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Abstract

Image Steganalysis: Hunting & Escaping

Kenneth Mark Sullivan

Image steganography, the covert embedding of data into digital pictures, rep-

resents a threat to the safeguarding of sensitive information and the gathering

of intelligence. Steganalysis, the detection of this hidden information, is an in-

herently difficult problem and requires a thorough investigation. Conversely, the

hider who demands privacy must carefully examine a means to guarantee stealth.

A rigorous framework for analysis is required, both from the point of view of the

steganalyst and the steganographer. In this dissertation, we lay down a foundation

for a thorough analysis of steganography and steganalysis and use this analysis

to create practical solutions to the problems of detecting and evading detection.

Detection theory, previously employed in disciplines such as communications and

signal processing, provides a natural framework for the study of steganalysis, and

is the approach we take. With this theory, we make statements on the theoretical

detectability of modern steganography schemes, develop tools for steganalysis in a

practical scenario, and design and analyze a means of escaping optimal detection.

Under the commonly used assumption of an independent and identically dis-

tributed cover, we develop our detection-theoretic framework and apply it to the

x



steganalysis of LSB and quantization based hiding schemes. Theoretical bounds

on detection not available before are derived. To further increase the accuracy

of the model, we broaden the framework to include a measure of dependency

and apply this expanded framework to spread spectrum and perturbed quanti-

zation hiding methods. Experiments over a diverse database of images show our

steganalysis to be effective and competitive with the state-of-the-art.

Finally we shift focus to evasion of optimal steganalysis and analyze a method

believed to significantly reduce detectability while maintaining robustness. The

expected loss of rate incurred is analytically derived and it is shown that a high

volume of data can still be hidden.
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Chapter 1

Introduction

Image steganography, the covert embedding of data into digital pictures, rep-

resents a threat to the safeguarding of sensitive information and the gathering

of intelligence. Steganalysis, the detection of this hidden information, is an in-

herently difficult problem and requires a thorough investigation. Conversely, the

hider who demands privacy must carefully examine a means to guarantee stealth.

A rigorous framework for analysis is required, both from the point of view of the

steganalyst and the steganographer.

The main contribution of this work is the development of a foundation for the

thorough analysis of steganography and steganalysis and the use of this analysis

to create practical solutions to the problems of detecting and evading detection.

Image data hiding is a field that lies in the intersection of communications and

image processing, so our approach employs elements of both areas. Detection

theory, employed in disciplines such as communications and signal processing,

1



Introduction Chapter 1

provides a natural framework for the study of steganalysis. Image processing

provides the theory and tools necessary to understand the unique characteristics

of cover images. Additionally, results from fields such as information theory and

pattern recognition are employed to advance the study.

1.1 Data Hiding Background

As long as people have been able to communicate with one another, there has

been a desire to do so secretly. Two general approaches to covert exchanges of

information have been: communicate in a way understandable by the intended

parties, but unintelligible to eavesdroppers; or communicate innocuously, so no

extra party bothers to eavesdrop. Naturally both of these methods can be used

concurrently to enhance privacy. The formal studies of these methods, cryptogra-

phy and steganography, have evolved and become increasingly more sophisticated

over the centuries to the modern digital age. Methods for hiding data into cover

or host media, such as audio, images, and video, were developed about a decade

ago (e.g. [89], [101]). Although the original motivation for the early development

of data hiding was to provide a means of “watermarking” media for copyright pro-

tection [58], data hiding methods were quickly adapted to steganography [2, 55].

See Figure 1.1 for a schematic of an image steganography system. Although wa-
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Figure 1.1: Hiding data within an image.

termarking and steganography both imperceptibly hide data into images, they

have slightly different goals, and so approaches differ. Watermarking has modest

rate requirements, only enough data to identify the owner is required, but the

watermark must be able to withstand strong attacks designed to strip it out (e.g.

[90], [73]). Steganography generally is subjected to less vicious attacks, however

as much data as possible is to be inserted. Additionally, whereas in some cases

it may actually serve a watermarker to advertise the existence of hidden data, it

is of paramount importance for a steganographer’s data to remain hidden. Nat-

urally however, there are those who wish to detect this data. On the heels of

developments in steganography come advances in steganalysis, the detection of

images carrying hidden data, see Figure 1.2.
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Figure 1.2: Steganalysis flow chart.

1.2 Motivation

The general motivation for steganalysis is to remove the veil of secrecy desired

by the hider. Typical uses for steganography are for espionage, industrial or

military. A steganalyst may be a company scanning outgoing emails to prevent

the leaking of proprietary information, or an intelligence gatherer hoping to detect

communication between adversaries.

Steganalysis is an inherently difficult problem. The original cover is not avail-

able, the number of steganography tools is large, and each tool may have many

tunable parameters. However because of the importance of the problem there

have been many approaches. Typically an intuition on the characteristics of

cover images is used to determine a decision statistic that captures the effect of

data hiding and allow discrimination between natural images and those contain-

ing hidden data. The question of the optimality of the statistic used is generally

left unanswered. Additionally, the question of how to calibrate these statistics is

also left open. We have therefore seen an iterative process of steganography and
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steganalysis: a steganographic method is detected by a steganalysis tool, a new

steganographic method is invented to prevent detection, which in turn is found to

be susceptible to an improved steganalysis. It is not known then what the limits

of steganalysis are, an important question for both the steganographer and ste-

ganalyst. It is hoped by careful analysis that some measure of optimal detection

can be obtained.

1.3 Main Contributions

• Detection-theoretic Framework. Detection theory is well-developed

and is naturally suited to the steganalysis problem. We develop a detection-

theoretic approach to steganalysis general enough to estimate the perfor-

mance of theoretically optimal detection yet detailed enough to help guide

the creation of practical detection tools [21, 85, 20].

• Practical Detection of Hiding Methods. In practice, not enough infor-

mation is available to use optimal detection methods. By devising methods

of estimating this information from either the received data, or through su-

pervised learning, we created methods that practically detect three general

classes of data hiding: least significant bit (LSB) [21, 85, 20], quantization

5
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index modulation (QIM) [84], and spread spectrum (SS) [87, 86]. These

methods compare favorably with published detection schemes.

• Expand Detection-theoretic Approach to Include Dependencies.

Typically analysis of the steganalysis problem has used an independent and

identically distributed (i.i.d.) assumption. For practical hiding media, this

assumption is too simple. We take the next logical step and augment the

analysis by including Markov chain data, adding statistically dependent

data to the detection-theoretic approach [87, 86].

• Evasion of Optimal Steganalysis. From our work on optimal steganal-

ysis, we have learned what is required to escape detection. We use our

framework to guide evasion efforts and successfully reduce the effectiveness

of previously successful detection for dithered QIM [82]. This analysis is

also used to derive a formulation of the rate of secure hiding for arbitrary

cover distributions.

1.4 Notation, Focus, and Organization

We refer to original media with no hidden data as cover media, and media

containing hidden data as stego media (e.g. cover images, stego transform co-

efficients). The terms hiding or embedding are used to denote the process of
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adding hidden data to an image. We use the term robust to denote the abil-

ity of a data hiding scheme to withstand changes incurred to the image be-

tween the sender and intended receiver. These changes may be from a mali-

cious attack, transmission noise, or common image processing transformations,

most notably compression. By detection, we mean that a steganalyst has cor-

rectly classified a stego image as containing hidden data. Decoding is used to

denote the reception of information by the intended receiver. We use secure in

the steganographic sense, meaning safe from detection by steganalysis. We use

capital letters to denote a random variable, and lower case letters to denote the

value of its realization. Boldface indicates vectors (lower case) and matrices (up-

per case). For probability mass functions we use either vector/matrix notation:

p(X) : p
(X)
i = P (X = i), M

(X)
ij = P (X1 = i, X2 = j) or function notation:

PX(x) = P (X = x), PX1,X2(x1, x2) = P (X1 = x1, X2 = x2) where context deter-

mines which is more convenient. A complete list of symbols and acronyms used

is provided in the Appendix.

Classification between cover and stego is often referred to as “passive” ste-

ganalysis while extracting hidden information is referred to as “active” steganal-

ysis. Extraction can also be used as an attack on a watermarking system: if the

watermark is known, it can easily be removed without distorting the cover image.

In most cases, the extraction is actually a special case of cryptanalysis (e.g. [62]),

7
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a mature field in its own right. We focus exclusively on passive steganalysis and

drop the term “passive” where clear. To confuse matters, the literature also often

refers to a “passive” and “active” warden. In both cases, the warden controls

the channel between the sender and receiver. A passive warden lets an image

pass through unchanged if it is judged to not contain hidden data. An active

warden attempts to destroy any possible hidden data by making small changes to

the image, similar in spirit to a copyright violator attempting to remove a water-

mark. We generally focus on the passive warden scenario, since many aspects of

the active warden case are well studied in watermarking research. However, we

discuss the robustness of various hiding methods to an active warden and other

possible attacks/noise.

Furthermore, though data hiding techniques have been developed for audio,

image, video, and even non-multimedia data sources such as software [91], we fo-

cus on digital images. Digital images are well suited to data hiding for a number

of reasons. Images are ubiquitous on the Internet; posting an image on a web-

site or attaching a picture to an email attracts no attention. Even with modern

compression techniques, images are still relatively large and can be changed im-

perceptibly, both important for covert communication. Finally there exist several

well-developed methods for image steganography, more than for any other data

hiding medium. We focus on grayscale images in particular.

8
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To provide context for our examination of steganalysis, in the following chapter

we review steganography and steganalysis research presented in the literature. In

Chapter 3, we explain the detection-theoretic framework we use throughout the

study, and apply it to the steganalysis of LSB and QIM hiding schemes. In

Chapter 4, we broaden the framework to include a measure of dependency and

apply this expanded framework to SS and PQ hiding methods. In Chapter 5, we

shift focus to evasion of optimal steganalysis and analyze a method believed to

significantly reduce detectability while maintaining adequate rate and robustness.

We summarize our conclusions and discuss future research directions in Chapter 6.

9



Chapter 2

Steganography and Steganalysis

We here survey the concurrent development of image steganography and ste-

ganalysis. Research and development of steganography preceded steganalysis,

and steganalysis has been forced to catch up. More recently, steganalysis has

had some success and steganographers have had to more carefully consider the

stealthiness of their hiding methods.

2.1 Basic Steganography

Digital image steganography grew out of advances in digital watermarking.

Two early watermarking methods which became two early steganographic meth-

ods are: overwriting the least significant bit (LSB) plane of an image with a

message; and adding a message bearing signal to the image [89].

The LSB hiding method has the advantage of simplicity of encoding, and a

guaranteed successful decoding if the image is unchanged by noise or attack. How-
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ever the LSB method is very fragile to any attack, noise, or even standard image

processing such as compression [52]. Additionally, because the least significant

bit plane is overwritten, the data is irrecoverably lost. For the steganographer,

however, there are many scenarios with which the image remains untouched, and

the cover image can be considered disposable. As such, LSB hiding is still very

popular today; a perusal of tools readily available online reveals numerous LSB

embedding software packages [74]. We examine LSB hiding in greater detail in

Chapter 3.

The basic idea of additive hiding is straightforward. Typically the binary mes-

sage modulates a sequence known by both encoder and decoder, and this is added

to the image. This simplicity lends itself to adaptive improvements. In particular,

unlike LSB, additive hiding schemes can be designed to withstand changes to the

image such as JPEG compression and noise [101]. Additionally, if the decoder

correctly receives the message, he or she can simply subtract out the message

sequence, recovering the original image (assuming no noise or attack). Much

watermarking research then has focused on additive hiding schemes, specifically

improving robustness to malicious attacks (e.g. [73],[90]) deliberately designed to

remove the watermark.

A commonly used adaptation of the additive hiding scheme is the spread

spectrum (SS) method introduced by Cox et al [19]. As suggested by the name,

11
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the message is spread (whitened) as is typically done in many applications such as

wireless communications and anti-jam systems [66], and then added to the cover.

This method, with various adaptations, can be made robust to typical geometric

and noise adding attacks. Naturally newer attacks are created (e.g. [62]) and new

solutions to the attacks are proposed. As with LSB hiding, spread spectrum and

close variants are also used for steganography [60, 31]. We describe SS hiding in

greater detail in Chapter 4.

An inherent problem with SS hiding, and any additive hiding, is interference

from the cover medium. This interference can cause errors at the decoder, or

equivalently, lowers the amount of data that can be accurately received. However,

the hider has perfect knowledge of the interfering cover; surely the channel has a

higher capacity than if the interference were unknown. Work done by Gel’Fand

and Pinsker [39], as well as Costa [17], on hiding in a channel with side information

known only by the encoder show that the capacity is not effected by the known

noise at all. In other words, if the data is encoded correctly by the hider, there

is effectively no interference from the cover, and the decoder only needs to worry

about outside noise or attacks. The encoder used by Costa for his proof is not

readily applicable. However, for the data hiding problem, Chen and Wornell

proposed quantization index modulation QIM [14] to avoid cover interference.

This coding method and its variants achieve, or closely achieve, the capacity

12
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predicted by Costa. The basic idea is to hide the message data into the cover

by quantizing the cover with a choice of quantizer determined by the message.

The simplest example is so-called odd/even embedding. With this scheme, a

continuous valued cover sample is used to embed a single bit. To embed a 0, the

cover sample is rounded to the nearest even integer, to embed a 1, round to the

nearest odd number. The decoder, with no knowledge of the cover, can decode

the message so long as perturbations (from noise or attack) do not change the

values by more than 0.5. Other similar approaches have been proposed such as

the scalar Costa scheme (SCS) by Eggers et al [25]. This class of embedding

techniques is sometimes referred to as quantization-based techniques, dirty paper

codes (from the title of Costa’s paper), and binning methods [104]; we use the

term QIM. As the expected capacity is higher than the host interference case,

QIM is well suited for steganographic methods [81, 54]. This hiding technique in

described in greater detail in Chapter 3.

All of the above methods can be performed in the spatial domain (i.e. pixel val-

ues) or in some transform domain. Popular transforms include the two-dimensional

discrete cosine transform (DCT), discrete Fourier transform (DFT) [50] and dis-

crete wavelet transforms (DWT) [92]. These transforms may be performed block-

wise, or over the entire image. For a blockwise transform, the image is broken

into smaller blocks (8× 8 and 16× 16 are two popular sizes), and the transform
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is performed individually on each block. The advantage of using transforms is

that it is generally easier to balance distortion introduced by hiding and robust-

ness to noise or attack in the transform domain then in the pixel domain. These

transforms can in principle be used with any hiding scheme. LSB hiding however

requires digitized data, so continuous valued transform coefficients must be quan-

tized. Transform LSB hiding is therefore generally limited to compressed (with

JPEG [94] for example) images, in which the transform coefficients are quantized.

Additionally, QIM has historically been used much more often in the transform

domain.

We have then three main categories of hiding methods: LSB, SS, and QIM.

Data hiding is an active field with new methods constantly introduced, and cer-

tainly some of these do not fit into these three categories. However the three

we focus on are the most commonly used today, and provide a natural starting

point for study. In addition to immediately applicable results, it is hoped that the

analysis of these schemes yields findings adaptable to future developments. We

now examine some of the steganalysis methods introduced over the last decade

to detect these schemes, particularly the popular LSB method. Steganography

research has not been idle, and we also review the hider’s response to steganalysis.
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2.2 Steganalysis

There is a myriad of approaches to the steganalysis problem. Since the gen-

eral steganalysis problem, discriminating between images with hidden data and

images without, is very broad, some assumptions are made to obtain a well-posed

problem. Typically these assumptions are made on the cover data, the hiding

method, or both. Each steganalysis method presented here uses a different set

of assumptions; we look at the advantages and disadvantages of these various

approaches.

2.2.1 Detecting LSB Hiding

An early method used to detect LSB hiding is the χ2 (chi-squared) technique

[100], later successfully used by Provos’ stegdetect [69] for detection of LSB hiding

in JPEG coefficients. We first note that generally the binary message data is

assumed to be i.i.d. with the probability of 0 equality to the probability of 1. If the

hider’s intended message does not have these properties, a wise steganographer

would use an entropy coder to reduce the size of the message; the compressed

version of the message should fulfill the assumptions. Because 0 and 1 are equally

likely, after overwriting the LSB, it is expected that the number of pixels in a pair

of values which share all but the LSB are equalized, see Figure 2.1. Although
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Figure 2.1: Hiding in the least significant bit tends to equalize adjacent his-
togram bins that share all other bits. In this example of hiding in 8-bit values,
the number of pixels with grayscale value 116 becomes equal to the number with
value 117.

we would expect these numbers to be close before hiding, we do not expect them

to be equal in typical cover data. Due to this effect, if a histogram of the stego

data is taken over all pixel values (e.g. 0 to 255 for 8-bit data), a clear “step-

like” trend can be seen. We know then exactly what the histogram is expected

to look like after LSB hiding in every pixel (or DCT coefficient). The χ2 test is

a goodness-of-fit measure which analyzes how close the histogram of the image

under scrutiny is to the expected histogram of that image with embedded data.

If it is “close”, we decide it has hidden data, otherwise not. In other words, χ2

is a measure of the likelihood that the unknown image is stego. An advantage of

this is that no knowledge of the original cover histogram is required. However a
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weakness of the χ2 test is that it only says how likely the received data is stego,

it does not say how likely it is cover. A better test is to decide if it is closer

to stego than to cover, otherwise an arbitrary choice must be made as to when

it is far enough to be considered clean. We explore the cost of this more fully

in Chapter 3. In practice the χ2 test works reasonably well in discriminating

between cover and stego. The χ2 is an example of an early approach to detecting

changes using the statistics of an image, in this case using an estimate of the

probability distribution, i.e. a histogram. Previous detection methods were often

visual, i.e. for some hiding methods it was found that, in some domain, the hiding

was actually recognizable by the naked eye. Visual attacks are easily compensated

for, but statistical detection is more difficult to thwart.

Another LSB detection scheme was proposed by Avcibas et al [4] using binary

similarity measures between the 7th bit plane and the 8th (least significant) bit

plane. It is assumed that there is a natural correlation between the bit planes

that is disrupted by LSB hiding. This scheme does not auto-calibrate on a per

image basis, and instead calibrates on a training set of cover and stego images.

The scheme works better than a generic steganalysis scheme, but not as well as

state-of-the-art LSB steganalysis.

Two more recent and powerful LSB detection methods are the RS (regu-

lar/singular) scheme [33] and the related sample pair analysis [24]. The RS
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scheme, proposed by Fridrich et al, is a specific steganalysis method for detecting

LSB data hiding in images. Sample pair analysis is a more rigorous analysis due

to Dumitrescu et al of the basis of the RS method, explaining why and when it

works. The sample pairs are any pair of values (not necessarily consecutive) in

a received sequence. These pairs are partitioned into subsets depending on the

relation of the two values to one another. Is is assumed that in a cover image the

number of pairs in each subset are roughly equal. It is shown that LSB hiding

performs a different function on each subset, and so the number of pairs in the

subsets are not equal. The amount of disruption can be measured and related to

the known effect of LSB hiding to estimate the rate of hiding. Although the initial

assumption does not require interpixel dependencies, it can be shown that corre-

lated data provides stronger estimates than uncorrelated data. The RS scheme,

a practical detector of LSB data hiding, uses the same basic principle as sample

pair analysis. As in sample pair analysis, the RS scheme counts the number of

occurrences of pairs in given sets. The relevant sets, regular and singular (hence

RS), are related to but slightly different from the sets used in sample pair analysis.

Also as in sample pair analysis, equations are derived to estimate the length of

hidden messages. Since RS employs the same principle as sample pair analysis,

we would expect it to also work better for correlated cover data. Indeed the RS

scheme focuses on spatially adjacent image pixels, which are known to be highly
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correlated. In practice RS analysis and sample pair analysis perform compara-

bly. Recently Roue et al [72] use estimates of the joint probability mass function

(PMF) to increase the detection rate of RS/sample pair analysis. We explore

the joint PMF estimate in greater detail in Chapter 4. A recent scheme, also by

Fridrich and Goljan [32], uses local estimators based on pixel neighborhoods to

slightly improve LSB detection over RS.

