1 Score(Lknn, Lvalidation) for given Cm

6. Update C∗ for the best performance at (5)
7. Empty Lknn

V ×1

end for

expensive (learning parameters) but also requires an exponentially
increasing number of data items to avoid overfitting [11, 12]. Fur-
ther, the above described clustering steps helps to group “similar”
visual features together, thus creating a robust subset of features on
which the random field model can be built.

2.2. CRF Over Clusters
Following the clustering stage, a graphical model over the clusters
C∗ is learnt to discriminatively label each image pattern. Recall that
each cluster within C∗ contains a number of labels {y} and their
corresponding confidence values {x}. Similar to the cluster label
vector y′, a corresponding cluster confidence vector x′ is computed
by averaging over confidence values within each cluster. The new
decision and confidence vectors x′ and y′ are then used as inputs to
the second layer of CRF model computations.

The training data is used to construct the cluster confidence and
label matrixes, X′

Q×M′ and Y′
Q×M′ . We now construct a fully con-

nected graphical model G = (V,E) such that every node vi cor-
responds to a partition i. Note that M ′ is the number of partitions
as computed by Algorithm 1. In the standard CRF formulation, an
unknown sample is assigned the label l∗ as follows:

l∗ = argmax
l

P (l|x′,y′;α) =
exp{F(x′,y′; l)}
Z(x′,y′; l,α)

(3)

where Z(.) is the partitioning function,

F(x′,y′; l′) =
M′∑

i=1

αnfn(x
′
i; l) +

∑

i

∑

j<i

αefe(y
′
i, y

′
j ; l) (4)

Alternatively, we can rewrite the conditional likelihood as,

(a) UAV (b) Bering Sea

Fig. 4: Sample images from two of the datasets

P (l|x′,y′;α) =
exp{∑i αnfn(i; l) +

∑
i

∑
j<i αefe(i, j; l)}

Z(x′,y′; l,α)

Unary and Interaction Potentials: Unary potentials measure the
influence of each node and interaction potentials capture the influ-
ence of each possible pairwise configurations among clusters. We
average the confidence measure at each node as an estimate of the
significance of that node,

fn(i; l) =
1

Ni

∑

k

xi:k ∀x ∈ cluster k (5)

Ni is the number of components (i.e., descriptors that are
grouped together) in cluster i. The edge potentials are computed as
proportional to the co-occurrences of labels associated with nodes i
and j,

fe(i, j; l) = − logP (l|y′
i, y

′
j ;μij)

= − log
1

1 + exp−{∑μij
ϕij(y′

i, y
′
j ; l)}

where CRF hyper-parameter μij indicates the connectivity of node i
and j which in our setup is the fully connected structure and ϕij(.) is
the weighted sum of different co-occurrences. The above is a stan-
dard CRF formulation adapted to our current problem. For more
details on the CRF formulation and parameter estimation we refer to
[13]. The training process includes using a labeled set of images and
the associated descriptors to learn the CRF model for each possible
label. During testing, the CRF model is used to estimate the label
with the highest conditional probability as given by Equation (3).
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List of
Datasets

Number of
Labels

Number of
Features

Independent

Base Accuracy

Independent

Max Accuracy

CRF Avg

Accuracy with C∗
CRF Max

Accuracy with C∗

BeringSea 20 29 37.20 53.42 59.81 77.53
Flower 20 29 22.69 69.56 73.14 79.01
UAV 5 29 63.41 83.78 88.81 93.99

ImageClef(07) 20 29 78.14 82.03 82.14 83.34

Table 1: Experimental results over 5 datasets: The second column contains the number of labels in every dataset, the third has the number
of features used for every dataset, the fourth indicates the base performance when using Random Forests with independent visual features
averaged over all labels, the fifth shows the performance of the label with highest accuracy, the sixth column is the performance of final
classification (after CRF) averaged over all labels and the seventh shows the final performance (after CRF) of the label with highest accuracy

