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ABSTRACT
In this paper, we propose a novel multi-scale edge detection
and vector field design scheme. We show that using multi-
scale techniques edge detection and segmentation quality
on natural images can be improved significantly. Our ap-
proach eliminates the need for explicit scale selection and
edge tracking. Our method favors edges that exist at a wide
range of scales and localize these edges at finer scales. This
work is then extended to multi-scale image segmentation us-
ing our anisotropic diffusion scheme.

1. INTRODUCTION

Most edge detection algorithms specify a spatial scale at
which the edges are detected. Typically, edge detectors uti-
lize local operators and the effective area of these local oper-
ators define this spatial scale. The spatial scale usually corre-
sponds to the level of smoothing of the image, for example,
the variance of the Gaussian smoothing. At small scales cor-
responding to finer image details, edge detectors find inten-
sity jumps in small neighborhoods. At the small scale, some
of these edge responses originate from noise or clutter within
the image and these edges are clearly not desirable. More in-
teresting edges are the ones that also exist at larger scales
corresponding to coarser image details. When the scale is in-
creased, most noise and clutter is eliminated in the detected
edges, but as a side effect the edges at large scales are not as
well localized as the edges at smaller scales. For example, it
has been shown [1] that smoothing the image with Gaussian
filters of increasing variances causes the edges to move from
their actual locations. To achieve good localization and good
detection of edges, a multi-scale approach is needed. Fig. 1
shows an example of how multi-scale edge detection, using
the methods developed in this paper, can precisely localize
edges while removing the unwanted noise and clutter. As
can be seen, the multi-scale edge detection result in Fig. 1(c)
is cleaner than the one in 1(b) and localizes edges better than
the result shown in 1(d).

Edge detection and analysis of edges at multiple scales
has a rich history since the early days of edge detection [2-
4]. Both fine to coarse [3] and coarse to fine [5] approaches
for combining edges from a range of scales have been inves-
tigated. Most of these works are based on first finding an
edge representation at each scale and then combining them
using certain heuristics. For fine to coarse methods, usually
the smallest scale that results in a good edge detection is se-
lected at each local neighborhood of the image. Along these
lines, Canny [4] proposed a fine to coarse method called fea-
ture synthesis.

A general trend in many of the multi-scale methods is
combining single scale edge detector outputs at multiple

(a) (b) (c) (d)

Figure 1: Localized and clean edges using multiple scales. a)
Original image. b) Edge strengths at spatial scaleσ = 1, c)
using scales fromσ = 1 toσ = 4. d) atσ = 4. Edges are not
well localized atσ = 4.

scales and generating a synthesis of these edges. On the
other hand, it is desirable that the multi-scale information
is integrated to the edge detection at an earlier stage and the
edge detection operation automatically results in multi-scale
edges.

More recent multi-scale edge detection techniques are
based on estimating optimum scales for local neighborhoods
within the image [6-8]. Lindeberg [6] analyzes the scale
space representation of edge strengthsξ (x,y, t), wheret cor-
respond to a continuous scale, from a differential geometric
point of view. The optimum scale at a point is chosen as
the scale at whichξ has a maximum in thet direction. A
more interesting approach comes from Tabb and Ahuja [8].
This technique is based on designing a vector field for edge
detection and image segmentation. The edges are marked
as the location where the vectors diverge from each other in
opposite directions. The idea of designing a vector field for
edge detection is very similar to the Edgeflow technique [9].
Tabb and Ahuja create these vectors by analyzing a neigh-
borhood around each pixel. For a multi-scale representation,
the optimum neighborhood size changes from pixel to pixel
and needs to be estimated. The technique accepts a para-
meter that specifies a desired homogeneity level within re-
gions. Using this homogeneity parameter, the neighborhood
size and the spatial scale are estimated at each pixel adap-
tively.

Another approach to multi-scale edge detection and seg-
mentation is Perona-Malik flow [10]. Anisotropic diffusion
is based on preventing smoothing around the edge locations.
This is equivalent of applying Gaussian smoothing with a
spatially adaptive variance. A pixel within an homogenous
region is smoothed with a Gaussian of large variance whereas
a pixel close to an edge is smoothed at a smaller scale.

An important question still remains. Should the image



be analyzed from fine scale to coarse scale or vice versa? In
general, this should not matter for a well designed comput-
erized system. Experiments [11] show that neurons in the
visual cortex of Old World monkeys1 are tuned from coarse
scales to fine scales. It can be easily argued that at first sight
we analyze a scene at a coarse scale and over time we start
seeing the finer details. Similarly for a computer vision sys-
tem, it is desirable that the edges exist at both coarse and
fine scales, and the localization of these edges are decided at
the finest scale. Note that a boundary at coarse scale might
consist of several boundaries at the fine scale when the detail
level is increased.