2.2.2 Detecting Other Hiding Methods

Though most of the focus of steganalysis has been on detecting LSB hiding,

other methods have also been investigated.

Harmsen and Pearlman studied [45] the steganalysis of additive hiding schemes

such as spread spectrum. Their decision statistic is based initially on a PMF es-

timate, i.e. a histogram. Since additive hiding is an addition of two random

variables: the cover and the message sequence, the PMF of cover and message

sequences are convolved. In the Fourier domain, this is equivalent to multiplica-

tion. Therefore the DFT of the histogram, termed the histogram characteristic

function (HCF), is taken. It is shown for typical cover distributions that the ex-

pected value, or center of mass (COM), of the HCF does not increase after hiding,

and in practice typically decreases. The authors choose then to use the COM as

a feature to train a Bayesian multivariate classifier to discriminate between cover
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and stego. They perform tests on RGB images, using a combined COM of each

color plane, with reasonable success in detecting additive hiding.

Celik et al [11] proposed using rate-distortion curves for detection of LSB

hiding and Fridrich’s content-independent stochastic modulation [31] which, as

studied here, is statistically identical to spread spectrum. They observe that

data embedding typically increases the image entropy, while attempting to avoid

introducing perceptual distortion to the image. On the other hand, compression is

designed to reduce the entropy of an image while also not inducing any perceptual

changes. It is expected therefore that the difference between a stego image and

its compressed version is greater than the difference between a cover and its

compressed form. Distortion metrics such as mean squared error, mean absolute

error, and weighted MSE are used to measure the difference between an image and

compressed version of the image. A feature vector consisting of these distortion

metrics for several different compression rates (using JPEG2000) is used to train

a classifier. False alarm and missed detection rates are each about 18%.

2.2.3 Generic Steganalysis: Notion of Naturalness

The following schemes are designed to detect any arbitrary scheme. For ex-

ample, rather than classifying between cover images and images with LSB hiding,

they discriminate between cover images and stego images with any hiding scheme,
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or class of hiding schemes. The underlying assumption is that cover images posses

some measurable naturalness that is disrupted by adding data. In some respects

this assumption lies at the heart of all steganalysis. To calibrate the features cho-

sen to measure “naturalness”, the systems learn using some form of supervised

training.

An early approach was proposed by Avcibas et al [3, 5], to detect arbitrary

hiding schemes. Avcibas et al design a feature set based on image quality metrics

(IQM), metrics designed to mimic the human visual system (HVS). In particular

they measure the difference between a received image and a filtered (weighted sum

of 3× 3 neighborhood) version of the image. This is very similar in spirit to the

work by Celik et al, except with filtering instead of compression. The key obser-

vation is that filtering an image without hidden data changes the IQMs differently

than an image with hidden data. The reasoning here is that the embedding is

done locally (either pixel-wise or blockwise), causing localized discrepancies. We

see these discrepancies exploited in many steganalysis schemes. Although their

framework is for arbitrary hiding, they also attempted to fine tune the choice of

IQMs for two classes of embedding schemes: those designed to withstand mali-

cious attack, and those not. A multivariate regression classifier is trained with

examples of images with and without hidden data. This work is an early example

of supervised learning in steganalysis. Supervised learning is used to overcome
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the steganalyst’s lack of knowledge of cover statistics. From experiments per-

formed, we note that there is a cost for generality: the detection performance

is not as powerful as schemes designed for one hiding scheme. The results how-

ever are better than random guessing, reinforcing the hypothesis of the inherent

“unnaturalness” of data hiding.

Another example of using supervised learning to detect general steganalysis is

the work of Lyu and Farid [57, 56, 28]. Lyu and Farid use a feature set based on

higher-order statistics of wavelet subband coefficients for generic detection. The

earlier work used a two-class classifier to discriminate between cover and stego

images made with one specific hiding scheme. Later work however uses a one-

class, multiple hypersphere, support vector machine (SVM) classifier. The single

class is trained to cluster clean cover images. Any image with a feature set falling

outside of this class is classified as stego. In this way, the same classifier can

be used for many different embedding schemes. The one-class cluster of feature

vectors can be said to capture a “natural” image feature set. As with Avcibas et

al’s work, the general applicability leads to a performance hit in detection power

compared with detectors tuned to a specific embedding scheme. However the

results are acceptable for many applications. For example, in detecting a range of

different embedding schemes, the classifier has a miss probability between 30-40%

for a false alarm rate around 1% [57]. By choosing the number of hyperspheres
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used in the classifier, a rough tradeoff can be made between false alarms and

misses.

Martin et al [59] attempt to directly use the notion of the “naturalness” of

images to detect hidden data. Though they found that data hidden certainly

caused shifts from the natural set, knowledge of the specific data hiding scheme

provides far better detection performance.

Fridrich [30] presented another supervised learning method tuned to JPEG

hiding schemes. The feature vector is based on a variety of statistics of both

spatial and DCT values. The performance seems to improve over previous generic

detection schemes by focusing on a class of hiding schemes [53].

From all of these approaches, we see that generalized detection is possible,

confirming that data hiding indeed fundamentally perturbs images. However, as

one would expect, in all cases performance is improved by reducing the scope

of detection. A detector tuned to one hiding scheme performs better than a

detector designed for a class of schemes, which in turn beats general steganalysis

of all schemes.

2.2.4 Evading Steganalysis

Due to the success of steganalysis in detecting early schemes, new stegano-

graphic methods have been invented in an attempt to evade detection.
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F5 by Westfeld [99] is a hiding scheme that changes the LSB of JPEG coef-

ficients, but not by simple overwriting. By increasing and decreasing coefficients

by one, the frequency equalization noted in standard LSB hiding is avoided. That

is, instead of standard LSB hiding, where an even number is either unchanged or

increased by one, and an odd is either unchanged or decreased by one, both odd

and even numbers are increased and decreased. This method does indeed prevent

detection by the χ2 test. However Fridrich et al [35] note that although F5 hiding

eliminates the characteristic “step-like” histogram of standard LSB hiding, it still

changes the histogram enough to be detectable. A key element in their detection

of F5 is the ability to estimate the cover histogram. As mentioned above, the χ2

test only estimates the likelihood of an image being stego, providing no idea of

how close it is to cover. By estimating the cover histogram, an unknown image

can be compared to both an estimate of the cover, and the expected stego, and

whichever is closest is chosen. Additionally, by comparing the relative position of

the unknown histogram to estimates of cover and stego, an estimate of the amount

of data hidden, the hiding rate, can be determined. The method of estimating the

cover histogram is to decompress, crop the image by 4 pixels (half a JPEG block),

and recompress with the same quantization matrix (quality level) as before. They

find this cropped and recompressed image is statistically very close to the original,

and generalize this method to detection of other JPEG hiding schemes [36]. We
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note that detection results are good, but a quadratic distance function between

the histograms is used, which is not in general the optimal measure [67, 105].

Results may be further improved by a more systematic application of detection

theory.

Another steganographic scheme based on LSB hiding, but designed to evade

the χ2 test is Provos’ Outguess 0.2b [68]. Here LSB hiding is done as usual

(again in JPEG coefficients), but only half the available coefficients are used.

The remaining coefficients are used to compensate for the hiding, by repairing the

histogram to match the cover. Although the rate is lower than F5 hiding, since

half the coefficients are not used, we would expect this to not only be undetectable

by χ2, but by Fridrich’s F5 detector, and in fact by any detector using histogram

statistics. However, because the embedding is done in the blockwise transform

domain, there are changes in the spatial domain at the block borders. Specifically,

the change to the spatial joint statistics, i.e. the dependencies between pixels, is

different than for standard JPEG compression. Fridrich et al are able to exploit

these changes at the JPEG block boundaries [34]. Again using a decompress-

crop-recompress method of estimating the cover (joint) statistics, they are able

to detect Outguess and estimate the message size with reasonable accuracy. We

analyze the use of interpixel dependencies for steganalysis in Chapter 4. In a

similar vein, Wang and Moulin [97], analyze detecting block-DCT based spread-
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spectrum steganography. It is assumed that the cover is stationary, and so the

interpixel correlation should be the same for any pair of pixels. Two random

variables are compared: the difference in values for pairs of pixels straddling block

borders, and the difference of pairs within the block. Under the cover stationarity

assumption these should have the same distribution, i.e. the difference histogram

should be the same for border pixels and interior pixels. A goodness-of-fit measure

is used to test the likelihood of that assumption on a received image. As with

the χ2 goodness-of-fit test, the threshold for deciding data is hidden varies from

image to image.

A method that attempts to not only preserve the JPEG coefficient histogram

but also interpixel dependencies after LSB hiding is presented by Franz [29].

To preserve the histogram, the message data distribution is matched to that of

the cover data. Recall that LSB hiding tends to equalize adjacent histogram

bins because the message data is equally likely to be 0 or 1. If however the

imbalance between adjacent histogram bins is mimicked by the message data, the

hiding does not change the histogram. Unfortunately this increase in security

does not come for free. As mentioned earlier, compressed message data has equal

probabilities of 0 and 1. This is the maximum entropy distribution for binary data,

meaning the most information is conveyed by the data. Binary data with unequal

probabilities of 0 and 1 carries less information. Thus, if a message is converted to
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match the cover histogram imbalance, the number of bits hidden must increase.

The maximum effective hiding rate is the entropy: Hb(p) = −p log2(p) − (1 −

p) log2(1−p), where p is the probability of 0 [18]. To decrease detection of changes

to dependencies, the author suggests only embedding in pairs of values that are

independent. A co-occurrence matrix, a two-dimensional histogram of pixel pairs,

is used to determine independence. Certainly not all values are independent but

the author shows the average loss of capacity is only about 40%, which may be

an acceptable loss to ensure privacy. It is not clear though how a receiver can

be certain which coefficients have data hidden, or if similar privacy can be found

for less loss of capacity. This method is detected by Böhme and Westfeld [8]

by exploiting the asymmetric embedding process. That is, by not embedding in

some values due to their dependencies, a characteristic signature is left in the

co-occurrence matrix. We show in Chapter 4 that under certain assumptions the

co-occurrence matrix is the basis for optimal statistical detection.

Eggers et al [26] suggest a method of data-mappings that preserve the first-

order statistics, called histogram-preserving data-mapping (HPDM). As with the

method proposed by Franz, the distribution of the message is designed to match

the cover, resulting in a loss of rate. Experiments show this reduces the Kullback-

Leibler divergence between the cover and stego distributions, and thus reduces

the probabilty of detection (more on this below). Since only the histogram is
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matched, Lyu and Farid’s higher-order statistics learning algorithm is able to

detect it. Tzschoppe et al [88] suggest a minor modification to avoid detection:

basically not hiding in perceptually significant values. We investigate a means

to match the histogram exactly, rather than on average, while also preserving

perceptually significant values, in Chapter 5.

Fridrich and Goljan [31] propose the stochastic modulation hiding scheme de-

signed to mimic noise expected in an image. The non-content dependent version

allows arbitrarily distributed noise to be used for carrying the message. If Gaus-

sian noise is used, the hiding is statistically the same as spread spectrum, though

with a higher rate than typical implementations. The content dependent version

adapts the strength of the hiding to the image region. As statistical tests typically

assume one statistical model throughout the image, content adaptive hiding may

evade these tests by exploiting the non-stationarity of real images.

General methods for adapting hiding to the cover face problems with decoding.

The intended receiver may face ambiguities over where data is and is not hidden.

Coding frameworks for overcoming this problem have been presented by Solanki

et al [81] for a decoder with incomplete information on hiding locations and by

Fridrich et al [38] when the decoder has no information. This allows greater

flexibility in designing steganography to evade detection.
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To escape RS steganalysis, Yu et al propose an LSB scheme designed to resist

detection from both χ2 and RS tests [103]. As in F5, the LSB is increased or

decreased by one with no regard to the value of the cover sample. Additionally

some values are reserved to correct the RS statistic at the end. Since the em-

bedding is done in the spatial domain, rather than in JPEG coefficients, Fridrich

et al’s F5 detector [35] is not applicable, though it is not verified that other his-

togram detection methods would not work. Experiments are performed showing

the method can foil RS and χ2 steganalysis.

2.2.5 Detection-Theoretic Analysis

We have seen many cases of a new steganographic scheme created to evade

current steganalysis. In turn this new scheme is detected by an improved detector,

and steganographers attempts to thwart the improved detector. Ideally, instead

of iterating in this manner, the inherent detectability of a steganographic scheme

to any detector, now or in the future, could be pre-determined. An approach

that yields hope of determining this is to model an image as a realization of a

random process, and leverage detection theory to determine optimal solutions and

estimate performance. The key advantage of this model for steganalysis is the

availability of results prescribing optimal (error minimizing) detection methods as

well as providing estimates of the results of optimal detection. Additionally the
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study of idealized detection often suggests an approach for practical realizations.

There has been some work with this approach, particularly in the last couple of

years.

An early example of a detection-theoretic approach to steganalysis is Cachin’s

work [10]. The steganalysis problem is framed as a hypothesis test between cover

and stego hypotheses. Cachin suggests a bound on the Kullback-Leibler (K-

L) divergence (relative entropy) between the cover and stego distributions as a

measure of the security between cover and stego. This security measure is denoted

ε-secure, where ε is the bound on the K-L divergence. If ε is zero, the system is

described as perfectly secure. Under an i.i.d. assumption, by Stein’s Lemma [18]

this is equivalent to bounds on the error rates of an optimal detector. We explore

this reasoning in greater detail in Chapter 3.

Another information theoretic derivation is done for a slightly different model

by Zölner et al [107]. They first assume that the steganalyst has access to the

exact cover, and prove the intuition that this can never be made secure. They

modify the model so that the detector has some, but not complete, information on

the cover. From this model they find constraints on conditional entropy similar to

Cachin’s, though more abstract and hence more difficult to evaluate in practice.

Chandramouli and Memon [13] use a detection-theoretic framework to analyze

LSB detection. However, though the analysis is correct, the model is not accurate
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enough to provide practical results. The cover is assumed to be a zero mean

white Gaussian, a common approach. Since LSB hiding effectively either adds

one, subtracts one, or does nothing, they frame LSB hiding as additive noise. If it

seems likely that the data came from a zero mean Gaussian, it is declared cover.

If it seems likely to have come from a Gaussian with mean of one or minus one,

it is declared stego. However, the hypothesis source distribution depends on the

current value. For example, the probability that a four is generated by LSB hiding

is the probability the message data was zero and the cover was either four or five;

so the stego likelihood is half the probability of either a four or five occurring

from a zero mean Gaussian. Under their model however, if a four is received, the

stego hypothesis distributions are a one mean Gaussian and a negative one mean

Gaussian. We present a more accurate model of LSB detection in Chapter 3.

Guillon et al [43] analyze the detectability of QIM steganography, and observe

that QIM hiding in a uniformly distributed cover does not change the statis-

tics. That is, the stego distribution is also uniform, and the system has ε = 0.

Since typical cover data is not in fact uniformly distributed, they suggest using

a non-linear “compressor” to convert the cover data to a uniformly distributed

intermediate cover. The data is hidden into this intermediate cover with stan-

dard QIM, and then the inverse of the function is used to convert to final stego
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data. However Wang and Moulin [98] point out that such processing may be

unrealizable.

Using detection theory from the steganographer’s view point, Sallee [75] pro-

posed a means of evading optimal detection. The basic idea is to create stego

data with the same distribution model as the cover data. That is, rather than

attempting to mimic the exact cover distribution, mimic a parameterized model.

The justification for this is that the steganalyst does not have access to the original

cover distribution, but must instead use a model. As long as the steganographer

matches the model the steganalyst is using, the hidden data does not look suspi-

cious. The degree with which the model can be approximated with hidden data

can be described as ε-secure with respect to that model. A specific method for hid-

ing in JPEG coefficients using a Cauchy distribution model is proposed. Though

this specific method is found to be vulnerable by Böhme and Westfeld [7], the

authors stress their successful detection is due to a weakness in the model, rather

than the general framework. More recently Sallee has included [76] a defense

against the blockiness detector [34], by explicitly compensating the blockiness

measure after hiding with unused coefficients, similar to OutGuess’ histogram

compensation. The author concedes an optimal solution would require a method

of matching the complete joint distribution in the pixel domain, and leaves the

development of this method to future work.
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A thorough detection-theoretic analysis of steganography was recently pre-

sented by Wang and Moulin [98]. Although the emphasis is on steganalysis of

block-based schemes, they make general observations of the detectability of SS

and QIM. It is shown for Gaussian covers that spread spectrum hiding can be

made to have zero divergence (ε = 0). However it is not clear if this extends to

arbitrary distributions, and additionally requires the receiver to know the cover

distribution, which is not typically assumed for steganography. It is shown that

QIM generally is not secure. They suggest alternative hiding schemes that can

achieve zero divergence under certain assumptions, though the effect on the rate

of hiding and robustness is not immediately transparent. Moulin and Wang ad-

dress the secure hiding rate in [63], and derive a information theoretic capacity

for secure hiding for a specified cover distribution and distortion constraints on

hider and attacker. The capacity is explicitly derived for a Bernoulli(1/2) (coin

toss) cover distribution and Hamming distance distortion constraint, and capacity

achieving codes are derived. However for more complex cover distributions and

distortion constraints, the derivation of capacity is not at all trivial. We analyze

a QIM scheme empirically designed for zero divergence and derive the expected

rate and robustness in Chapter 5.

More recently, Sidorov [78] presented work done on using hidden Markov model

(HMM) theory for the study of steganalysis. He presents analysis on using Markov
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chain and Markov random field models, specifically for detection of LSB. Though

the framework has great potential, the results reported are sparse. He found

that a Markov chain (MC) model provided poor results for LSB hiding in all but

high-quality or synthetic images, and suggested a Markov random field (MRF)

model, citing the effectiveness of the RS/sample pair scheme. We examine Markov

models and steganalysis in Chapter 4.

Another recent paper applying detection theory to steganalysis is Hogan et

al’s QIM steganalysis [46]. Statistically optimal detectors for several variants of

QIM are derived, and experimental results found. The results are compared to

Farid’s general steganalysis detector [28], and not surprisingly are much better.

We show their results are consistent with our findings on optimal detection of

QIM in Chapter 3.

2.3 Summary

There is a great deal to learn from the research presented over the years. We

review the lessons learned and note how they apply to our work.

We have seen in many cases a new steganographic scheme created to evade

current steganalysis which in turn is detected by an improved detector. Ideally,

instead of iterating in this manner, the inherent detectability of a steganographic
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scheme to any detector, now or in the future, could be pre-determined. The

detection-theoretic framework we use to attempt this is presented in Chapter 3

Not surprisingly, detecting many steganalysis schemes at once is more difficult

than detecting one method at a time. We use a general framework, but approach

each hiding scheme one at a time. LSB hiding is a natural starting point, and we

begin our study of steganalysis there. Other hiding methods have received less

attention, hence we continue our study with QIM, SS, and PQ, a version of QIM

adapted to reduce detectablity [38].

Under an i.i.d. model, the marginal statistics, i.e., frequency of occurrence

or histogram, are sufficient for optimal detection. However, we have seen that

schemes based on marginal statistics are not as powerful as schemes exploiting

interpixel correlations in some way. A natural next step then is to broaden the

model to account for interpixel dependencies. We extend our detection-theoretic

framework to include a measure of dependency in Chapter 4.

We note that a common solution to the lack of cover statistic information,

that is, the problem of how to calibrate the decision statistic, is to use some form

of supervised learning [30, 57, 5, 11, 45, 4]. Since this seems to yield reasonable

results, we often turn to supervised learning when designing practical detectors.
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Chapter 3

Detection-theoretic Approach to
Steganalysis

In this chapter we introduce the detection-theoretic approach that we use to

analyze steganography, and to develop steganalysis tools. We relate the theory

to the steganalysis problem, and establish our general method. This approach

is applied to the detection of least significant bit (LSB) hiding and quantization

index modulation (QIM), under an assumption of i.i.d. cover data. Both the

limits of idealized optimal detection are found as well as tools for detection under

realistic scenarios.