3. EXPERIMENTS
Datasets: We used five datasets to demonstrate the efficacy of the
proposed method: The ImageCLEF 2011 (IC) plant identifica-
tion dataset contains 5436 images of 71 tree species from French
Mediterranean area [14]. MIT Scene (MIT) contains 2600 images
of 8 scenes [15]. The Flower (FL) dataset [16] contains 8189 im-
ages with the 20 most common classes out of 102 available. The
UAV Dataset (UV) is aerial view dataset acquired with our UAV
and contains 800 high resolution samples for 5 specie of vegetation
(Fig. 4a). Bering Sea Canyons (BS) dataset contains 23 hours of
annotated HD video. The dataset has 54 different species [17] of
which we choose 19 most common classes (Fig. 4b).
Clustering Techniques: For clustering, we used the following four
widely used methods: KMeans [18], Spectral Clustering [19], Hi-
erarchical clustering [18], and Affinity Propagation [20]. For each
method, the entire range of possible number of clusters is explored
by tuning the appropriate method-specific parameters, and Algo-
rithm 1 is used to identify the optimal clustering strategy. Figure
3 shows an example of such clustering for one of the datasets.

Fig. 5: Performance improvement in classification of Bering Sea
Canyons (BS) Dataset when CRF is built over the clusters using 29
visual features. The solid line indicates the performance of K-nearest
neighbor with Spectral Clustering as the number of clusters is varied
from 1 to 29 clusters. Dashed line indicates the final performance
using each cluster configuration. Similar patterns are observed with
other datasets.

Evaluation and Results: Our experiments, summarized in Table 1,
over five different datasets demonstrate that the proposed method
consistently outperforms other commonly used aggregation meth-
ods, including Random Forests. The maximum gain in base accu-
racy after CRF (Column 4 and Column 6 of Table 1) is 50.45% for
the Flower dataset, while the least gain iss 4% for the ImageClef(07)
dataset. Similarly, the maximum performance gain for the best la-
bel after CRF (Column 5 and Column 7 of Table 1) is 24.11% for

Dataset

Accuracy

MV on Features

Independent

Base Accuracy

CRF Avg.

Accuracy with C∗
Number of

Clusters in C∗

BeringSea 51.14 37.20 59.81 11
Flower 68.65 22.69 73.14 18
Aerial 79.03 63.41 88.81 12

ImageClef(07) 81.19 78.14 82.14 10
MIT 63.55 29.14 78.56 33

Table 2: Here we compare Random Forests (RF) classifier with CRF
on clustered features. The second column shows the base perfor-
mance when majority vote (MV) is performed over M label pre-
dictions using RF (as explained in Section 2.1). The third column
indicates the base performance when using RF with independent vi-
sual features averaged over all labels. From the third column, it is
clear that there is a significant performance loss during averaging the
label predictions. The fourth column shows the Performance Gain
obtained after using CRF over the clusters. Finally, the fifth column
shows the number of clusters for the best cluster configuration.

the Bering Sea dataset, while the least gain is 1.2% for the Image-
Clef(07) dataset. The average performance gain over all five datasets
is 30.4%. In Table 2 we see that there is a significant Performance
Loss in base accuracy when using Random Forests on visual features
that are averaged over the labels (Column 3). Similarly, there is also
a Performance Gain (Column 4) after using CRF on the clusters.

Improved Classification using CRF: In Figure 5 we show the per-
formance of CRF over different number of clusters. As shown in the
graph, the CRF built over the clustered data consistently performs
better over a wide range of clustering configurations. Note that in-
creasing the number of clusters does not result in any significant
performance gain, while a larger number of clusters results in high
computational cost. For instance, for the 11-cluster configuration,
the CRF training took about 2 hours on a standard desktop whereas
with 29 clusters it took 5 days on the same computer. For an un-
known sample classification, most of the computing complexity is
in the descriptor calculations which can be easily parallelized.

4. CONCLUSION
We described a two step hierarchical approach for image classifica-
tion. In the first step visual features are clustered with the objective
of maximizing inter-cluster entropy. We then take the majority vote
within each cluster. In the second stage, a CRF model is used to
capture the inter-cluster dependencies for enhancing the discrimina-
tive power. Our extensive experiments over 5 datasets show that by
leveraging the mutual information implicit in the visual features, sig-
nificant performance gain can be obtained for image classification.
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