In the next section we will design and propose a multi-
scale edge detection method. Our technique is motivated
from a geometrical point of view. Unlike previous work in
this area, it is not necessary to estimate a scale locally. The
objective is to detect edges that exist at both coarse and fine
scales, and localize them at the finest scale. In Section 3, we
extend our method to multi-scale image segmentation.

2. MULTI-SCALE EDGEFLOW VECTOR FIELD
AND EDGE DETECTION

Ma and Manjunath introduced a methodology [9] for creat-
ing the Edgeflow vector field at a user defined spatial scale.
This vector field is then used for edge detection and image
segmentation. Image segmentation is generated in a ad hoc
way from the edges by edge linking. We are more inter-
ested in the vector field design and edge detection parts of
this work. Edgeflow vector field is designed in a way such
that the vector flow is towards the boundary at either side of
the boundary. For detecting the edges, first a way of vector
propagation is applied to the vector field to enhance the edge
locations. Edges are then labeled as the locations where vec-
tor field reverses its direction. To detect edge locations,x and
y components of the vector field are checked for sign changes
(along thex andy directions) and the pixel that changes from
positive to negative is labeled as the edge pixel. The edge
strength equals the absolute difference of the magnitudes at
the transition. Our primary purpose in this section is to de-
fine a multi-scale vector field that is based on the Edgeflow
technique. We will then utilize this multi-scale vector field
for multi-scale edge detection. In Section 3, the same vec-
tor field will also be used for image segmentation within our
anisotropic diffusion framework.

First let us summarize the changes we made to the vec-
tor field generation and edge detection procedures that are
proposed by the original Edgeflow technique.

• Instead of using the gradient of the smoothed image for
computing the vector magnitudes, we utilize relative di-
rectional differences.

• We do not apply the vector propagation stage proposed
in [9].

• We reduce the Gaussian offset from 4σ to σ . σ is more
suitable for gray-scale edge detection, while 4σ is shown
to be effective on texture features.

Our main goals in designing the multi-scale edge detector
are:

• Localize edges at the finer scales.

1Old World monkeys are a family of monkeys including baboons and
macaques.

• Suppress edges that disappear quickly when scale is in-
creased. These are mostly spurious edges that are de-
tected at the fine scale because of noise and clutter in the
image but do not form salient image structures.

• Favor edges or edge neighborhoods2 that exist at both
fine and coarse scales.
In generating our vector field, we will explicitly use a fine

to coarse strategy. On the other hand, our multi-scale frame-
work also conducts coarse to fine edge detection implicitly.
Take s1 as the finest (starting) scale ands2 as the coarsest
(ending) scale. We are interested in analyzing an image be-
tween scaless1 ands2 for finding the edges. The units for
scales are in pixels. All images used in this paper are of size
240×160. The interval[s1,s2] is sampled with increments
of ∆s. In [5], Bergholm uses∆s= 0.5 such that dislocation
of edges for successive scales is less than a pixel. Similarly,
we will also set∆s to 0.5. The algorithm for generating the
multi-scale Edgeflow vector field is given in Algorithm 2.1.

Algorithm 2.1 Algorithm for generating a multi-scale Edge-
flow vector field.

Let I(x,y) be the image.
Let C be a positive constant (e.g. 15).
Let A be a positive constant corresponding to an angle (e.g.
π/4).
Let s1 be the smallest ands2 be the largest spatial scale at
which we are interested in analyzing the image for edges.
Let ∆s= 0.5 pixel be the sampling interval for the scale.
From I , calculate the initial vector field~Sat scales= s1.
while s< s2 do

Sets= s+∆s.
Calculate Edgeflow vector field~T at scales.
M = Max(‖~S‖)
for all Pixel (x,y) in I do

if ‖~S(x,y)‖ < M
C then

~S(x,y) = ~T(x,y)
else if The angle between~S(x,y) and~T(x,y) is less
thanA then

~S(x,y) =~S(x,y)+~T(x,y)
else

~S(x,y) is kept the same.
end if

end for
end while
The final~Sgives the multi-scale Edgeflow vector field.

As can be seen, the vector field that is generated at scale
s1 is selectively updated using the vector fields from larger
scales. The vector field update procedure can be interpreted
as follows: At a small scale, the vector field only exists on a
thin line along the edges. Therefore, within the homogenous
areas the vectors are of zero length. With increasing scale
the reach–coverage area–of the vector field also gets thicker.
First of all, we want to preserve the edges detected at the fine
scale, which implies that we preserve strong vectors from
the fine scale. We also would like to fill the empty areas
with vectors from larger scales. The main reason for this is
that some edges that do not exist at fine scales, the so called

2For larger scales, edges are displaced from their original locations. For
this reason, it makes more sense to discuss edge neighborhoods when larger
scales are considered.



shadow, shading or blur edges, will be captured at the larger
scales. For these reasons, we check if‖~S(x,y)‖ < M

C , and if
so, fill this pixel with a vector from a larger scale.