3.1 Detection-theoretic Steganalysis

As mentioned in Chapter 2, a systematic approach to the study of steganalysis

is to model an image as a realization of a random process, and to leverage detection

36



Detection-theoretic Approach to Steganalysis Chapter 3

theory to determine optimal solutions and to estimate performance. Detection

theory is well developed and has been applied to a variety of fields and applications

[67]. Its key advantage for steganalysis is the availability of results prescribing

optimal (error minimizing) detection methods as well as providing estimates of

the results of optimal detection.

The essence of this approach is to determine which random process generated

an unknown image under scrutiny. It is assumed that the statistics of cover images

are different than the statistics of a stego image. The statistics of samples of a

random process are completely described by the joint probability distributions:

the probability density function (pdf) for a continuous-valued random process and

by the probability mass function (PMF) for a discrete-valued random process.

With the distribution, we can evaluate the probability of any event.

Steganalysis can be framed as a hypothesis test between two hypotheses: the

null hypothesis H0, that the image under scrutiny is a clean cover image, and H1,

the stego hypothesis, that the image has data hidden in it. The steganalyst uses

a detector to classify the data samples of an unknown image into one of the two

hypotheses. Let the observed data samples, that is, the elements of the image

under scrutiny, be denoted as {Yn}N
n=1, where Yn take values in an alphabet Y .

Mathematically, a detector δ is characterized by the acceptance region A ∈ YN
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of hypothesis H0:

δ(Y1, . . . , YN) =


H0 if (Y1, . . . , YN) ∈ A,

H1 if (Y1, . . . , YN) ∈ Ac.

In steganalysis, before receiving any data, the probabilities P (H0) and P (H1)

are unknown; who knows how many steganographers exist? In the absence of

this a priori information, we use the Neyman-Pearson formulation of the optimal

detection problem: for α > 0 given, minimize

P (Miss) = P (δ(Y1, . . . , YN) = H0|H1)

over detectors δ which satisfy

P (False alarm) = P (δ(Y1, . . . , YN) = H1|H0) ≤ α.

In other words, minimize the probability of declaring an image under scrutiny

to be a cover image when in fact it is stego for a set probability of deciding

stego when cover should have been chosen. Given the distributions for cover

and stego images, detection theory describes the detector solving this problem.

For cover distribution (pdf or PMF) PX(·) = P (·|H0) and stego distribution

PS(·) = P (·|H1) the optimal test is the likelihood ratio test (LRT) [67]:

PX(Y1, . . . , YN)

PS(Y1, . . . , YN)

X

≷
S

τ(α)

where τ is a threshold chosen to achieve a set false alarm probability, α. In other

words, evaluate which hypothesis is more likely given the received data, with a
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bias against one hypothesis. Often in practice, a logarithm is taken on the LRT

to get the equivalent log likelihood ratio test (LLRT). For convenience we define

the log-likelihood statistic:

L(Y1, . . . , YN) , log
PX(Y1, . . . , YN)

PS(Y1, . . . , YN)
(3.1)

and the optimal detector can be written as (with rescaled threshold, τ)

δ(Y1, . . . , YN) =


H0 if L(Y1, . . . , YN) > τ

H1 if L(Y1, . . . , YN) ≤ τ.

Applying these results to the steganalysis problem is inherently difficult, as

little information is available to the steganalyst in practice. As mentioned before,

assumptions are made to obtain a well-posed problem. A typical assumption is

that the data samples, (Y1, . . . , YN), are independent and identically distributed

(i.i.d.): P (Y1, . . . , YN) =
∏N

n=1 P (Yn). This simplifying assumption is a natural

starting point, commonly found in the literature [10, 63, 21, 75, 46] and is justified

in part for data that has been de-correlated, with a DCT transform for example.

Additionally this assumption is equivalent to a limit on the complexity of the

detector. Specifically the steganalyst need only study histogram based statistics.

This is a common approach [35, 69, 21], as the histogram is easy to calculate and

the statistics are reliable given the number of samples available in image steganal-

ysis. Therefore in order to develop and apply the detection theory approach, we
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assume i.i.d. data throughout this chapter. In general this model is incomplete,

and in the next chapter we extend the model to include a level of dependency.

Under the i.i.d. assumption, the random process is completely described by

the marginal distribution: the probabilities of a single sample. As we generally

consider discrete valued data, our decision statistic comes from the marginal PMF.

For convenience we use vector notation, e.g. y , (Y1, . . . , YN), p(X) with elements

p
(X)
i , Prob(X = i). With this notation the cover and stego distributions are

p(X) and p(S) respectively.

Let q be the empirical PMF of the received data, found as a normalized his-

togram (or type) formed by counting the number of occurrences of different events

(e.g. pixel values, DCT values), and dividing by the total number of samples, N .

Under the i.i.d. assumption, the log-likelihood ratio statistic is equivalent to the

difference in Kullback-Leibler (K-L) divergence between q and the hypothesis

PMFs [18]:

L(y) = N [D(q‖p(S))−D(q‖p(X))]

where the K-L divergence D(·‖·) (sometimes called relative entropy or information

discriminant) between two PMFs is given as

D(p(X)‖p(S)) =
∑
i∈Y

p
(X)
i log

p
(X)
i

p
(S)
i

. (3.2)
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where Y is the set of all possible events m. We sometimes write L(q) where it

is implied that q is derived from y. Thus the optimal test is to choose the hy-

pothesis with the smallest Kullback-Leibler (K-L) divergence between q and the

hypothesis PMF. So although the K-L divergence is not strictly a metric, it can be

thought of as a measure of the “closeness” of histograms in a way compatible with

optimal hypothesis testing. In addition to providing an alternative expression to

the likelihood ratio test, the error probabilities for an optimal hypothesis test de-

crease exponentially as the K-L divergence between cover and stego, D(p(X)|p(S))

increases [6]. In other words, the K-L divergence provides a convenient means

of gauging how easy it is to discriminate between cover and stego. Because of

this property, Cachin suggested [10] using the K-L divergence as a benchmark of

the inherent detectability of a steganographic system. In the i.i.d. context, a data

hiding method that results in zero K-L divergence would be undetectable; the ste-

ganalyst can do no better than guessing. Achieving zero divergence is a difficult

goal (see Chapter 5 for our approach) and common steganographic methods in

use today do not achieve it, as we will show. We first demonstrate the detection-

theoretic approach to steganalysis by studying a basic but popular data hiding

method: the hiding of data in the least significant bit.
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3.2 Least Significant Bit Hiding

In this section we apply the detection-theoretic approach to detection of an

early data hiding scheme, the least significant bit (LSB) method. LSB data hiding

is easy to implement and many software versions are available (e.g. [47, 48, 49,

27]). With this scheme, the message to be hidden simply overwrites the least

significant bit of a digitized hiding medium, see Figure 3.1 for an example. The

intended receiver decodes the message by reading out the least significant bit.

The popularity of this scheme is due to its simplicity and high capacity. Since

each pixel can hold a message bit, the maximum rate is 1 bits per pixel (bpp).

A disadvantage of LSB hiding, especially in the spatial domain, is its fragility to

any common image processing [52], notably compression. Additionally, as we will

see, LSB hiding is not safe from detection.

3.2.1 Statistical Model for LSB Hiding

Central to applying hypothesis testing to the problem of detecting LSB hiding

is a probabilistic description of the cover and the LSB hiding mechanism. The

i.i.d. cover is {Xn}N
n=1, where the intensity values Xn are represented by 8 bits,

that is, Xn ∈ {0, 1, ..., 255}. We use the following model for LSB data hiding with
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Figure 3.1: Example of LSB hiding in the pixel values of an 8-bit grayscale
image.

rate R bits per cover sample. The hidden data {Bn}N
n=1 is i.i.d. and,

PB(bn) =


R/2 bn ∈ {0, 1}

1−R bn = NULL

With 0 < R ≤ 1. The hider does not hide in cover sample Xn if Bn = NULL,

otherwise the hider replaces the LSB of Xn with Bn. With this model for rate

R LSB hiding, and again denoting the PMF of Xn as p(X), then the PMF of the
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stego data after LSB hiding at rate R is given by,

p
(SR)
i =



(
1− R

2

)
p

(X)
i + R

2
p

(X)
i+1 i even

R
2
p

(X)
i−1 +

(
1− R

2

)
p

(X)
i i odd

For a more concise notation, we can write p(SR) = QRp(X), where QR is a 256×256

matrix corresponding to the above linear transformation.

3.2.2 Optimal Composite Hypothesis Testing for LSB Ste-

ganalysis

Since LSB hiding can embed a particularly high volume of data, the stega-

nographer may purposely hide less in order to evade detection; hence we must

account for the hiding rate. In this section, for the i.i.d. cover and LSB hiding

described above, we extend the hypothesis testing model of Section 3.1 to a com-

posite hypothesis testing problem in which the hiding rate is not known. As with

other hiding schemes we consider, we first assume that the cover PMF is known

to the detector so as to characterize the optimal performance.

Rather than a simple test deciding between cover and stego, we wish to decide

between two possibilities: data is hidden at some rate R, where R0 ≤ R ≤ R1,

or no data is hidden (R = 0). The parameters 0 < R0 ≤ R1 ≤ 1 are specified

by the user. We use HR to represent the hypothesis that data is hidden at rate
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R. The steganalysis problem in this notation is to distinguish between H0 and

K(R0, R1) , {HR : R0 ≤ R ≤ R1}. The hypothesis that data is hidden is thus

composite while the hypothesis that nothing is hidden is simple. For this case our

detector is:

δ(Y1, ..., YN) =


H0 if (Y1, ..., YN) ∈ A,

K(R0, R1) if (Y1, ..., YN) ∈ Ac.

In [21], Dabeer proves for low-rate hiding that the optimal composite hypoth-

esis is solved by the simple hypothesis testing problem: test H0 versus HR0 . This

greatly simplifies the problem, allowing us to use the likelihood ratio test (or

minimum K-L divergence) introduced in Section 3.1.

3.2.3 Asymptotic Performance of Hypothesis Tests

Without having to simulate actual likelihood tests, we can estimate the per-

formance of detection from the K-L divergence. For the case of small divergence,

when the hiding introduces little change to the cover statistics, we can employ an

asymptotic normality assumption to the decision statistic, L(y). From this we

can calculate approximate expressions of the error probabilities for lage N and

different R. This allows us to avoid time-consuming Monte Carlo simulations

when evaluating detection, especially helpful when comparing between detection

methods.
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We note the empirical PMF of received data can be written as:

q =
1

N

N∑
n=1

Zn

where Zn is a column vector whose m-th entry is 1 if received data Yn = m and

is zero otherwise. As Yn are i.i.d., Zn are i.i.d., and we have then a sum of i.i.d.

random variables. From the central limit theorem, q converges in distribution to

the Gaussian:

q =⇒ N (E[Z1], N
−1ΣR)

where ΣR is the covariance matrix of Z1. Under hypothesis HR, E[Z1] = p(SR),

and ΣR = diag(p(SR))− p(SR)(p(SR))T (for H0, we note that p(S0) ≡ p(X)). Now

suppose our decision processing statistic, L, is differentiable at p(SR), then [71]

L(q) =⇒ N (µ(R), N−1σ2(R))

µ(R) = L(p(SR))

σ2(R) = uT
RΣRuR

uR , ∇L|p(SR) .

We are interested in finding expressions for the probabilities of errors for the

detector based on L(q). For LSB hiding, we are most concerned with small R,

around 0.05. Here the alternative hypotheses are close, and the asymptotic nor-

mality result provides good approximations to the error probabilities. For the
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large divergence case, in which the error region is several standard deviations

from the means, the central limit theorem becomes increasingly inaccurate. Here

we can use results from large deviation theory [22] to bound the error probabili-

ties. For example, a commonly used result in hypothesis testing is the Chernoff

bound [67], which we use in Section 3.3 for QIM detection. With the Gaussian

approximation for large N and small R we have

P (False Alarm) = P (L(q) < τ |H0)

≈ Q

(√
N(µ(0)− τ)

σ(0)

)
(3.3)

P (Miss) = P (L(q) ≥ τ |HR)

≈ Q

(√
N(τ − µ(R))

σ(R)

)
(3.4)

where Q() is the complementary Gaussian function:

Q(u) ,
∫ ∞

u

1√
2π

e−u2/2du

We now compare the LLRT to the χ2 (chi-squared) steganalysis test used by

Westfeld et al [100] and by Provos’ Stegdetect [69]. The decision statistic is

Lχ2(q) ,
127∑
k=0

(q2k+1 − q2k)
2

q2k + q2k+1

.

47



Detection-theoretic Approach to Steganalysis Chapter 3

If Lχ2(q) is less than a threshold, then data is declared to be hidden, otherwise

the image is considered clean. We know that after hiding at R = 1,

p
(SR)
2k = p

(SR)
2k+1 =

p
(SR)
2k + p

(SR)
2k+1

2
, 0 ≤ k ≤ 127

The χ2 statistic is a measure of the closeness of the adjacent bins {2k, 2k +

1}; A smaller statistic implies adjacent bin values are nearly equal, and there

is a high chance that data is hidden. To compare the two decision statistics,

the LLRT, L(q), and χ2, Lχ2(q), we use binomial cover PMFs, B{255, θ}, θ ∈

(0, 1) and mixtures of binomials. We observed that χ2 performs very close to the

optimal LLRT. While the χ2 statistic does not depend on the cover PMF and for

a given cover PMF its performance appears to be close to the LLRT, the choice of

threshold required to guarantee a target performance depends on the host PMF

as shown by the following example. Suppose our target is to minimize the error

sum P (Miss)+P (False Alarm). In Figure 3.2, we plot this error sum as a function

of the threshold for the LLRT and χ2 for binomial B{255,0.5} and B{255,0.8}

cover PMFs. For the LLRT, the threshold τ = 0 minimizes the error sum for any

cover PMF, whereas for χ2 the minimizing threshold depends on the cover PMF.

To summarize, if the cover PMF is known, then there is little loss in using

the suboptimal χ2 test. In practice this means that if we have good models for

the cover PMF and lookup tables for choosing the threshold (depending on the

cover PMF), the χ2 performs close to the LLRT. However, the cover PMF usually
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varies substantially over image databases, and hence we are more interested in

completely data driven test that attain the target performance; both the statistic

and the threshold have to be chosen based on the data to achieve the desired

performance. With this in mind, we note two points, which motivate our work in

the following section.

1. The likelihood ratio depends on the cover PMF. However the threshold τ

can be chosen independent of the cover PMF. For example to minimize the

error sum P (Miss) + P (False Alarm), we can choose τ = 0.

2. The χ2 statistic does not depend on the cover PMF, but to obtain a target

performance, the threshold τ has to be chosen depending on the cover PMF.

Thus χ2 does not resolve the problem of not knowing the cover PMF; it

simply transfers it to the choice of τ .

3.2.4 Practical Detection Based on LLRT

Given the discussion in Section 3.2.2, we now restrict our attention to the

simple hypothesis testing problem: test H0 versus HR, R > 0. We propose tests

based on the estimation of the LLRT statistic and exhibit their superiority over

χ2. We also develop estimates of the hiding rate R.
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Figure 3.2: Unlike the LLRT, the χ2 (used in Stegdetect) threshold is sensitive
to the cover PMF .

3.2.5 Estimating the LLRT Statistic

The pervading problem with the optimal LLRT test is that we do not know

the cover PMF in practice. However, there are two factors that help us to develop

good practical tests based on the optimal LLRT.

1. The perturbations introduced by LSB hiding are small compared to the

cover PMF, and therefore we can estimate the cover PMF well. We show

below that a number of simple estimates of the cover PMF based on the

assumption that the cover PMF is ‘smooth’ work well. We have observed

this smoothness for many images, it is however difficult to rigorously justify

this assumption.
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2. For the optimal LLRT, the threshold that minimizes

aP (Miss) + (1− a)P (False alarm), a ∈ [0, 1]

does not depend on the cover. In particular, for a = 0.5, the optimal

threshold T = 0. In contrast, for goodness-of-fit measures such as χ2, the

choice of the threshold depends on a and the cover PMF, and there is no

known way of making this choice.

With the above motivation, we propose to form an estimate p̂(X) of the cover

PMF p(X) and then use the following estimated version of the decision statistic

L(y) as an approximate LLRT statistic:

Lapprox.(y) = D(q‖p̂(X))−D(q‖QRp̂(X)).

We consider three possible estimates for p(X), all of which give good results.

1. For natural images the PMF is usually low pass. On the other hand, random

LSB hiding introduces high frequency components in the histogram. Hence

one simple estimate p̂(X) is to pass the empirical PMF q through a low pass

2-tap FIR filter with taps (0.5, 0.5). We note that normalization is required

after the filtering.
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2. Another regularity constraint that we can impose on the cover PMF is that

local slope is preserved. That is,

p
(X)
k+3 − p

(X)
k = 3(p

(X)
k+2 − p

(X)
k+1), k = 0, 4, 8, ..., 252.

This can be concisely written as Ap(X) = 0, where A is a 64× 256 matrix

corresponding to the regularity constraint. Under this constraint, a natural

estimate of p(X) is to project q on to the null space of A. We again need

normalization and removal of negative components after this filtering.

3. We also propose a non-linear approach that adapts to the underlying cover

PMF. We note that LSB hiding only affects the 8th bit plane. Therefore,

we impose the regularity constraint that the cover PMF is such that we

can obtain the cover PMF by spline interpolation of the first seven bit

planes. The corresponding estimate p̂(X) is obtained by subsampling q,

then interpolating using splines, and then normalizing.

We refer to all these tests as the approximate LLRT.

Simulation Results

In this section we report and discuss a number of simulation results for four

thousand images from a DOQQ image set, as well as digital camera and scanned

images.
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Figure 3.3: Approximate LLRT with half-half filter estimate versus χ2: for any
threshold choice, our approximate LLRT is superior. Each point on the curve
represents a fixed threshold.

In Figure 3.3 we compare the approximate LLRT test based on the half-half

filter for estimating p(X) with χ2. For each point on the curve, the threshold has

been fixed over the entire database. In the ROCs, the best detector reaches the

origin (0 false alarms and misses), and the worst detector is on the line connecting

the upper-left corner to the lower-right. At this rate, and other rates we test,

the LLRT outperforms χ2. For a fixed cover PMF, both these tests perform

closely. However, for the database of images we have used, the cover PMF varies

substantially from image to image. Thus these simulations suggest that χ2 is more
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sensitive to the choice of the threshold than our approximate LLRT test. This is

not surprising since we know that to attain a target performance, the choice of the

threshold in LLRT does not depend on the cover PMF. For example, if we choose

T = 0 for the approximate LLRT in the case when the hiding rate is 0.05, then we

found the operating point to be P (Miss) = 0.4043 and P (False Alarm) = 0.3219.

From Figure 3.3 we can verify that the tangent to the operating curve at this

point is of slope approximately 1 as predicted by the theory. The approximate

LLRT is therefore closer to the goal of finding a data driven test.

Figure 3.4: Hiding in the LSBs of JPEG coefficients: again LRT based method
is superior to χ2.
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Figure 3.4 shows that the story remains unchanged if we hide in the LSB of

the JPEG coefficients of images (compressed with quality factor 75).

In principle, instead of the simple hypothesis tests as above, we could use the

following generalized LLRT (GLLRT) ([67]) type test:

max
R∈(0,1]

D(q|p(X))−D(q|p(SR))
S

≷
X

τ. (3.5)

This GLLRT performs very close to the (simple) approximate LLRT tests we

have developed (which use R0 instead of R). This is not surprising given our

earlier finding that the optimal composite hypothesis testing problem considered

in Section 3.2.2 is solved by the simple hypothesis testing problem.

Additionally, we can use the argument R that maximizes (3.5) as an estimate

of the actual embedding rate. We find this to work reasonably well in practice,

see Figure 3.5.

Different image sets

To increase the diversity of our testing material, we also tested the approxi-

mate LLRT on databases of 128 scanned images and 3000 digital camera images.