Note also that the proposed method favors edges that ex-
ist at multiple scales and suppress edges that only exist at
finer scales. The strength of the edges are represented by the
strength of the vectors at the edge location where the vector
field changes its direction. If the vector directions match at
multiple scales, this means that the edges exist at multiple
scales. Based on this observation, we check the vector direc-
tions from larger and finer scales and if they match, we sum
the vectors up to strengthen the edge.

Another possibility is that the edge is shifted from its
original location at the larger scale. In that case, the vec-
tor at the pixel that is in between the original (small scale)
edge and the shifted (large scale) edge will change its direc-
tion by 180 degrees. As we discussed before, we favor the
edge localization at the finer scale. Therefore the new vector
from the larger scale is ignored and the vector from the finer
scale is preserved.

Figure 2 shows the results of multi-scale edge detection
with s1 = 1, s2 = 4, ∆s= 0.5, C = 15, andA = π/4. Multi-
scale edge detection results are compared to edge detection
results atσ = 1 andσ = 4. These results show that the results
corresponding toσ = 1 localizes edges very well but detect
clutter and noise as edges. The results corresponding toσ =
4 include cleaner results but the edges are not well localized
(See Figure 2h). On the other hand, by combining results
from scales 1 to 4, we are able achieve edge detection results
that both localize edges precisely (as inσ = 1) and create a
cleaner edge detection (as inσ = 4).

The main advantage of our method is that there is no need
to estimate local scales at each pixel. The vector field is de-
signed to contain cues from multiple scales and the scale se-
lection is implicit within the multi-scale vector field. Our
approach is able to localize edges with no extra and external
effort such as tracking edges or analyzing the displacement of
corners, junctions etc., in scale space. Edge detection results
show that the edges are localized as desired and salient struc-
tures existing at both fine and coarse scales are captured. In
the next section we show a multi-scale segmentation method
using the vector field designed in this section.

3. MULTI-SCALE IMAGE SEGMENTATION

In Section 2, we designed a multi-scale Edgeflow vector field
and utilized this vector field for multi-scale edge detection.
Another interesting application of this vector field is multi-
scale image segmentation. In [12, Chapter 3], we intro-
duced a new variational segmentation method that is based
on anisotropic diffusion. This anisotropic diffusion scheme
utilizes a vector field to find the boundaries. Simply replac-
ing this vector field with the multi-scale Edgeflow vector
field, we are able to achieve a multi-scale image segmenta-
tion.

The multi-scale segmentation is achieved as follows.
From the multi-scale vector field, we first generate an edge
stopping functionV by solving a poisson equation:

~∇ ·~S= −∆V (1)

where~S is the Edgeflow vector field. Using the vector field
and edge stopping function, segmentation is defined as the
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Figure 2: Demonstration of multi-scale edge detection. a and
e) Original images. b and f) Edge strengths at spatial scale
σ = 1 pixel. c and g) Multi-scale edge detection using scales
from σ = 1 to σ = 4. d and h) Edge strengths at scaleσ = 4
pixels.

convergence of the following anisotropic diffusion:

It = αVκ‖∇I‖+β~S·∇I (2)

Fig. 3 demonstrates the behavior of the multi-scale seg-
mentation compared to segmentations at the fine and coarse
scales. The results show that using a multi-scale approach we
are able to capture salient structures from a range of scales.
It is to be noted that region merging using fine scale segmen-
tation will not usually give the similar results as our multi-
scale segmentation. For example, in Figures 3 (b-d), there
are certain boundaries and structures that emerge as the scale
increases and these boundaries are not captured or do not
exist at the smaller scales. Figures 3 (e-h) demonstrate the
excellent edge localization property of our multi-scale algo-
rithm. Fig. 3 (i-n) show another example of a multi-scale
segmentation and shows the better localization of the edges
around the head area using multi-scale approach compared
to segmentation at scaleσ = 6.
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Figure 3: a) Original image. b) Segmentation result at spatial
scaleσ = 1.5. c) Segmentation result atσ = 6. d) Multi-
scale segmentations using scalesσ = 1.5 to σ = 6. e) Detail
around the head area. f) Detail forσ = 1.5 g) Detail forσ = 6
h) Detail for multi-scale segmentation. i) Original image. j)
Segmentation result atσ = 1.5. k) Segmentation result at
σ = 6. l) Multi-scale segmentations using scalesσ = 1.5 to
σ = 6. m) Detail around head area forσ = 6. n) Detail for
multi-scale segmentation.

4. CONCLUSIONS

In this paper, we have shown that using multi-scale tech-
niques edge detection and segmentation quality on natural
images can be improved significantly. We proposed a novel
multi-scale edge detection and vector field design scheme.
Our approach eliminated the need for scale selection and
edge tracking, which has been the main focus of the previous
work in this area. Our objective is to find and favor edges
that exist at a wide range of scales and localize these edges
at finer scales. This work is then extended to multi-scale seg-
mentation using our anisotropic diffusion scheme.
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