Though the performance of the LRT-based method on these databases is still

much better than the χ2 test, we found the approximate LLRT detection power

suffered a drop for these image sets. The change in cover statistics may decrease

the divergence between cover and stego. Additionally, our cover estimation as-
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Figure 3.5: The rate that maximizes the LRT statistic (3.5) serves as an estimate
of the hiding rate.

sumes a certain smoothness to the cover PMF, that may not be as valid over all

possible cover statistics.

Different estimation functions

To gauge the efficacy of various estimation functions, we compare the approx-

imate LLRT scheme based on different estimates of p(X). The spline estimates of

p(X) and the half-half low pass filter estimates perform nearly identically. We have

observed that the local slope preserving filter is slightly worse off. This suggests

that there might be little to gain from choosing a different cover estimate.
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Comparison with RS

The focus to this point has been to develop the optimal methodology for

steganalysis of i.i.d. data. RS analysis [33] is a non-hypothesis testing based algo-

rithm for estimating the length of an LSB hidden message that exploits correla-

tion. By comparing with our approximate LLRT we can gauge the improvement

that can be gained by including cover memory. In Figure 3.6, we can see the im-

provement gained by acknowledging the cover correlation. Other image databases

showed similar gains. In Chapter 4 we extend the detection theoretic framework

to include a notion of cover memory.

S-tools

We further test our approximate LLRT LSB detection on S-Tools [9], a popular

software for data hiding that uses an LSB hiding method. One function of S-

tools is to hide data into color images. Though we generally focus on grayscale

images, we test our detection on S-tools because it is a freely available and popular

tool. We embedded random data at maximum rate using S-tools in a database

of hundreds of color images. This database is comprised of images from two

sources: images from a Corel photo CD and images scanned from photographs.

The Corel photos had to be converted from PCD format to BMP for embedding,

and the scanned images are converted from PNG format. The approximate LLRT
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Figure 3.6: Here RS analysis, which uses cover memory, performs slightly better
than the approximate LLRT. A hiding rate of 0.05 was used for all test images
with hidden data.

is adapted to three color planes by simply adding the LLRT statistics from each

color plane. The ROC of the approximate LLRT is in Figure 3.7.

The results are not as good as we expect from our testing on grayscale images,

where we find error free detection over hundreds of images with full embedding.

It can be seen from the ROC that after a certain threshold, the number of false

alarms increases quickly. By inspecting the images that were falsely labeled as

stego by our detector, we find that in all cases, the images are those that had

been converted from PCD format. Inspecting the histograms of these images, we
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Figure 3.7: Testing on color images embedded at maximum rate with S-tools.
Because format conversion on some color images tested on causes histogram arti-
facts that do not conform to our smoothness assumptions, performance is not as
good as our testing on grayscale images.

noticed a distinctive artifact of periodic spikes in the histogram; see Figure 3.8 for

an example. Clearly, in this case, our assumption of a smoothly varying histogram

does not hold. We continue to find throughout this study many discrepancies in

performance from one set of images to another. This presents a great difficulty

in evaluating the performance of steganalysis tools. For example, in these tests

we could “achieve” perfect performance by simply choosing not to use the Corel

image database. Therefore, to fairly evaluate our steganalysis, throughout our

testing we attempt to use as diverse a database of images as is feasible.
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Figure 3.8: Conversion from one data format to another can sometimes cause id-
iosyncratic signatures, as seen in this example of periodic spikes in the histogram.

3.2.6 LSB Hiding Conclusion

By analyzing the optimal hypothesis test for steganalysis and making justified

assumptions about the PMFs of typical real images, we have formulated tools

for detecting LSB steganography. Our method performs better than previous

hypothesis testing approaches in two ways.

1. They lead to smaller probability of miss for the same probability of false

alarm.
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2. The choice of the threshold is less sensitive to variations in the cover PMF.

Thus for typical hiding rates less than 0.1, the choice of threshold τ = 0

leads to good performance.
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3.3 Quantization Index Modulation Hiding

Quantization index modulation (QIM) [14] is another popular hiding method.

Though more complex and generally with lower capacity than LSB hiding, QIM

is much more robust to noise and attacks. The essential idea of quantization

based data hiding is to quantize the cover signal with a quantizer indexed by the

message. Again, denote the cover and stego signals as {Xn}N
n=1 and {Sn}N

n=1,

and let b be the message. We have S(X, b) = qb(X). The stego signal consists

only of values in the set of quantizer outputs. This is appropriate if the signal is

expected to be quantized, for compression for example. Dither modulation [14],

can produce a stego signal covering all of the values of the cover signal. Here the

quantizers are shifted according to a changing dither level D

S(X,m) = qb(X + D)−D = q(X + D(b))−D(b) (3.6)

There exist more advanced flavors of QIM, which provide advantages to simpler

versions, but these are generally designed for watermarking applications. For

example, we note that while distortion compensated QIM (DC-QIM) has perfor-

mance benefits for watermarking, the statistical effect of DC-QIM is so distinctive

[98] that we believe it is not suitable for covert data hiding. Most practical im-

plementations we have seen use either simple QIM, or dither modulation, with

uniform scalar quantizers, thus we focus on these.
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We note also that typically a steganographer is hiding in data transformed to

make it suitable for compression. This is done for two reasons. First, hiding in

a compression transform spreads the hidden data over a large region, making it

less susceptible to local attacks. Second, the image is likely compressed if it is

transmitted, and hiding in the compressed medium allows the steganographer to

more easily anticipate the effect of compression. (For a thorough exploration of

the validity of these assumptions see [102].)

3.3.1 Statistical Model for QIM Hiding

To apply our detection-theoretic approach, we need a description of the effect

of uniform scalar QIM hiding on the cover PMF. For uniform scalar QIM, one

bit, b, of the message is embedded into each sample. The quantizer function qb is

qb(X) =


round(X/∆) b = 0

round(X/∆) + ∆/2 b = 1

see Figure 3.9.

For the steganographer, the choice of ∆ represents a trade off between ro-

bustness and distortion to the image. Later we show ∆’s relationship to the

steganographic security. The relationship of ∆ to robustness depends on what

we define as robust. For robustness to the classical additive white Gaussian noise
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Figure 3.9: Basic scalar QIM hiding. The message is hidden in choice of quan-
tizer. For QIM designed to mimic non-hiding quantization (for compression for
example) the quantization interval used for hiding is twice that used for standard
quantization. X is cover data, B is the bit to be embedded, S is the resulting
stego data, and ∆ is the step-size of the QIM quantizers.

(AWGN) channel with power σ2, the probability of error is:

P (error) ∼ Q

(√
(∆/2)2

4σ2

)

[14]. For robustness to channels designed for optimal attack, the robustness also

scales with ∆2 [42]. The point to note is that the steganographer faces a robustness

constraint when choosing ∆.

Since QIM hiding is generally used in a transform domain (e.g. DCT, DFT)

rather than the spatial domain, the sample space is no longer [0, 255], but instead

the real line R, or an interval on the real line. In this case, the distribution of

cover and stego is a pdf, rather than a PMF. Practically however, the steganalyst

uses a histogram with several bins of width w to estimate the pdf. For our

study of QIM steganalysis, we employ PMFs based on a sample space of the bin
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Figure 3.10: Dithering in QIM. The net statistical effect is to fill in the gaps
left behind by standard QIM, leaving a distribution similar, though not equal to,
the cover distribution.

centers. We explore this approximation in greater detail in Chapter 5; here it

is a warranted assumption on the steganalyst. Now the vector notation used for

PMFs in our study of LSB hiding is not convenient and we denote the PMF as

PX(x) , Prob(X = x).

Again, we are assuming for now that Xn are i.i.d. so the one-dimensional PMF

is sufficient for classification. As with LSB hiding, we can find the PMF of S as

a function of PX . We begin by examining a non-hiding, uniform scalar quantizer.

The output levels are the integer multiples of the step-size, ∆∗, and the probability

of a given output, C, is just the sum of probabilities that are quantized to that

output. Defining the range of input values quantized to a single output value as

65



Detection-theoretic Approach to Steganalysis Chapter 3

X ∗(c) , [c−∆∗/2, c + ∆∗/2) then the PMF is

PC(c) =


∑

x∈X ∗(c) PX(x), c ∈ k∆∗

0 else

(3.7)

Where k is any integer. If now the choice of quantizer is used to hide binary data,

B, we split the original quantizer into two coarser subsets, each with step-size

∆ = 2∆∗. The quantizer associated with sending a 1 is identical to that as for

sending 0, but shifted by ∆/2. Assuming the probability of 0 is equal to 1, we

have

PS(s) =


1
2

∑
x∈X (s) PX(x) s ∈ k∆

2

0 else

(3.8)

Where X (s) , [s−∆/2, s + ∆/2) is the analogous range for the new ∆. Unlike

standard quantization, these regions overlap for adjacent values of s. We note at

this point that if the goal of the steganographer is to mimic an existing quantizer,

for example a compression scheme, then the hider can stop here, without using

dither modulation. In [81] and [54], the authors use this to imitate the output

of JPEG and JPEG2000 respectively. We examine the detection of this first case

below.

For dither modulation, we let D be a pseudorandom (PR) variable uniformly

distributed over [−∆/4, ∆/4) so that the output covers all the values of the input,

and does not leave tell-tale signs of quantization. Under our PMF approximation,
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PD(d) = 2w/∆. With this dithering, any S is valid. For every received value of

S there is one and only one valid value of D and one valid value of B that could

have made that s. For any valid S, PS(s) = PB(required b) ∩
∑

x∈X (s) PX(x) ∩

PD(required d). Assuming equiprobable message data P (b) is 1
2

for either 0 or

1. Similarly since PD is uniform, the probability is the same for any d so after

plugging in we have

PS(s) =
w

∆

∑
x∈X (s)

PX(x) (3.9)

We note D can alternatively be distributed over [−∆/2, ∆/2) with no change on

the distribution of S [98]. Additionally in this case it has been shown that S and

X are statistically independent [40].

3.3.2 Optimal Detection Performance

Armed with equations (3.7), (3.8), and (3.9) we can find the performance of

a detector operating in two scenarios. The first is distinguishing between cover

values that have been quantized versus QIM data embedding (without dithering).

The second case is distinguishing between an unquantized cover and a cover with

dithered QIM data embedded.

As mentioned in Section 3.1, the optimal detector is the log-likelihood ratio

test. Before we analyze the performance of this detector for some example PMFs,
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we can gain some insight into what is detectable simply by inspecting the log-

likelihood ratio (3.1):

Case I Quantized cover versus non-dithered QIM hiding:

Here we compare to A rather than X. The yk in y are independent, so L(y)

is:

L(y) = log
N∏

i=1

1/2
∑

yk−∆/2≤x<yk+∆/2 PX(x)∑
yk−∆/4≤x<yk+∆/4 PX(x)

Basically hiding sums over twice the range, and compensates by halving the

total. Therefore a smoothly varying PMF is more difficult to detect than a

spikey one.

Case II Non-quantized cover versus dither modulation hiding:

L(y) = log
N∏

k=1

(w/∆)
∑

yk−∆/2≤x<yk+∆/2 PX(x)

PX(yk)

The product terms are exactly the ratio of the average (over ∆) to the

original. Dither modulation hiding therefore acts as a moving average filter

on the PMF. Alternatively it is the convolution of a uniform PMF with

twice the range of the dither sequence, and is therefore similar to SS hiding.

Intuitively, cover PMFs with high frequency components relative to ∆ are

much easier to detect than a smoothly varying PMF. Indeed, as is noted in

[43], a uniformly distributed cover would be impossible to detect.
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As mentioned above, QIM hiding is typically done in a transform domain.

Compressed data generally has values concentrated towards the mean. That is,

the PMF tends to be unimodal with a large spike at the center. See, for example,

the histogram of DCT coefficients of an image in Figure 3.11. For PMFs such

as these, the detectability is strongly linked to the concentration of probablity

near the mean compared to the step size of the quantizers, or the ratio of the

standard deviation σ to ∆. As mentioned above, ∆ is related to the robustness

of the hiding.

−15 −10 −5 0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Histogram of X: DCT coefficients of image

Figure 3.11: The empirical PMF of the DCT values of an image. The PMF
looks not unlike a Laplacian, and has a large spike at zero.
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To quantify this observation, we can find the performance of the detector

for a given cover distribution. As the priors are not known, as a metric we use

the sum of the probabilities of false alarm and missed detection. As mentioned

in Section 3.2.2 for a known PMF, we find upper bounds on these probabilities

by using Chernoff bounds (for details see [67]). Chernoff bounds allow us to

find a bound on the performance even at very low probabilities of error, which

is not possible with simulations. For a set of images, we use the normalized

histogram as an empirical PMF and simulate the detectability over many PR

generated “images”. We find the detectability is extremely sensitive to the ratio

σ/∆, see Figure 3.12. Here, we are detecting a Laplacian PMF at rate 1. Within

a short range of σ/∆, the detection metric goes from nearly certain detection to

almost random detection. Gaussian PMFs have a similar relationship. Because

of the low error rates in the low σ/∆ case, the asymptotic normality assumptions

used for LSB analysis (Section 3.2.3) would not accurately estimate small σ/∆.

An interesting parallel to note: Mihçak and Venkatesan [61] noticed a similar

relationship for intended detection of quantization hiding in statistics of discrete

wavelet transform (DWT) coefficients subject to Gaussian noise with power σ2.

Recently Hogan et al [46] also presented results on optimal detection of QIM.

For a message to cover ratio (MCR) of -20 dB, they found detector error rates on
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Figure 3.12: The detector is very sensitive to the width of the PMF versus the
quantization step-size.

the order of 10−1. The MCR for QIM hiding is:

MCR =
∆2

12σ2

so

σ

∆
=

1√
12(10−MCR/10)

and σ/∆ corresponding to MCR of -20 db is 2.9. Though difficult to see from

Figure 3.12, these error rates are consistent with our findings.

The hider therefore should choose to embed in either a high variance cover,

or use a small ∆. However the choice of covers may be limited, and a smaller ∆

71



Detection-theoretic Approach to Steganalysis Chapter 3

weakens its robustness to external attacks. He or she may choose then to embed

less data than is possible in order to avoid detection. Let R, measured in bits per

cover sample characterize this. For scalar QIM, 0 < R ≤ 1. As R is reduced, the

detectable difference between the hidden statistics and cover statistics is diluted

by the cover samples that pass unchanged. We can easily adjust equations (3.8)

and (3.9) to reflect this:

PS(s, R) = RPS(s, 1) + (1−R)PX(s) (3.10)

where PS(s, 1) is the previous full-embedding stego PMF. The hypothesis that

data is hidden is now composite. To detect this, we use the generalized likelihood

ratio test where L(y) is now:

L(y) , max
R

log

(
PS(y, R)

PX(y)

)

To estimate error probabilities with the GLRT, we use computer simulation rather

than Chernoff bounds, yielding a rougher estimate. We find that hiding at a lower

rate certainly decreases the detectability. There is however a catch. The message

the sender wants to send covertly has a predetermined length. The lower the

rate, the more cover samples the hider must use to embed the message. Since this

increase in the number of samples increases the steganalyzer’s ability to detect the

hidden data, the increase in privacy caused by lowering the rate is somewhat offset,

see Figure 3.13. Therefore the hider may not be as safe as he or she thought. We
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illustrate this with an example. Suppose a hider is sending a 15,000 bit message

in 50,000 cover samples (R = 0.3). If the cover is a Gaussian with (σ/∆) = 1

the detector has an error sum (the probability of false alarm plus probability of

missed detection) of 0.070. If we hold the number of samples constant but halve

the rate to R = 0.15, the sum of errors jumps to 0.366, because of the reduction

in rate. However this only sends 7,500 bits. To send the entire message the hider

has to use 100,000 cover samples. The error sum for the steganalyst taking this

into account drops to 0.205.
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Figure 3.13: Detection error as a function of the number of samples. The cover
PMF is a Gaussian with (σ/∆) = 1
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3.3.3 Practical Detection

Finally, in implementing these schemes on real world data, certain adjustments

must be made to the basic scheme. For example both [81] and [54] exclude low-

valued coefficients from embedding. This is done to avoid visual distortion of the

final image, and to prevent the characteristic smoothing of probability near the

mean we observed above. This thresholding however leaves a new characteristic

effect on the PMF near the low values. The derivation of this modified stego PMF

is straightforward but lengthy and offers little illumination.

We do not have access to the cover statistics in a practical detection setting.

To overcome this, we can attempt to estimate the cover statistics for each received

image, or estimate the cover statistics for all images. Some steganalysis is able

to estimate the statistics on an image by image basis, as in our work with LSB

hiding and the work by Fridrich et al on detecting F5 [35], however there is no

general prescription for making such an estimate. As noted in Chapter 2, there

has also been some success with classifying between the set of all cover images and

all stego images through the use of supervised learning techniques. The idea is to

train a machine with several examples of both cover and stego, and the machine

learns to discriminate between the two classes. For our experiments we choose to

employ supervised learning.
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Motivated by the likelihood ratio test, we use an empirical PMF (histogram)

as the feature vector. We performed simulated detection of a DCT-based QIM

scheme [81]. This scheme is designed to use the same quantization as JPEG. The

hiding is designed for a given JPEG quality factor, which translates to a set of

quantization step sizes for different DCT frequencies. Higher quality factor implies

smaller step size. Since the quality factor used is not known by the steganalyst, ∆

is not available. In an attempt to capture the variety of real-world images, we use

three databases: digital orthophoto quarter-quadrangle (DOQQ) aerial images

used also for testing LSB hiding, Corel PhotoCD (CPCD) images, and images

taken with a Canon digital camera (CACD), also used for LSB testing. For a

classifier we use Joachim’s support vector machine (SVM) implementation [51],

SVMlight. A linear kernel is used; we found other kernels perform only slightly

differently. We perform the following two tests:

With constant design quality factor: In the first experiment, we set the

design quality factor at 50 to hide data in images in both the training and testing

sets. Since the quality factor is static, ∆ is the same for all stego images, aiding

the classifier. After hiding, both the cover images and the images with hidden

content are compressed to JPEG at the same quality factor in order to avoid

detection of JPEG compression. The results of detection error for this test are

shown in Table 3.1 We find that if the design quality factor is constant, the

75



Detection-theoretic Approach to Steganalysis Chapter 3

Final Quality Factor 100 90 80 70 60 50
DOQQ 0 0 0 0 0 0
CPCD 0 0 .004 0 .044 .052
CADC 0 0 0 0 0 .016

Table 3.1: If the design quality factor is constant (set at 50), a very low detection
error can be achieved at all final quality levels. Here ‘0’ means no errors occurred
in 500 tests so the error rate is < 0.002

detection with supervised learning gives very low error rates, which remain low

even with severe JPEG compression. We understand though, that a constant

design quality factor is not usually available for the detector and it is expected to

make detection simpler. In the next test, we eliminate this restriction.

With varying design quality factor: We perform this test with several

design quality factors. This is achieved by creating training and testing sets by

hiding data in images with the design quality factor randomly chosen between 40

and 80. The stego image is then JPEG compressed at a variety of rates between

50 and 100. The same tests are performed as in the known quality factor case.

The results are shown in Table 3.2. From this table, we find that if the quantizer

step-size varies, the detection accuracy becomes lower, as expected. We also find

that now the JPEG compression becomes an important factor. As compression

becomes more severe, the detection error goes up. This is expected because the

compression of images disrupts the artifacts introduced by data hiding, therefore

making the hidden content less detectable.
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Final Quality Factor 100 90 80 70 60 50
DOQQ 0 0 0 0 0 .016
CPCD .088 .044 .144 .132 .248 .220
CADC .004 0 .044 .104 .212 .292

Table 3.2: In a more realistic scenario where the design quality factor is unknown,
the detection error is higher than if it is known, but still sufficiently low for some
applications. Also, the final JPEG compression plays an important role. As
compression becomes more severe, the detection becomes less accurate.

3.3.4 QIM Hiding Conclusion

Our detection-theoretic results for i.i.d. covers show that the ease with which

QIM can be detected depends strongly on the cover statistics. Specifically, cover

PMFs with a sharp peak at the mean change considerably after QIM based hiding,

which then becomes easy to detect. This characteristic does hold for typical

transform domain image data, which has strong peaks at zero. For a given PMF

type, the inherent detectability is linked to the ratio of the standard deviation to

QIM interval: σ/∆. Though the steganographer can decrease the probability of

hidden data being detected by decreasing ∆, robustness is sacrificed. While the

assumed knowledge of cover distribution in our detection-theoretic analysis does

not hold for image data (where the statistics can vary significantly from image to

image), standard supervised learning techniques are shown to perform strongly.
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3.4 Summary

In this chapter we introduced our detection-theoretic approach to steganal-

ysis, and applied it to the detection of LSB and QIM methods of data hiding.

We found both steganographic methods to be theoretically detectable and de-

signed practical schemes with which to detect hiding in real images. Our initial

approach to applying detection theory to steganalysis has been to use an i.i.d.

model. A natural extension to this is to use a model including at least one level

of dependency, an extension we consider in the following chapter.
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Chapter 4

Extending Detection-theoretic
Steganalysis to Include Memory

As noted in Chapter 2 there are several practical image steganalysis techniques

which exploit interpixel correlations in images. Additionally, our work in applying

detection theory with an i.i.d. model to detection of LSB and QIM has hinted

that extending our model to include a degree of dependency will improve our

estimates and methods. In this chapter we employ a Markov model with our

detection-theoretic approach.

4.1 Introduction

Existing theoretical benchmarks of optimal detection such as Cachins’s ε-

secure measure [10] model the cover data as i.i.d., and therefore underestimate

the attainable steganalysis performance. We now take the logical next step to-
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wards computing a more accurate performance benchmark, modeling the cover

data as a Markov chain (MC). The Markov model has the advantage of analytical

tractability, in that performance benchmarks governing detection performance

can be characterized and computed explicitly. In our examples and numerical

results, we focus on images as cover data, using a Markov model in which sta-

tistical dependency is limited to an adjacent pixel. Clearly, this model does not

completely capture interpixel dependencies. However, we find that the perfor-

mance benchmarks we compute are consistent with the performance of a number

of image steganalysis techniques that exploit spatial correlations.

With the extension of analysis to include dependency, we see immediate bene-

fits over current i.i.d. analysis. For example, though spread spectrum (SS) hiding

can be detected with reasonable accuracy using current steganalysis techniques

[45, 11, 86], security tests derived from i.i.d. analysis determine that spread spec-

trum hiding is in fact safe from detection. Markov chain analysis, on the other

hand, correctly determines SS hiding to be at risk from steganalysis. Addition-

ally, though recently steganographic schemes have been designed to reduce the

probability of detection, the efforts have generally focused on matching the one-

dimensional histogram [68, 26, 75] or other specific steganalysis statistics [76, 29],

which provides no guarantee that a future steganalysis scheme will not be able

to detect the hiding by using a different statistic. Furthermore, though the γD-
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security, proposed by Chandramouli et al [12], does not use an i.i.d. assumption,

the measure is with respect to a given detector, and does not gauge the per-

formance of other detectors. On the other hand our analysis predicts optimal

steganalysis based on a Markov chain assumption. Although the MC model does

not completely characterize image statistics, practical constraints on the ability

of the steganalyst to estimate more complex statistical models have limited and

may continue to limit the complexity of detectors.

4.2 Detection Theory and Statistically Depen-

dent Data

We here outline our steganalysis approach using a Markov chain model, and

show how it relates to common steganalysis techniques.

4.2.1 Detection-theoretic Divergence Measure for Markov

Chains

To include interpixel dependency in our analysis, we employ a Markov chain

(MC) [16] model of image data. A Markov chain is a random sequence indexed

by n, subject to the following condition: P (Yn|Yn−1, Yn−2, . . . , Y1) = P (Yn|Yn−1).

Under this model, the probability of a given pixel is dependent on an immediately
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adjacent pixel. We have used this model to analyze and detect spread spectrum

hiding [86]. In independent work, Sidorov has performed MC and Markov ran-

dom field analysis on detecting LSB hiding [78]. There are a number of reasons

to use a MC model. First, the MC model accounts for dependency, yet is very

general and flexible. Second, while a MC model is more complex than an i.i.d.

model, it is the least complex model incorporating dependencies. Though many

have used Markov random fields [70] to model images accounting for a larger

neighborhood of dependency than one adjacent pixel, for the steganalyst there is

a practical drawback to increasing the levels of dependency. As the model com-

plexity increases, the number of samples required to make an accurate estimate of

the statistics also increases. However the number of received samples depends on

the image size, and can not be increased by the steganalyst. Thus although the

complexity for the steganalyst increases quickly, the benefit does not. For more

on the difficulties of multivariate density estimation see [96]. The MC model on

the other hand is simple enough to make realistic statistical estimates. This is

analogous to a nth order DPCM coding system, in which the benefit of an increase

in n, the number of pixels used for prediction, has been shown to quickly drop

after 2 or 3 [44]. Finally, a divergence metric which measures the performance of

optimal detection, analogous to the K-L divergence for i.i.d. sources, exists [64]

for Markov chains, which we examine below.
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We first clarify our notation. Let {Yn}N
n=1 be a Markov chain on the finite

set Y . In our context Yn are the n-indexed set of pixels obtained by a row or

column scanning and Y are all possible gray scale values (e.g. for an 8-bit image,

Y = {0, 1, . . . , 255}). A Markov chain source is defined by a transition matrix,

Tij , P (Yn = i|Yn−1 = j), and marginal probabilities pi , P (Yn = i). For

a realization y = (y1, y2, . . . , yN)T , let ηij(y) be the number of transitions from

value i to value j in y. The empirical matrix is M(y) , (ηij(y)/(N − 1)). That

is, the i, j-th element represents the proportion of spatially adjacent pixel pairs

with a grayscale value of i followed by j, and therefore provides an estimate of the

probability P (Yn = i, Yn−1 = j). The empirical matrix thus provides an estimate

of the transition matrix and marginal probabilities: Tij = P (Yn = i, Yn−1 =

j)/P (Yn−1 = j); P (Yn−1 = j) = P (Yn = i) =
∑

j P (Yn = i, Yn−1 = j). The

empirical matrix, similar to the co-occurrence matrix (see citations in [93]), can

be recognized as a matrix form of the two-dimensional normalized histogram (or

type) used to estimate the joint PMF of an arbitrary source. Intuitively, for

sources that are strongly correlated such as pixels, we expect the probability of

two adjacent samples having equal, or nearly equal, value to be high. Therefore

in the empirical matrix we expect the mass to be more concentrated near the

main diagonal (all elements such that i = j) in a correlated source then we would

expect for an i.i.d. source; see the examples in Figure 4.1.
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Figure 4.1: An illustrative example of empirical matrices, here we have two
binary (i.e. Y = {0, 1}) 3 × 3 images. From each image a vector is created by
scanning, and an empirical matrix is computed. The top image has no obvious
interpixel dependence, reflected in a uniform empirical matrix. The second image
has dependency between pixels, as seen in the homogenous regions and so its
empirical matrix has probability concentrated along the main diagonal. Though
the method of scanning (horizontal, vertical, zig-zag) has a large effect on the
empirical matrix in this contrived example, we find the effect of the scanning
method on real images to be small.

The divergence measure we employ to quantify the statistical change intro-

duced by steganography is essentially a distance between the empirical matrices

M(X) and M(S) of the two hypotheses, cover and stego:

D(M(X),M(S)) =
∑
i,j∈Y

M
(X)
ij log

(
M

(X)
ij∑

j M
(X)
ij

∑
j M

(S)
ij

M
(S)
ij

)
(4.1)
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This divergence has many useful properties for the study of steganalysis in sources

with memory, from the point of view of both the steganographer and the stegan-

alyst.

For a constant false alarm rate, the minimal achievable missed detection rate

approaches e−ND(M(X),M(S)) as N , the number of samples, goes to infinity [64, 1],

just as in the i.i.d. case with K-L divergence. In other words, under the assumption

of a Markov chain model, the performance of the best possible steganalysis is

exponentially bounded by this measure.

It can be seen then that D(M(X),M(S)) provides a measure to the stegano-

grapher of the inherent detectability of a steganographic scheme, given an as-

sumption on the complexity of the detector. This can be seen as an extension

of Cachin’s [10] ε-secure steganography to Markov chains. The gain in using the

Markov chain model is the addition of dependency. In other words, if the detector

in fact uses dependency, an i.i.d. ε-secure hiding scheme overestimates the secrecy

of hiding. To prevent this problem, Chandramouli et al [12] suggest the γD met-

ric. Here the measure of detectability of a steganography method is a bound on

the allowed probabilities of false alarm and missed detection for a given detector

D. While this certainly avoids the problem of underestimating the power of de-

tectors employing dependency, it is only valid with respect to a given detector.

If a different detector is employed, or invented, the security is unknown. The
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matrix divergence however bounds the false alarm and missed detection probabil-

ities of the best possible detector using one level of dependency. In practice, the

steganographer can choose a scheme that minimizes the divergence for a given

cover joint distribution model (e.g. Gaussian, Laplacian). Alternatively, given a

scheme, the steganographer can choose to use only images that exhibit a small

divergence after hiding.

For the steganalyst, D(M(X),M(S)) measures the amount of information gained

for each additional sample received, just as with the K-L divergence for indepen-

dent samples. The detector can use this to decide if there is enough gain to justify

using a more complex detector. We note that D(M(X),M(S)) is equal to the K-L

divergence if the samples are indeed independent (Mij = pipj):

∑
i,j∈Y

M
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ij log
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M
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ij∑

j M
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∑
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Let κ be the ratio of the matrix divergence measure to the K-L divergence. κ

represents the gain of employing the more complex model. For example, to achieve

the same detector power (i.e. same probabilities of miss and false alarm) requires
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κ times as many samples if the detector uses an i.i.d. cover model versus a MC

model. In the case of independent data, κ is one, and there is no gain to a detector

using statistics beyond a one-dimensional histogram.

4.2.2 Relation to Existing Steganalysis Methods

As mentioned above, using the Markov chain model is analogous to assuming

a complexity constraint on the detector. Since dependency is limited to one ad-

jacent pixel, empirical matrices provide sufficient statistics for optimal detection.

However even two dimensional joint statistics are difficult to use practically. For

practical applications, it is useful to use a subset, or function, of the empirical

matrix. Often these subsets or functions are chosen to match a specific hiding

scheme, and if done correctly do not sacrifice much detection power. However

they certainly cannot improve detection. We now show that many ongoing efforts

in steganalysis use such a subset or function.

Many steganalysis schemes and analysis [21, 69, 46, 35, 84] use a histogram, or

estimate of the one-dimensional PMF, to discriminate between cover and stego.

A one-dimensional histogram is simply the row sums of the empirical matrix:

P (i) =
∑

j Mij.

To capture the effect of hiding on interpixel dependencies, some [97, 106] have

used difference histograms, that is, instead of a histogram of sample values, a
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histogram of the difference of values between samples. As pixels are strongly cor-

related, the difference between pixels is small, and the histogram is concentrated

towards zero. Typically hiding disrupts this concentration, and with appropriate

calibration, the hiding can be detected. The difference histogram is the sums

of the diagonals of the empirical matrix. That is, the difference histogram is

P (x) =
∑

i

∑
i−j=x Mij. The concentration at zero in the difference histogram

corresponds to the concentration along the main diagonal of the two-dimensional

histogram.

To detect LSB hiding, the RS scheme [33] and related sample-pair analysis [24]

also use counts of differences between pixel values. Though sample-pair analysis

is not limited to adjacent pixels, the authors note the estimate is improved in

practice for spatially adjacent samples. In [72], Roue et al use the empirical

matrix directly to improve the effectiveness of sample-pair analysis.

Also for LSB detection, Sidorov, explicitly using a Markov chain model [78, 79],

uses an entropy-like measure based on ratios of values near the main diagonal of

the empirical matrix:

−2
∑
i=2

Mi,i−1 log
Mi,i−1 + Mi,i+1

2Mi,i−1

+ Mi,i+1 log
Mi,i−1 + Mi,i+1

2Mi,i+1

.

In [34], Fridrich et al use a calibrated blockiness measure to detect Outguess

0.2 [68]. This blockiness measure is the expected value of of the absolute difference

of border pairs, and can be re-written in terms of the empirical matrix generated
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from pixels straddling 8× 8 block boundaries:

Bl =
∑

x=0,1,...

x

∑
i

∑
|i−j|=x

Mij

 .

In [5], Avcibas et al use image quality metrics to measure the effect of hiding.

Though these metrics are not easily related to the empirical matrix, it is notable

that the metrics are evaluated between the image under scrutiny, and a low-

pass filtered version of the image. To generate the filtered image, each pixel is

replaced with a weighted sum of a 3×3 neighborhood surrounding the pixel. In

other words, it is assumed that the measurable difference between a given image

and the same image with artificially enhanced interpixel dependencies is different

for stego images and cover images.

We have argued that analysis using a Markov chain model provides meaningful

results under the condition of a steganalyst incorporating one level of dependency

for detection. We have seen here that many existing detection methods indeed

implicitly employ such a model.

Due to the lack of information available to the steganalyst, practical detection

is inevitably suboptimal. However we still expect some relationship between the

calculated divergence and the efficacy of state-of-the-art steganalysis. In the fol-

lowing section, we examine the divergence measure two existing steganographic

schemes, and compare with current detection methods to test this assumption.
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Additionally we compare the calculated divergence under an assumption of inde-

pendence (Eqn. (3.2)) to the divergence assuming dependency (Eqn. (4.1)) to

evaluate the value to the steganalyst in incorporating a more complex statistical

model.

4.3 Spread Spectrum

As noted in Chapter 2, spread spectrum data hiding (SS) [19] is an estab-

lished embedding method, often used for watermarking, but also applicable for

steganography [60]. We here measure and study the statistical effect of hiding on

the empirical matrix, and relate this to detection experiments we performed.

4.3.1 Measuring Detectability of Hiding

In spread spectrum data hiding, the message data modulates a noise sequence

to create a message bearing signal, which is then added to the cover data. Since its

introduction, many variants of SS have been proposed, typically in the context of

watermarking. The major goal in watermarking is robustness to malicious attacks,

rather than statistical invisibility. We therefore focus on three basic models of

hiding suggested by Cox et al, shown here for reference. Let {Dk, k ≥ 0} be a

zero mean, unit variance, Gaussian message bearing signal, and {Xk,≥ 0} be the
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cover samples. Three methods of generating stego data Sk:

Sk = Xk + αDk (4.2a)

Sk = Xk+(αXk)Dk = Xk(1 + αDk) (4.2b)

Sk = Xke
αDk (4.2c)

where α is a scaling parameter used to adjust the hiding power. This adjustment

allows the data hider to adapt the hiding to the cover in order to control the

perceptual distortion, the robustness of the message, and security from steganal-

ysis. We have not seen the third method used in practice and, as Cox et al point

out, for small αDi (which we would expect in data hiding) (4.2b) and (4.2c) are

effectively similar. We therefore concentrate on the first two methods. In the first

method, the adaptation is done globally, i.e. a constant hiding power is used for all

cover samples, we refer to this as globally adaptive hiding. In the second method,

the hiding power adapts to each cover sample, so we characterize this as locally

adaptive. We also note that often the cover image is transformed before data

is hidden; for example Costa et al use a whole image discrete cosine transform

(DCT). We measure the divergence of four variants of spread spectrum hiding:

local and globally adaptive hiding in both the spatial and DCT domains. We

have seen globally adaptive spatial SS hiding by Marvel et al in spread spectrum

image steganography (SSIS) [60] and more recently by Fridrich et al in a variant

91



Extending Detection-theoretic Steganalysis to Include Memory Chapter 4

of stochastic modulation [31]. The latter allows for a higher number of bits to be

successfully decoded and the capacity is a function of the message signal power.

The experiments presented by Cox et al [19] are locally adaptive DCT hiding.

For each variant we calculated the divergence over a range of message signal

power. For globally adaptive hiding we hold the message to cover power ratio

(MCR) constant. In the locally adaptive case this is not possible so we hold the

scale factor α constant. The MCR varies from image to image; we record the

average value with the data.

To generalize our approach we would like to simplify the divergence mea-

surement, by eliminating the need to derive the stego empirical matrix. Instead

of using statistical analysis of the hiding scheme to generate an expected stego

empirical matrix, Monte Carlo simulations of data hiding in several images may

provide an accurate means of estimating divergence. To do this, several synthetic

images are generated from the empirical matrix of a cover image. Data is hidden

in these synthetic images, and stego empirical matrices are calculated from the

resulting images. The average divergence between these empirical matrices and

the original cover matrix represent an estimate of the divergence introduced by

hiding

As mentioned in Section 4.2.1, the divergence measure provides to the stega-

nographer a benchmark of the inherent detectability of hiding. Additionally, it
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allows the steganalyst to compare the information gained from each new sample

by exploiting dependency, to the information gained using only first order statis-

tics. We present both divergence measures: between empirical matrices (Eqn.

(4.1)) and between marginal histograms (Eqn. (3.2)), and the average ratio of

these two to show the gain by using dependency at the detector. These measur-

ments are summarized in Tables 4.1 and 4.2. From stochastic modulation [31] (a

variant of globally adaptive SS hiding) we have a means of relating message signal

power to the capacity. The average hiding rates for MCRs -23, -20, and -17 are

0.91, 0.94, and 0.96 bits per pixel (bpp) respectively.

Globally adaptive, Spatial
MCR -23 -20 -17

Mean D(M(X),M(S)) 30.20 36.82 43.43

Mean D(p(X)||p(S)) 2.48 3.27 4.10
Mean ratio 24.23 22.24 20.57

Globally adaptive, DCT
MCR -23 -20 -17

Mean D(M(X),M(S)) 30.38 36.98 43.46

Mean D(p(X)||p(S)) 2.49 3.26 4.06
Mean ratio 24.45 22.24 20.56

Table 4.1: Divergence measurements of spread spectrum hiding (all values are
multiplied by 100). As expected, the effect of transform and spatial hiding is
similar. There is a clear gain here for the detector to use dependency. A factor
of 20 means the detector can use 95% less samples to achieve the same detection
rates.

From this data we can see many trends. Not surprisingly, the divergence

measure always increases with the (MCR); the more powerful a message (and
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Locally adaptive, Spatial
α 0.375 0.05 0.1

Mean MCR -22.74 -20.33 -14.63

Mean D(M(X),M(S)) 27.92 32.17 42.88

Mean D(p(X)||p(S)) 1.48 1.93 3.34
Mean ratio 33.49 30.31 22.45

Locally adaptive, DCT
α 0.375 0.05 0.1

Mean MCR -28.52 -26.13 -20.19

Mean D(M(X),M(S)) 5.61 5.87 6.52

Mean D(p(X)||p(S)) 1.39 1.78 3.41
Mean ratio 13.10 10.21 5.90

Table 4.2: For SS locally adaptive hiding, the calculated divergence is related to
the cover medium, with DCT hiding being much lower. Additionally the detector
gain is less for DCT hiding.

subsequently a higher hiding rate), the more obvious the hiding becomes. Ad-

ditionally, though the measured divergence introduced by globally adaptive is

roughly the same for both spatial hiding and transform hiding, locally adaptive

divergence changes depending on the hiding domain. Locally adaptive spatial

hiding is slightly less divergent than globally adaptive hiding (for similar MCR)

however locally adaptive DCT is much less. We expect from these divergence

measurements that detection is more difficult for locally adaptive hiding, partic-

ularly DCT, than for the other cases. Finally in all cases there is an advantage to

including dependencies in detection. In the best case, about 95% fewer samples

can be used to achieve the same performance. Even in locally adaptive DCT

hiding, where the advantage is least, a gain of 5.9 means only about a sixth of the
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samples are required. Below we analyze the underlying statistical changes caused

by hiding in order to explain these findings.

4.3.2 Statistical Model for Spread Spectrum Hiding

Globally adaptive hiding is analogous to inserting zero mean additive white

Gaussian noise (AWGN) with power α2. The net statistical effect is a convolu-

tion of the message signal distribution, N (0, α2), with the cover distribution [45].

Deriving the exact empirical matrix of the stego signal is complicated somewhat

by the necessity of quantization and clipping as a final step, to return to the same

sample space, Y , as the source. For example, in hiding in pixels, the stego values

must be rounded to integers between 0 and 255. When necessary to prevent am-

biguity, we delineate the unquantized stego signal as S ′. The probability density

function (pdf) of the stego signal before quantization is:

fS′(s′1, s
′
2) =

∫ ∫
Sum(t1, t2)dt1dt2,

Sum(t1, t2) =
∑

k

∑
l

M
(X)
kl δ(t1 − k, t2 − l)

1

2πα2
e
−


(s′1−t1)2+(s′2−t2)2

2α2

ff

fS′(s′1, s
′
2) =

1

2πα2

∑
k

∑
l

M
(X)
kl exp−

{
(s′1 − k)2 + (s′2 − l)2

2α2

}
.

In other words, there is a white joint Gaussian pdf centered at each point in the

cover empirical matrix, and scaled by the empirical matrix value. This can be

seen as a blurring of the cover empirical matrix. This is directly analogous to
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spatial lowpass filtering of images by convolution with a Gaussian function [41,

Sec. 4.3.2]. After rounding to pixel values, the empirical matrix of the stego

signal is:

M
(S)
ij =

∫ i+1/2

i−1/2

∫ j+1/2

j−1/2

fS′(s′1, s
′
2)ds′1ds′2. (4.3)

Since the message signal is white, that is, uncorrelated, its empirical matrix is

spread evenly; there is no greater probability for values near the main diago-

nal. Hiding weakens the dependencies between the cover samples, which causes a

spreading from the main diagonal of the empirical matrix, as seen in Figure 4.2.

Figure 4.2: Empirical matrices of SS globally adaptive hiding. The convolu-
tion of a white Gaussian empirical matrix (bell-shaped) with an image empir-
ical matrix (concentrated at the main diagonal) results in a new stego matrix
less concentrated along the main diagonal. In other words, the hiding weakens
dependencies.

96



Extending Detection-theoretic Steganalysis to Include Memory Chapter 4

Locally adaptive hiding can also be viewed as zero mean AWGN, however it is

non-stationary, since the noise power (αXk)
2 depends on Xk. Instead we view it

as multiplicative noise, with mean of one. Let Bk ∼ N (1, α2) be a multiplicative

message signal, then Sk = XkBk, The cumulative distribution function (cdf) of

(pre-quantized) S is

FS′
1,S′

2
(s′1, s

′
2) =∫ ∞

0

∫ ∞

0

min(bs′1/b1c,255)∑
i=0

min(bs′2/b2c,255)∑
j=0

M
(X)
ij

 exp−
{

(b1 − 1)2 + (b2 − 1)2

2α2

}
db1db1

the pdf is

fS′
1,S′

2
(s′1, s

′
2) =

∂2FS′
1,S′

2
(s′1, s

′
2)

∂s′1∂s′2

and the empirical matrix of the quantized S can be found with (4.3). To simplify

the expressions, we have assumed α is such that the probability of b1, b2 at values

less than zero are negligible. This assumption is warranted by the typical α values

used in hiding, which are chosen small enough to avoid visual distortion. For a

given cover empirical matrix M(X) these expressions can be evaluated numerically.

From the equations, the statistical effect is not transparent, however as seen

in Figure 4.3 hiding still blurs the cover matrix, shifting probability away from

the main diagonal. However the effect is less strong.

We can now summarize the statistical effect of SS hiding, and relate this

to our findings in Section 4.3.1. In a general sense, SS data hiding adds an
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Figure 4.3: Global (left) and local (right) hiding both have similar effects, a
weakening of dependencies as seen as a shift out from the main diagonal. However
the effect is more pronounced with globally adaptive hiding.

independent and identically distributed (i.i.d.) message signal to a non-i.i.d. cover.

It is not surprising then that the statistical effect is a decrease in the dependence

of the cover. For globally adaptive hiding this effect is very clearly seen in a

shift of probability away from the main diagonal. For locally adaptive hiding,

the adaptation causes the additive message sequence to become dependent on the

cover. Effectively the message sequence is de-whitened, that is, correlations are

introduced, and the effect is weakened. This can be seen to explain the smaller

divergence measured for locally adaptive hiding compared to global.

For the linear transformations typically used, such as DCT and discrete Fourier

transform (DFT), the addition of a Gaussian message signal in the transform
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domain is equivalent to adding a Gaussian message signal in the spatial domain.

So globally adaptive hiding in DCT coefficients statistically has the same effect

as hiding in pixels. However, locally adaptive hiding is effectively a multiplicative

Gaussian signal, which is not equivalent in both domains. This helps explain why

the calculated divergence was nearly equal for globally adaptive hiding in either

domain, but differed greatly for locally adaptive hiding.

Finally we found the most noticeable effect of spread spectrum hiding is a

spreading from the main diagonal of the empirical matrix. Since the histogram

is just the collection of sums of each row of the empirical matrix, this effect is

missed by studying only marginal statistics. That is, the spreading along each

row is not visible when the row is summed into a single point. This explains the

gain of using dependency in detection.

4.3.3 Practical Detection

We now compare the measurements of the optimal detectability of SS hiding

to experiments using a practical detector. We find the practical experiments

follow the estimates above. We also compare experiments for a detector using

dependencies with a simpler detector to judge the expected gain in detection.

To achieve optimal detection of data hiding, the detection-theoretic prescrip-

tion is to calculate the empirical matrix of a suspected image and calculate the
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divergence between this and the empirical matrices of both the cover and the

stego. Whichever is “closer”, i.e. has a smaller divergence measurement, is the

optimal decision. From the analysis above we can evaluate the stego empirical

matrix given the cover matrix. The cover statistics however are not known in a

practical scenario. As with QIM detection in Section 3.3.3 we turn to supervised

learning to overcome our lack of knowledge.

For the experiments we need an image database, a learning algorithm, and a

feature vector to train the machine. In the image database, we want to represent

the vast variety of real images as well as possible. We expand our previous image

set to a mix of four separate sources:

1. digital camera images, partitioned into smaller sub-images

2. scanned photographs

3. scanned, downsampled, and cropped photographs

4. images from the Corel volume Scenic Sites

All images are converted losslessly to PNG format and color images are converted

to grayscale. The entire database is approximately 1400 images. Half of these are

used for training and half for testing. Within both the training and testing sets,

half are cover images and half are (distinct) stego images.

100



Extending Detection-theoretic Steganalysis to Include Memory Chapter 4

For a classifier we use the same SVM implementation, SVMlight with linear

kernel, as we did for QIM (Section 3.3.3).

Since the optimal hypothesis test finds the minimum divergence between PMF

estimates, we are motivated to use PMF estimates to train the SVM. For our ex-

periments with a detector not using dependency, we can use the appropriate PMF

estimate: the normalized histogram of pixel values, a 256-dimensional feature vec-

tor. Unfortunately for the detector using dependency, the empirical matrix is too

large (2562 dimensions) to use directly. As with the other steganalysis schemes

mentioned in Section 4.2.2, we use a reduced version of the empirical matrix for

a classification statistic. We have noted that image empirical matrices are very

concentrated toward the main diagonal, and that hiding tends to spread the den-

sity away from this line. To capture this effect, the feature vector should then

include the region immediately surrounding the main diagonal.

To generate the empirical matrix, we need a method of generating a one-

dimensional chain from an image, i.e. a scan. We first use a vertical scanning, as

in Figure 4.1, for the experiments. We recognize that images have anisotropic de-

pendencies not captured by vertical scanning, so we also explore different feature

vectors that combine horizontal, vertical, and diagonal pairs, in order to more

accurately characterize pixel dependencies.
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For an empirical matrix M calculated from an image, first the 6 highest prob-

abilities on the main diagonal (Mii) are chosen, and for each of these the following

10 nearest differences are picked:

{Mi,i, Mi,i−1, Mi,i−2, . . . ,Mi,i−10}

All together this gives a 66-dimensional vector. We wish to also capture changes

along the center line. To do this we subsample the remaining main diagonal values

by four:

{M1,1, M5,5, M9,9, . . . ,M253,253}

see Figure 4.4. The resulting total feature vector is 129-dimensional, a manage-

able size that still captures much of the hiding effect. A comparison of the feature

vectors used to evaluate the performance of both detectors, using and not using

dependencies, is shown in Figure 4.5. In addition to generating an empirical

matrix based on adjacent pixels, we experimented with an empirical matrix gen-

erated from a pixel and an average of its four nearest neighbors. This is done in

an attempt to capture a possible gain to using a more complex model, while still

falling into our framework.

We tested the same four SS variants as in the previous sections. To relate these

experiments to other work done, we based our hiding power on that reported in

the literature. Spread spectrum image steganography (SSIS) [60] is an implemen-
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Figure 4.4: An example of the feature vector extraction from an empirical matrix
(not to scale). Most of the probability is concentrated in the circled region. Six
row segments are taken at high probabilities along the main diagonal and the
main diagonal itself is subsampled.

tation of globally adaptive hiding. In the experiments presented by Marvel et al,

the MCR reported is always greater than -23 dB, so we choose this as a worst

case. For the locally adaptive DCT scheme, we look to the experiments of Cox et

al, [19], and use α = 0.1, which gives an MCR of roughly −21 dB. In the spatial

domain, we choose α to achieve a similar MCR.

Our results are summarized in the receiver operating characteristics (ROC)

curves in Figure 4.6 for the detector based on the empirical matrix and the his-

togram, respectively.
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MRC Feature Vectors Histogram Feature Vectors

Cover
Stego

Cover
Stego

Figure 4.5: The feature vector on the left is derived from the empirical matrix
and captures the changes to interdependencies caused by SS data hiding. The
feature vector on the right is the normalized histogram and only captures changes
to first order statistics, which are negligible.

Anisotropic Dependencies

Since the vertical scan method will not capture all directions of image de-

pendency, we explore different features that incorporate different aspects of de-

pendency. We first look at generating the same feature vector as in the above

experiments, but instead scanning the image into a vector using horizontal, or

zig-zag scanning (as is done for DCT coefficients in JPEG detection [94]).

In Figure 4.7 we compare the ROCs of three detectors based on vertical,

horizontal, and zigzag scans on locally adaptive transform hiding, the hiding

scenario with weakest detector performance. All methods perform approximately
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Figure 4.6: ROCs of SS detectors based on empirical matrices (left) and one-
dimensional histograms (right). In all cases detection is much better for the
detector including dependency. For this detector (left), the globally adaptive
schemes can be seen to be more easily detected than locally adaptive schemes.
Additionally, spatial and DCT hiding rates are nearly identical for globally adap-
tive hiding, but differ greatly for locally adaptive hiding. In all cases detection is
better than random guessing. The globally adaptive schemes achieve best error
rates of about 2-3% for P(false alarm) and P(miss).

the same, with horizontal scan being slightly better than the other two. We find

this same trend for locally adaptive spatial hiding as well as global hiding in either

domain.

Though there seems to be little difference between directional dependency

individually, it may be possible to improve performance by combining different

directional information. We therefore also look into methods combining different

scans, to see if information from one scan is complementary to another. We looked

at three new feature vectors designed to combine statistics based on horizontal,
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Figure 4.7: Detecting locally adaptive DCT hiding with three different super-
vised learning detectors. The feature vectors are derived from empirical matrices
calculated from three separate scanning methods: vertical, horizontal, and zigzag.
All perform roughly the same.

vertical, and diagonal dependencies. The first feature vector is a simple concate-

nation of the three feature vectors used above based on vertical, horizontal, and

zigzag scanning. We denote this as the concatenation feature vector. We point

out that this feature vector is three times longer than the standard feature vec-

tor, making accurate estimates difficult. The next feature vector uses an empirical

matrix formed as the average empirical matrix of all three scans; we refer to this

as the averaging feature vector. Since only the derivation of the empirical matrix

is different from the standard method, this feature will be the same length. The

last feature vector is formed by choosing the 4 highest probabilities on the main
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diagonal of each of the three individual empirical matrices, and choosing the 10

nearest differences. Recall that the standard feature vector chooses the 10 nearest

differences of the top 6 probabilities, and additionally includes a sub-sampling of

the main diagonal. So this final feature vector takes sections we believe to con-

tain the most information from each of the three different scanning vectors. This

final feature vector, denoted as cut-and-paste feature vector, is 132-dimensional,

nearly the same as the standard 129-dimensional vector. In Figure 4.8 we compare

the detector performance on locally adaptive hiding in the spatial and transform

domains. For hiding in DCT coefficients, all the detectors perform roughly the

same. The three feature vectors combining vertical, horizontal, and zigzag scans

perform nominally worse than the standard vector based on horizontal scanning

alone. So, although more information is accounted for, there is no gain in using

these combined feature vectors (more on this presently). We find these same rel-

ative performance characteristics for globally adaptive spatial and DCT hiding.

For locally adaptive spatial hiding however, we found the cut-and-paste feature

vector to perform much worse than the others. The cut-and-paste feature vector

does not include as much information from the main diagonal of the empirical

matrix. It can be inferred then that changes to the main diagonal are important

to detection of locally adaptive spatial hiding.
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Figure 4.8: ROCs for locally adaptive hiding in the transform domain (left)
and spatial domain (right). All detectors based on combined features perform
about the same for transform domain hiding. For spatial domain hiding, the
cut-and-paste performs much worse.

In addition to combining features, we also look at combining the soft detector

output. The SVM classifier gives each image under scrutiny a single number de-

termining its likelihood of being cover or stego. A large negative number indicates

likely cover, a large positive number is strongly believed to be stego. By simply

adding these outputs from two different classifiers detection may be improved.

In other words, the two classifiers will reinforce their results if both have large

outputs with the same sign. If the detectors disagree however, the numbers will

offset. In particular, this may help in the default case of using a threshold of

zero to decide between cover and stego. In experiments performed, we find that

generally there is no benefit. However by adding the soft decision statistic from
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classifiers based on the horizontal scan feature vector and the cut-and-paste fea-

ture vector, better zero threshold performance is acquired for detection of globally

adaptive schemes than any other classifier we use, see Table 4.3

Hiding Method Horizontal Cut-and-paste Summed
P(f.a.) P(miss) P(f.a.) P(miss) P(f.a.) P(miss)

Global adapt., spatial 0.050 0.012 0.050 0.053 0.036 0.012
Global adapt., DCT 0.041 0.006 0.050 0.003 0.011 0

Table 4.3: A comparison of the classifier performance based on comparing three
different soft decision statistics to a zero threshold: the output of a classifier using
a feature vector derived from horizontal image scanning; the output of a classifier
using the cut-and-paste feature vector described above, and the sum of these two.
In this particular case, adding the soft classifier output before comparing to zero
threshold achieves better detection than either individual case.

Finally, we compare the results of the detector based on the empirical matrix

based on one adjacent pixel, and that generated from an average of four adjacent

pixels. In Figure 4.9, we compare the results of both detectors for locally adaptive

DCT hiding; the results for the other three variants are similar. The detectors

perform closely, suggesting the simple Markov chain model captures the important

changes introduced by hiding.

Comparison

We note that our results for detecting spatial globally adaptive hiding, error

rates on the order of 1 to 5%, are similar to those of Harmsen and Pearlman

in [45] detecting SSIS in color images. For detection they used a statistic based
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Figure 4.9: A comparison of detectors for locally adaptive DCT spread spectrum
hiding. The two empirical matrix detectors, one using one adjacent pixel and the
other using an average of a neighborhood around each pixel, perform similarly.

on color plane statistics. Though the detection tests are not directly analogous

since our tests are strictly on grayscale images, it is likely that a similar effect

to the weakening of dependencies between pixels happens between color planes.

Celik et al [11] perform detection of stochastic modulation, statistically the same

as spatial globally adaptive hiding. Stochastic modulation allows a greater em-

bedding capacity for a smaller MCR (or larger peak signal to noise ratio PSNR).

As such Celik et al tested with a lower MCR, so although their detection error

rates (P(false alarm)= 0.17, P(miss)=0.12) are higher than ours, it is difficult to

directly compare.
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4.3.4 SS Hiding Conclusion

We find the results of a practical detector matches that which our divergence

measurements and analysis led us to expect. For the steganographer it may first

seem that locally adaptive DCT hiding is the superior choice for hiding. However

there are two important points to mention: First, unlike globally adaptive hiding,

locally adaptive hiding only meets a target MCR on average. The MCR for

each image varies and this may make detection more difficult. Second, although

the globally adaptive hiding rate is a function of the message signal power, the

locally adaptive hiding rate is not readily available, and may in fact be less than

globally adaptive hiding for a given MCR. In all cases there is clearly a gain to

the steganalyst to using a model of dependency for detection. In the following

section we perform a similar analysis to a hiding scheme specifically designed to

evade detection.

4.4 JPEG Perturbation Quantization

Recently Fridrich et al [38] introduced an implementation of their perturba-

tion quantization hiding method that creates stego images that mimic a double-

compressed clean image. We measure the divergence of this method and show

these are related to practical detection results presented by Kharrazi et al [53]. As

111



Extending Detection-theoretic Steganalysis to Include Memory Chapter 4

with spread spectrum hiding, we study the statistical effect of hiding to explain

these findings.

4.4.1 Measuring Detectability of Hiding

As the name implies, perturbation quantization is a variant of quantization

index modulation (QIM) [14]. Standard QIM hiding in JPEG images has a dis-

tinctive statistical effect, and we have shown in Section 3.3 that it can be detected.

Double compressed PQ however is specifically contrived to minimize the statis-

tical difference between the stego image, and an image that has simply been

compressed twice. This is achieved by embedding in coefficients that ideally have

the same distribution after a second compression as they do by data hiding.

In [53], Kharrazi et al measure the detection rates for three blind methods

of steganalysis used on a variety of steganography schemes. The term “cover” is

somewhat ambiguous for PQ JPEG hiding. The original source, from which the

stego image is generated, is a once compressed image. However PQ is designed

to mimic twice compressed images, which the authors argue occur naturally [38].

Because of this ambiguity, Kharrazi et al measure the detection rates of two cases:

comparing with the source (single-compressed) images, and comparing with re-

compressed (i.e. double-compressed) images. For the first case, detection is found

to be possible, but by no means certain. For example, in one case the sum of
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errors (false alarm and missed detection) is about 0.3. For the second case, the

detection rates are essentially random. In other words, guessing or flipping a coin

is just as effective for steganalysis. For details, please see their paper [53]. We

note that the detection schemes are blind to the method, and one would expect

better results from a scheme specifically designed to detect PQ JPEG. However

these results provide an idea of the practical detectability of this scheme. As with

SS above (Section 4.3.1), we measure the divergence introduced by PQ JPEG

hiding. In Table 4.4, we summarize the results. Q1 and Q2 are the JPEG quality

levels used for the first and second compressions. Both these cases correspond to

a large number of embeddable coefficients, and all available coefficients are used.

For the 75, 50 trial, the average embedding rate is 0.11 bits per pixel (bpp), 0.38

bits per non-zero DCT coefficient (bpnz-DCT). In the second trial (88, 76) the

average rate is 0.13 bpp and 0.35 bpnz-DCT.

Single-compressed cover
Q1, Q2 75,50 88,76

Mean MCR -15.63 -17.89

Mean D(M(X),M(S)) 14.64 13.18

Mean D(p(X)||p(S)) 4.66 3.03
Mean ratio 4.23 6.66

Double-compressed cover
Q1, Q2 75,50 88,76

Mean MCR -19.26 -21.43

Mean D(M(X),M(S)) 3.04 3.89

Mean D(p(X)||p(S)) 0.63 0.63
Mean ratio 5.28 7.46

Table 4.4: Divergence measures of PQ hiding (all values are multiplied by 100).
Not surprisingly, the divergence is greater comparing to a twice compressed cover
than a single compressed cover, matching the findings of Kharrazi et al. The
divergence measures on the right (comparing to a double-compressed cover) are
about half that of the locally adaptive DCT SS case in which detection was
difficult, helping to explain the poor detection results.
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As in the spread spectrum case, we found that the measure of theoretically

optimal detection of data hiding in Markov random chains corresponds to exper-

iments in the non-idealized case. This again suggests that the model is a useful

tool in judging the inherent detectability of a steganographic method. Addition-

ally there is a gain for a steganalyst to use dependency for detection, up to 7.5

times gain in this example. We now explore how this low divergence is obtained.

4.4.2 Statistical Model for Double JPEG Compressed PQ

As mentioned above, the source for data hiding is an image that has undergone

JPEG compression. During JPEG compression, the image is broken into small

blocks, each of which undergoes a 2-d discrete cosine transform (DCT). These

DCT coefficients are then quantized to reduce the number of bits used to store

or transmit the image (for details see [94]). An inverse DCT of these coefficients

reproduces a spatial domain image. However the spatial domain (pixel) values

are no longer integers, due to the quantization in the DCT domain. To display

or otherwise use the image in the spatial domain, the pixel values are rounded to

the nearest integer in the bit depth range (e.g. {0, 1, . . . , 255} for an 8-bit image).

Now the DCT coefficients (of the pixel image) are no longer exactly quantized,

but instead are randomly spread around the quantized value. So in summary,

if an image is compressed, then decompressed, the DCT values are randomly
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distributed around their quantized values as seen in Figure 4.10. Asymptotically,

this density is a white Gaussian centered at the quantized value [38].
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Figure 4.10: On the left is an empirical matrix of DCT coefficients after quan-
tization. When decompressed to the spatial domain and rounded to pixel values,
right, the DCT coefficients are randomly distributed around the quantization
points.

If the image is re-compressed with a different quality level (i.e. different quan-

tization step size), these blurred coefficients are rounded to the nearest new quan-

tizer output. In some special cases, the first quantizer output value lies halfway

between two output levels of the new quantizer. For example, if the first quan-

tizer used a step size of 21, and the second quantizer uses 24, then 4× 21 = 84 is

straddled by 3× 24 = 72 and 4× 24 = 96. Since it is assumed that the distribu-

tion is white Gaussian, and therefore symmetric, it is expected that under normal

quantization roughly half of the coefficients originally quantized to 84 become
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72, and half 96. For pairs of coefficients, a quarter of pairs originally at (84,84)

become (72,72), a quarter (72,96), a quarter (96,72) and a quarter (96,96) (see

Figure 4.11). Fridirch et al propose changing the quantization of these values to

add hidden data. If instead a value originally at 84 becomes 72 to represent a

zero, and becomes 96 to represent one, the statistics are not expected to change.

48

63

∆1 = 21

48

72

96

84

105

∆2 = 24

63 72 84 96 105
-12 +12

Figure 4.11: A simplified example of second compression on an empirical matrix.
Solid lines are the first quantizer intervals, dotted lines the second. The arrows
represent the result of the second quantization. The density blurring after decom-
pression is represented by the circles centered at the quantization points. For the
density at (84,84), if the density is symmetric, the values are evenly distributed
to the surrounding pairs. If however there is an asymmetry, such as the dotted
ellipse, the new density favors some pairs over others (e.g. (72,72), (96,96) over
(72,96), (96,72). The effect is similar for other splits such as (63,84) to (72,72)
and (72,96).
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This statistical equivalency only fails if the density blurring is not, in fact,

symmetric about the original quantization point. Though asymptotically it is

expected to be, each realization is slightly asymmetric, as can be seen in Figure

4.10. We have found the asymmetry to be small, however the calculated diver-

gence between a double compressed cover image and a PQ stego image is expected

to be greater than zero. The net effect however is minimal and the divergence

and detection results above are not surprising. Again we see a match between

analysis, divergence measurements, and practical detection.

4.5 Outguess

Outguess is a data hiding tool designed to hide in the least significant bits of

JPEG coefficients. Outguess 0.2 [68] is an improved version in which some of the

coefficients are used for hiding, while the rest are used to restore the histogram

to the cover state. Naturally this will prevent detection by histogram based

techniques such as the chi-squared and approximate LLRT methods explored in

Section 3.2. However it is shown by Fridrich et al [34] that although the histogram

of DCT coefficients is compensated, the dependencies in the spatial domain will

be changed. Specifically, the disruption at the boundaries of the 8 by 8 JPEG

blocks is greater for Outguess hiding than for standard JPEG compression. We

117



Extending Detection-theoretic Steganalysis to Include Memory Chapter 4

note in Section 4.2.2 that the blockiness statistic used to measure this disruption

is a function of the empirical matrix of the values straddling the JPEG blocks. A

key component of detection done by Fridrich et al using the blockiness measure is

a method of calibrating the statistic for each image, that is, a means a estimating

the cover blockiness. They use a method designed for blockwise transform hiding

schemes to do this. An estimate of the cover image is made by cropping the image

under scrutiny by half the size of a JPEG block and re-compressing. From this

estimated cover image, an estimate of the original blockiness is easy to compute.

We examine the detection of Outguess using the supervised learning detector

exploiting spatial dependencies we use to detect spread spectrum hiding. That is,

like Fridrich et al, we use spatial dependencies to detect Outguess. However we do

not calibrate on a per image basis, but instead train on hundreds of examples. In

Figure 4.12 we present results on various classifiers detecting Outguess in images.

The feature vector is built similar to those used in Section 4.3.3 to detect spread

spectrum hiding. To capture the block boundary dependency changes, vertical

and horizontal dependencies are included in the feature. Detection here, as re-

flected in the ROC, is not particularly powerful. This demonstrates the benefit

of using auto-calibration on an image-by-image basis. However such methods are

not always available, and a possible solution for the steganographer is to simply

use different block sizes.
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Figure 4.12: Detector performance of Outguess using classifier trained on de-
pendency statistics.

4.6 Summary

Our Markov model for cover data permits explicit computation of a detection-

theoretic divergence measure that characterizes the susceptibility of a stegano-

graphic scheme to detection by an optimal classifier. This measure has advantages

over other steganographic security benchmarks. It provides a more accurate secu-

rity measure than Cachin’s ε-secure [10] metric, as dependencies between samples

are accounted for. Additionally it is a more general metric than that given by

Chandramouli et al [12], which is measured for a given detector. The divergence

measure also provides a quick estimate of the performance benefits of using de-

119



Extending Detection-theoretic Steganalysis to Include Memory Chapter 4

pendency in steganalysis: the ratio of the divergence for the Markov model, to

the divergence between marginal PMFs, represents the factor by which the use

of dependency reduces the number of samples required for a given performance,

relative to steganalysis based on one-dimensional histograms.

While the Markov model does not completely capture interpixel dependen-

cies in images, we have shown it to be consistent with many image steganaly-

sis schemes exploiting memory, which typically use a function of the statistics

used to optimally discriminate between Markov source models. Furthermore, the

detection-theoretic benchmarks computed using the Markov model are close to

the performance attained by practical image steganalysis techniques. However,

further research is needed into whether more complex statistical models can yield

better image steganalysis techniques, and how to compute performance bench-

marks for such techniques.

Improved models for images could include more degrees of dependency, as

well as some model of non- or piecewise-stationarity. Recently we have seen work

extend the i.i.d. approach to LSB analysis by employing models with memory:

Draper et al [23] generalize our approach by considering adjacent pixel dependen-

cides and Sidorov has performed hidden Markov model (HMM) analysis [78] on

LSB hiding and used a MC derived statistic for LSB detection [79, in Russian].

Draper et al concluded that adding one level of dependency (i.e. considering two-
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dimensional joint statistics) provided diminishing marginal returns. They observe

that detectors employing a non-PMF statistic, such as RS analysis [33], perform

very well, and consider PMFs an inferior tool for practical steganalysis. We stress

that PMF analysis provides bounds on optimal detection, however these bounds

are for the asymptotic case. Their observations are for finite a number of samples,

an important consideration in comparing optimal detection to practical schemes.

Sidorov found that considering one level of dependency (MC model) only showed

good results for high-quality and synthetic images; for low-quality images the de-

tector failed. In the related paper [78] the author considers extending the MC

model to a Markov random field model, incorporating a higher degree of depen-

dency, but does not implement such a detector. We note that the parameters of

more complex models are more difficult to estimate for finite number of samples, a

well-known problem [15]. Additionally variations from image to image may make

it difficult to calibrate steganalysis techniques based on such models.

The Markov chain model can be related to Sallee’s [75] model based approach.

Rather than assuming the steganalyst is limited to a parameterized distribution

model, we assume the actual joint distribution is used. Just as with Sallee’s

steganography, the security is only as good as the model. Thus, much work re-

mains to be done on the fundamental problem of understanding how the complex-

ity of the model for the cover data impacts the accuracy of estimating the model
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parameters, and the computational complexity and performance of steganalysis

based on the model.
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Chapter 5

Evading Optimal Statistical
Steganalysis

We now turn our attention to applying our detection-theoretic framework

to prevent detection. In particular we seek to find methods that maintain an

adequate rate, and can withstand at least nominal interference between sender and

receiver, for example from an active warden, transmission noise, or compression.

We note many previous methods designed to reduce detectability (outlined in

Chapter 2) have focused on a particular steganalysis statistic. We know from

our study of steganalysis that for perfectly secure embedding, the distribution of

the stego data must exactly match the cover, which we have seen does not occur

by default. Other methods such as stochastic modulation [31], JPEG perturbed

quantization [38], and model based embedding [75, 76] accept a change of stego

distribution from the original cover, but attempt to match a different distribution,

which is close to a plausible cover distribution. It is difficult to define what is

123



Evading Optimal Statistical Steganalysis Chapter 5

“plausible enough”, and in some cases (e.g. [7]) a steganalyst can exploit the

divergence from the original. Additionally, these approaches are very fragile to

any interference between sender and receiver.

Provos’ Outguess [68] is an early attempt at restoring the stego distribution

to the cover empirical distribution. This method was followed up later by Eggers

et al [26], with a more mathematical formulation denoted histogram-preserving

data mapping (HPDM), and Franz, with work in matching the message data to

the cover distribution [29]. All of these schemes are designed for compensat-

ing discrete-valued hiding medium. Theoretical proposals for continuous-valued

hiding compensation have also been presented. In [43] Guillon et al suggest trans-

forming the cover samples before hiding, such that the cover samples are uniformly

distributed. QIM hiding in uniformly distributed data does not change the dis-

tribution. It is likely however that robustness would suffer with such a scheme,

and it may be difficult to implement in practice. Wang and Moulin [98] proposed

stochastic QIM, which achieves zero K-L divergence. Because of the random

nature of the hiding, it is difficult to judge the robustness of stochastic QIM.

124



Evading Optimal Statistical Steganalysis Chapter 5

5.1 Statistical Restoration Scheme

As with our study of steganalysis, we begin with an i.i.d. assumption and later

extend this to a Markov chain model. Under the independence assumption, our

goal for perfect security is to match the marginal distribution. In practice, the

underlying distribution of an image is not known. Our approach then is to match

the empirical distribution of the image. Since the empirical distribution is derived

from a cover image, there is no doubt it is a plausible cover distribution. The

plan is to save coefficients otherwise used for embedding to instead compensate

the distribution, similar to Provos’ [68] method to restore the histogram of JPEG

coefficients. The goal here however is to recover a continuous distribution, the pdf,

rather than the PMF. In this way, hiding media such as DCT coefficients which

have not been quantized can be statistically compensated. Naturally, if these

coefficients are later quantized, they will still match the expected distribution of

the quantized cover.

Practically speaking, the steganalyst does not have access to continuous pdfs,

but instead calculates a histogram approximation. Our data hiding is secure if

we match the stego histogram to the cover histogram using a bin size, denoted

w, the same size as, or smaller than, that employed by the steganalyst. We

stress that all values are present and there are no “gaps” in the distribution of
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values; however, within each bin the data is matched to the bin center. A key

assumption is that for small enough w, the distribution is uniformly distributed

over the bin, a common assumption in source coding [40]. Under this assumption,

we can generate uniformly distributed pseudorandom (PR) data to cover each bin,

and still match the original statistics. Let fX(x) be the cover probability density

function (pdf) and fS(s) the stego pdf. For I bins centered at t[i], i ∈ [1, I] with

constant width w, the expected histogram for data generated from fX(x) is:

PE
X [i] =

∫ t[i]+w/2

t[i]−w/2

fX(x)dx (5.1)

with a similar derivation of PE
S [i] from fS(s). The superscript E denotes that this

is the expected histogram, to discriminate it from histograms calculated from ran-

dom realizations. We generally refer to these expected quantized pdfs as PMFs.

The hiding scheme we analyze here is outlined in greater detail in [81]. The

key points we need for our analysis are as follows:

• A proportion of coefficients are used for hiding, the rest are used for com-

pensating the distribution after hiding.

• The compensating coefficients are uniformly (PR) distributed within the

bins, so there are no gaps in the pdf. In our QIM implementation this is

accomplished with dithered quantization.
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• A minimum mean squared error (MMSE) criteria is used to minimize dis-

tortion while hiding

Let λ ∈ [0, 1) be the ratio of symbols used for hiding, so 1 − λ is the ratio

remaining to match the cover histogram. If PX [i] is the cover histogram, PS[i]

the standard (uncompensated) stego histogram, PC [i] the histogram of compen-

sating coefficients, and PZ [i] the histogram of the final output, our goal can be

summarized as:

PZ [i] = PX [i] ∀ i

PZ [i] , λPS[i] + (1− λ)PC [i]

(5.2)

We first examine the effect of allowing a small, low probability region to remain

uncompensated after hiding. By ignoring these regions, the rate can be increased

significantly. However since the distribution is not perfectly matched, there is

a measurable K-L divergence between the cover and stego pdfs. We study this

tradeoff between divergence and rate, and find, not surprisingly, that restoration

effects a more efficient tradeoff than simply embedding in fewer coefficients. We

then focus on eliminating all divergence, and derive an expression for the expected

rate with a given cover distribution. Finally we expand this analysis to statistical

restoration of the joint histogram, or empirical matrix.
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5.2 Rate Versus Security

Using a set of embedding coefficients for compensating instead of hiding re-

duces the size of the message that can be hidden; this is the cost of increasing

security. We can characterize this cost by studying the amount of data that can

be hidden in an idealized data source with a given distribution.

The amount of data that can be hidden is proportional to the number of sym-

bols that can be hidden in. So to maximize the amount of data we send, we seek

to maximize λ for a given cover histogram subject to the constraint in (5.2), and

the constraints imposed on the distribution of compensating coefficients, namely∑
PC [i] = 1 and PC [i] ≥ 0 ∀ i. The first constraint is true for all λ. For the

second constraint, by substituting an expression for PC satisfying (5.2), we find:

PC [i] ≥ 0 ∀ i

PX [i]− λPS[i]

(1− λ)
≥ 0

−λPS[i] ≥ −PX [i]

λ ≤ PX [i]

PS[i]
∀ i

which gives us an upper limit on the percentage of symbols we can use for hiding.

Ideally the sender would use a different λ for each bin. However hiding shifts

values from one bin to another, and the valid λ for one bin may be larger than

an adjacent bin and the constraint is violated. Because of this, a worst-case λ is
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chosen:

λ∗ , min
i

PX [i]

PS[i]

However if we apply this constraint on λ to typical PMFs we run into erratic

behavior in the low-probability tails. The ratio PX [i]
PS [i]

can vary widely here, from

infinitesimally small to quite large. This is because the magnitude of changes to

the ratio depends on the value of PX [i], for example: 0.50
0.49

is very close to 0.50
0.51

whereas 0.02
0.01

is quite different from 0.02
0.03

. We study this phenomenon in greater

detail in Section 5.3. We note however that since the probabilities of the corre-

sponding events are low, then the effect of PMF differences in these regions on the

net divergence is small. So to avoid this problem we can relax the exact equality

constraint and not require compensation in a small, low probability region of the

PMF. In the next section, we focus on achieving perfect matching for the entire

PMF. With the relaxed constraint:

λ∗ = min
i∈C

PX(i)

PS(i)

where C is the compensated region. In addition to the divergence introduced

to the ignored (Cc) region, since (5.2) is no longer true for all i, PC must be

normalized to satisfy the unity sum constraint, adding a small change across the

PMF. Though the net effect is to introduce a small amount of divergence, λ and

the corresponding hiding rate can only increase. A tradeoff can be made between
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desired security from detection and the hiding rate. We note that another method

to increase security at the cost of embedding payload is to simply embed in fewer

coefficients. However we expect that explicitly fixing the histogram with the

remaining coefficients has a greater effect at reducing divergence. We verify this

assumption for a specific scheme outlined below.

To gauge the effect of hiding in practice, we examine the compensation scheme

adapted to QIM hiding with dithering (see Section 3.3). We examine the hiding ef-

fect on covers with Gaussian and Laplacian distributions with different variances.

Additionally we change hiding parameters such as the step size of the hiding quan-

tizer, ∆. As expected from our findings on QIM steganalysis, we found the rate

and divergence to be related to the ratio σ/∆ within a given PMF family. For

our tests comparing rate and divergence, we would then expect different tradeoffs

for different cover distributions and different σ/∆.

To find the rate-divergence tradeoff, we find the rate corresponding to several

different sizes of ignored (uncompensated) regions. A larger ignored region has a

greater divergence from the original, but eliminates small PX [i]
PS [i]

, which increases

λ, the hiding rate. This tradeoff for restoration is compared to the tradeoff for

simply embedding less. In Figure 5.1 we see a large decrease in divergence can be

made with a small drop in rate, which is not possible by merely embedding less.

This is true for both Laplacian and Gaussian PMFs over a range of σ/∆.
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Figure 5.1: Rate, security tradeoff for Gaussian cover with σ/∆ of 1. As ex-
pected, compensating is a more efficient means of increasing security while reduc-
ing rate.

5.2.1 Low Divergence Results

To examine the efficacy of statistical restoration, we compare the divergence

between cover and stego for standard hiding and for hiding with compensation

at the same rate. For Gaussian PMFs at a rate of λ = 0.35 the divergence for

standard hiding is 5.9 × 10−3, and 1.3 × 10−3 for compensated. The standard

divergence is nearly five times greater. For a set of real image statistics, hiding
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at the same rate, the average divergence for standard hiding is 6.5 × 10−3, and

2.1× 10−3 for compensated. Although detection is still possible, since divergence

is greater than zero, restoration greatly increases the error probabilities of an

ideal detector. For example, a steganalyst would require more than three times

as many samples to achieve the same detection rates with standard hiding in

images as with hiding with restoration.

Due to this decrease in divergence, we would expect a steganalysis scheme

to perform better detecting standard hiding compared to compensated hiding.

We compared the detection rates for using the practical steganalysis scheme used

in Chapter 3 to detect standard dithered QIM hiding, and an image adaptive

dithered QIM scheme [81]. We trained and tested two machines on the same sets

of images and at the same rate; one with restoration, one without. The test used

a histogram of DCT coefficients as a statistic. The results are summarized in

Table 5.1.

Std. Dithered QIM Adaptive Dithered QIM
Uncomp. Comp. Uncomp. Comp

P(Miss) 0.075 0.525 0.701 0.796
P(False Alarm) 0.177 0.000 0.000 0.074
P(M. +F.A.) 0.252 0.525 0.701 0.870

Table 5.1: It can be seen that statistical restoration causes a greater number of
errors for the steganalyst. In particular for standard hiding, the sum of errors for
the compensated case is more than twice that the uncompensated.
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We have found that detection rates are decreased, but are still better than

random guessing, which is expected due to the allowed difference between cover

and stego distributions. We now examine zero divergence hiding and rate.

5.3 Hiding Rate for Zero K-L Divergence

We here analyze the proposed solution for perfect restoration and characterize

the maximum message size that can be hidden. In particular, by finding the dis-

tribution of the rate allowing perfect restoration, we can find a rate guaranteeing

zero divergence within a given probability threshold. Though the approach we

use can be applied to statistical restoration of any hiding scheme, we show the

specific example of our QIM scheme.

5.3.1 Rate Distribution Derivation

We now examine an approach where no region is left uncompensated, and

so the histogram can be perfectly matched. To do this, we need to find the

distribution of the minimum of the histogram ratio, λ∗ for a given cover pdf,

fX(x). We note that histograms calculated from real data {Xn}N
1 vary for each

realization. In other words, the number of symbols in the bins, NPX [i], are

random variables. Be analyzing the distribution of these random variables, we
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can find the distribution of the ratio PX [i]
PS [i]

for each bin, and from this the statistics

of λ∗. We point out that the density of a ratio is not equal to the ratio of the

density, that is, in general

f

(
PX [i]

PS[i]

)
6= f(PX [i])

f(PS[i])

Let VX [i] = NPX [i] be the number of symbols from fX(x) falling into bin i,

then VX [i] has binomial density function PVX [i] = B{N, PE
X [i]} [77]. Similarly if

VS[i] is the number of symbols per bin for data from fS(s), it is distributed as

B{N, PE
S [i]}. See Figure 5.2 for a schematic of finding the distribution of the bins

of a histogram.

We now define Γ[i] , VX [i]
VS [i]

= PX [i]
PS [i]

. The cumulative distribution of Γ[i],

FΓ[i](γ) = P (Γ[i] ≤ γ), is given by

FΓ[i](γ) =
N∑

k=0

bγkc∑
l=0

PVS [i](k)PVX [i](l)

and the density is

fΓ[i](γ) =
dFΓ[i](γ)

dγ
.

Ultimately, we wish to find the distribution of the minimum Γ over all bins,

giving us a statistical description of λ∗, our zero-divergence hiding rate. The

cumulative distribution of λ∗ is the distribution of mini Γ[i] given by

Fλ∗(γ) = 1−

{∏
i

[
1− FΓ[i](γ)

]}
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Figure 5.2: Each realization of a random process has a slightly different his-
togram. The distribution of the number of elements in each bin is binomially
distributing according to the expected value of the bin center (i.e. the integral of
the pdf over the bin).

[65, Sec 7.1] and the density can be found by differentiating. To summarize, given

the pdfs of cover and stego, fX(x) and fS(s), we can find the distribution of λ∗:

the proportion of symbols we can use to hide in and still achieve zero divergence.

Using this, the sender and receiver can choose ahead of time to use a fixed λ that

guarantees zero-divergence (i.e. λ ≤ λ∗) within a desired probability. In Section

5.3.3 we illustrate this analysis with an example, but first we examine the factors

affecting the rate.
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5.3.2 General Factors Affecting the Hiding Rate

By examining the derivation of the distribution of λ∗, we can predict the effect

of various parameters on the hiding rate. The key factors effecting the payload

are:

1. Cover and stego pdfs, fX , fS: Obviously the “closer” the two pdfs are

to one another, the less compensation is required, and the higher the rate.

The difference between the pdfs generally depends on the hiding scheme.

2. Number of samples, N : The greater the number of samples, the more

accurate our estimates of the samples per bin. Therefore it is easier to

guarantee a λ to be safe with given probability, and so the hiding rate is

higher. The number of samples is mostly a function of the size of the image.

3. Bin width, w, used for compensation: Bin width is important to guar-

anteeing security, but the effect of bin width is not immediately clear, and

is a research topic in its own right [77, 95]. We briefly explore the net effect

of w on λ∗ below.

To judge the effect of w, we examine the expected value of Γ, the ratio of PX

to PS. To avoid problems with dividing by zero we instead use Γ′ , min(Γ, 1).

Since Γ greater than one implies embedding at greater than 100%, these cases can

be ignored. From (5.1) we note that a smaller bin width leads to smaller expected
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bin values, PE
X [i] and PE

S [i]. By evaluating

E{Γ′} =
N∑

k=0

n∑
l=0

min

(
l

k
, 1

)
PVS [i](k)PVX [i](l)

for several distributions PVS [i], PVX [i] (recall these are binomially distributed based

on PE
S , PE

X ), we find that for a set ratio of expected bin values, PE
X [i]/PE

S [i],

the expected value of Γ′ increases as PE
S and PE

X decrease. In other words, the

expected value of Γ′ increases as the bin width decreases. This is particularly

true for small PE
X (and therefore small Γ′). For larger PE

X (greater than 0.1) the

expected value of the ratio is basically equal to the ratio of the expected value for

any bin size. Additionally, the variance of Γ′ (evaluated in the same manner as

the mean) decreases as PE
S and PE

X decrease. Both of these trends would indicate

that decreasing w increases the hiding rate. However this only accounts for a

reduction of bin width for a fixed bin center. As w decreases, new bins must be

created. λ∗, is evaluated as the minimum over all the bins. Intuitively, as the

number of bins increases there is an increased probability of a smaller minimum.

So the net effect, an increase or decrease in E{λ∗}, depends on the distribu-

tions. We then must evaluate the net effect of bin width on λ∗ for given cover and

stego pdfs. Fortunately for the steganographer, the steganalyst can not choose an

arbitrarily small bin size in order to detect, as the mean integrated square error

(MISE) of the detector’s estimate of the pdf is not simply inversely related to bin

width [77]. In other words, the detector also faces a challenge in choosing an ap-
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propriate bin size. Empirically, both the steganographer and steganalyst should

try to use as large a bin width as possible, while still maintaining the uniform

approximation over each bin.

5.3.3 Maximum Rate of Perfect Restoration QIM

We now apply the findings of the previous section to the case of quantization

index modulation (QIM) data hiding, specifically dithered uniform scalar QIM

[14]. For a given cover pdf fX(x) we know the expected pdf for data after un-

dergoing dithered scalar QIM with constant step-size ∆ from our steganalysis of

QIM (Section 3.3):

fS(s) =
1

∆

∫ s+∆/2

s−∆/2

fX(x)dx ≡
[
fX(x) ∗ 1

∆
u (x/∆)

]
(s)

where u(t) is the rectangle function, defined in terms of the unit step function

u(t) as u(t) = u(t + 1/2) − u(t − 1/2). As we found in Section 3.3, without

compensation, this change can be detected when hiding in real images. We now

show how to find λ∗ allowing for perfect histogram restoration of QIM hiding.

Earlier we listed general factors affecting the amount of data that can be

embedded while allowing histogram compensation. In the context of QIM hiding

we can more explicitly characterize these factors. Since we can calculate fS from

fX , of this pair we need only examine the cover pdf. Since fS is a smoothed
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version of fX (after convolution), the ideal fX for secure QIM hiding is uniform

[43], which can not be smoothed any further. Unfortunately it is difficult to

find a uniformly distributed cover medium. Typical hiding medium, particularly

transform domain coefficients, are sharply peaked. As noted earlier, σ/∆ is an

important parameter for QIM. For large σ/∆, the cover pdf is flat relative to

the quantization interval, and less change is caused to the original histogram

by hiding. Therefore less samples are needed for compensation, and more are

available for hiding, and the expected λ∗ is large. Conversely a small σ/∆ has a

low expected λ∗.

Of all the factors, only w and ∆ are in the hands of the steganographer. De-

creasing ∆ increases σ/∆, and therefore the safe hiding rate. However, decreasing

∆ also increases the chance of decoding error due to any noise or attacks [14].

Thus if a given robustness is required, ∆ can also be thought of as fixed, leaving

only the bin width. For QIM hiding in Gaussians and Laplacians, we found that

decreasing the bin size w led to a decrease in λ∗, suggesting that the stegano-

grapher should choose a large w. However, as mentioned before, w should be

chosen carefully to avoid detection by a steganalyst using a smaller w.

We presently examine an idealized QIM scheme, followed by an extension to

our practical QIM scheme which prevents decoder errors. As an illustrative ex-
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ample, we provide results derived for hiding in a Gaussian, i.e. fX(x) = N (0, σ2
X),

but note the approach can be used for any fX(x).

In Fig 5.3 is the density of Γ[i], fΓ[i](γ) for all i and a range of γ, for QIM

hiding in a zero mean unit variance Gaussian. From this density we can see the
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Figure 5.3: The pdf of Γ, the ratio limiting our hiding rate, for each bin i.
The expected Γ drops as one moves away from the center. Additionally, at the
extremes, e.g. ±4, the distribution is not concentrated. In this example, N =
50000, σ/∆ = 0.5, and w = 0.05.

relationship between Γ and bin center. For bins located near zero, Γ[i] has a

probability concentrated above 1 (though obviously we can not embed in more
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than 100% of the coefficients). For bins a bit further from the center, the expected

value for Γ drops. Since the effect of dithered QIM is to smooth the cover pdf

this result is not surprising. The smoothing moves probability from the high

probability center out towards the tails, see for example Fig. 5.4. Though this

−4 −3 −2 −1 0 1 2 3 4
0

0.01

0.02

0.03

0.04

Expected histograms for hiding in Gaussian with σ/∆ = 0.5

Cover
Stego

Figure 5.4: The expected histogram of the stego coefficients is a smoothed

version of the original. Therefore the ratio
P E

X [i]

P E
S [i]

is greater than one in the center,

but drops to less than one for higher magnitude values.

result is found for hiding in a Gaussian, we expect this trend from any peaked

unimodal distribution, such as the generalized Laplacian and generalized Cauchy

distributions often used to model transform coefficients [83, 80, 75]. Near the ends,
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e.g. ±4, Γ is distributed widely over all possible values. So while it is possible

to have a very high γ here, it is also possible to be very low; i.e. the variance is

very high. We empirically observed these problems in the low probability tails

in Section 5.2. The first solution proposed is to hide in all coefficients but only

compensate bins away from these tails. We now attempt to only hide in the

high probability region; after hiding, only this region needs to be compensated.

This introduces a practical problem, the decoder is not always able to distinguish

between embedded coefficients and non-embedded. We address this issue below,

but first we examine the ideal case. So our motivation is, even though we must

reduce the number of embeddable coefficients by not embedding in high valued,

low probability coefficients, our net rate may be higher due to a higher λ∗, where

λ∗ is redefined as

λ∗ , min
i∈H

PX [i]

PS[i]

where H is the hiding region, defined as H , [−T, T ] where T is a threshold.

The net hiding rate, no longer simply equivalent to λ∗, is now

R = λ∗G(H)

where

G(H) ,
∑
i∈H

PX [i].
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As the threshold T , increases, more coefficients are available for embedding, as

seen in Fig. 5.5. However as the threshold is increased the expected λ∗ decreases,

resulting in a lower rate. Practically the encoder and decoder can agree on a λ

which leads to perfect restoration within a pre-determined probability, 90% for

example. From the distribution of λ∗, the λ guaranteeing perfect restoration with

a given probability can be found for each threshold. These 90%-safe λs decrease as

the threshold is increased, as seen in Fig. 5.6, along with an example of deriving

the 90%-safe λ for the threshold of 1.3. The net effect of an increasing G(T )

and decreasing safe λ is a concave function from which the maximum rate can be

found.

In Fig. 5.7 we show the relationship between the chosen threshold and the rate

allowing perfect histogram matching in 90% of cases. In this case, the maximum

rate is 0.65 bits per coefficient. So, using a threshold of 1.3 and a λ of 0.81 (from

Figure 5.6), the hider can successfully send at a rate of 0.65, and the histogram

is perfectly restored nine times in ten.

5.3.4 Rate of QIM With Practical Threshold

There is however a practical problem when implementing the scheme addressed

in the above derivation. At the decoder, there is ambiguity with values near the

threshold. In the region near the threshold, the decoder does not know if the
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Figure 5.5: A larger threshold allows a greater number of coefficients to be
embedded. This partially offsets the decrease in expected λ∗ with increased
threshold.

received value is a coefficient that originally was below the threshold and is now

shifted above the threshold after hiding and dithering, or is simply a coefficient

that originally was above the threshold and contains no data. Therefore we create

a buffer zone near the threshold: if, after hiding, a coefficient would be shifted

above the threshold, it is instead skipped over. To prevent creating an abrupt

transition in the histogram at the buffer zone, we dither the threshold with the
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Figure 5.6: On the left is an example of finding the 90%-safe λ for a threshold
of 1.3. On the right is safe λ for all thresholds, with 1.3 highlighted.

dither sequence. Since the decoder knows the dither sequence, this should not

introduce ambiguity. This solution clearly results in a different stego pdf, fS(s),

particularly near the threshold. Now we have

fS(s) =



1
∆

∫ s+∆/2

s−∆/2
fX(x)dx s ∈ |s| < T −∆/4

g(s)fX(s) + 1
∆

∫ s

s−∆/2
fX(x)dx s ∈ [T −∆/4, T + ∆/4)

fX(s) else

where g(s) is a scaling function:

g(s) =


|s| − T + ∆

4
|s| ∈ [T −∆/4, T + ∆/4)

0 else

So in the center region before the threshold, the stego pdf is the same as the

previous case. In the region near the threshold, there is a blending of fX(x)
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Figure 5.7: Finding the best rate. By varying the threshold, we can find the
best tradeoff between λ and the number of coefficients we can hide in.

and a weakened (integrated over a smaller region) version of the standard fS(s).

Finally beyond the threshold region, the original coefficients pass unchanged and

the statistics are unaffected. In Fig. 5.8, we have fX , fS for the ideal case, and

fS for our practical threshold scheme, shown for two thresholds. Clearly PE
S (s)

is higher in the threshold region than for the ideal case, so our rate is less than

the ideal case.
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Figure 5.8: A comparison of the expected histograms for a threshold of one
(left) and two (right). Though the higher threshold densitie appears to be closer
to the ideal case, the minimum ratio PX/PS is lower in this case.

As with the ideal threshold case, we can calculate a λ guaranteeing perfect

restoration a given percentage of the time. In Fig. 5.9, we show the pdf of Γ.

The thresholding effect can be clearly seen: though the expected Γ is increased

near the threshold, it drops quickly after this.

Finally Table 5.2 shows the 90%-safe rate for various thresholds. Here we

would choose a threshold of 1, to achieve a rate of 0.3, about half the rate of the

ideal case.

We have compared the derived estimates to Monte Carlo simulations of hiding

and found the results to be as expected for different parameters (n, w, σ/∆). We
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Figure 5.9: The practical case: Γ density over all bins within the threshold
region, for a threshold of two. Though for bins immediately before the threshold, Γ
is high, the expected Γ drops quickly after this. As before, N = 50000, σ/∆ = 0.5,
and w = 0.05.

therefore have an analytical means of prescribing a choice of λ and T for maximum

hiding rate guaranteeing perfect restoration within a given probability.

5.3.5 Zero Divergence Results

We trained and tested an SVM classifier using a feature vector based on the

first order statistics of DCT coefficients. To compare the perfect restoration

scheme with standard hiding, we use both hiding methods to embed random

data into hundreds of images. The same rate and the same images are used with
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Threshold vs. Rate
Threshold 1 2 3

G(T ) 0.66 0.94 0.99
90%-safe λ 0.45 0.25 NA
Safe rate 0.30 0.24 0

Table 5.2: An example of the derivation of maximum 90%-safe rate for practical
integer thresholds. Here the best threshold is T = 1 with λ = 0.45 There is no
90%-safe λ for T = 3, so the rate is effectively zero.

both schemes. As expected, perfectly restoring the histogram foils a detection

method that can detect standard hiding at the same rate, see Figure 5.10. We

note the effective hiding rate is lower than that used in our experiments in Section

5.2.1.
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Figure 5.10: A comparison of practical detection in real images. As expected,
after perfect restoration, detection is random, though non-restored hiding at the
same rate is detectable.
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5.4 Hiding Rate for Zero Matrix Divergence

We now turn our attention to avoiding steganalysis that uses memory. As in

Chapter 4 we use a Markov chain model to include dependencies. To extend our

statistical compensation scheme discussed above, we now seek to compensate the

empirical matrix or joint histogram. In other words, we now consider changes to

pairs of values, rather than individual values.

5.4.1 Rate Distribution Derivation

In practice, it is difficult to implement a scheme to compensate pairs through-

out the entire image while still minimizing the mean square error introduced. On

the other hand, extending our analysis of histogram restoration is straightforward.

By doing so, we can estimate the best achievable hiding rate when considering

joint statistics in an idealized setting. Let fXn,Xn−1(xn, xn−1) be the joint pdf of

the cover, and fSn,Sn−1(sn, sn−1) the joint pdf of stego. As before, we assume the

steganalyst is using a histogram approximation. The expected joint histogram is

found similar to the one-dimension case (Eqn 5.1):

P
(E)
Xn,Xn−1

[i, j] =

∫ t[i]+w/2

t[i]−w/2

∫ t[j]+w/2

t[j]−w/2

fXn,Xn−1(xn, xn−1)dxndxn−1

Before proceeding, we note that each bin probability is lower than in the one-

dimensional case. For example, the probability of the pair (1.3, 1.4) is clearly be
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lower than either just 1.3 and 1.4. We previously experienced erratic behavior

in low probability regions, which drove down the rate. Additionally since we

now consider minimizing over |Y|2 bins, rather than |Y| (where |Y| is the size of

alphabet), we expect a lower minimum. We can forecast the rate will be lower

when compensating pairs, satisfying the intuition that greater security must come

at a cost.

Continuing just as before our basic requirement is

PZn,Zn−1 [i, j] = PXn,Xn−1 [i, j] ∀ i, j

PZn,Zn−1 [i, j] , λ2PSn,Sn−1 [i, j] + (1− λ2)PCn,Cn−1 [i, j]

(5.3)

Where λ2 is the proportion of pairs used for hiding. The total number of pairs

in a Markov chain of length N is N − 1. Hiding is typically done in individual

values, rather than pairs. If λ2(N − 1) pairs are reserved for embedding, then

λ2(N − 1) coefficients available for hiding, and (1 − λ2)(N − 1) + 1 coefficients

are available for compensating. We have the same constraints on PCn,Cn−1 [i, j] as

before, as well as the problems in low probability regions, so we have a limit on

the number of pairs we can use while still compensating the joint histogram:

λ∗2 , min
i,j ∈H2

PXn,Xn−1 [i, j]

PSn,Sn−1 [i, j]
∀i, j

Here H2 is a two-dimensional region of the joint statistics. H2 ,

{i, j : PXn,Xn−1 [i, j] ≥ T ′}, where T ′ is a probability threshold. Despite the
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different formulation, we note that the region defined by a probability threshold

is functionally equivalent to our one-dimensional region using a value threshold.

In other words, for symmetric, unimodal PX , there exists a probability threshold

T ′ such that {i : PX [i] ≥ T ′} = {i ∈ [T, T ]} for any value threshold T .

The derivation of the distribution of λ∗2 is identical to λ∗ above, though with

more bins to consider. The cumulative distribution of Γ[i, j] ,
PXn,Xn−1

[i,j]

PSn,Sn−1
[i,j]

is

FΓ[i,j](γ) =
N∑

k=0

bγkc∑
l=0

PVS [i,j](k)PVX [i,j](l)

and the cumulative distribution of λ∗2 is

Fλ∗2
(γ) = 1−

{∏
i,j

[
1− FΓ[i,j](γ)

]}

The general factors affecting data rate are the same as in one-dimensional case:

cover and stego pdfs, the number of samples, and the bin width.

5.4.2 Comparing Rates of Zero K-L and Zero Matrix Di-

vergence QIM

We now compare the 90%-safe rates of hiding for one- and two-dimensional

histogram compensation to judge the cost of increased security. We experiment

on dithered QIM hiding in a zero-mean bivariate Gaussian:

fXn,Xn−1(xn, xn−1) =
1

2π|ΣX |1/2
exp−

{
1

2
[xn xn−1]Σ

−1
X [xn xn−1]

T

}
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where

ΣX = σ2
x

 1 ρ

ρ 1


with ρ denoting the correlation coefficient. For the joint pdf of stego after dithered

QIM hiding, we note that both the dither sequence and the message data se-

quences are independent, therefore the extension to two dimensions is trivial:

fSn,Sn−1(sn, sn−1) =
1

∆

∫ sn+∆/2

sn−∆/2

∫ sn−1+∆/2

sn−1−∆/2

fXn,Xn−1(xn, xn−1)dxndxn−1

≡
[
fXn,Xn−1(xn, xn−1) ∗

1

∆
u2 (xn/∆, xn−1/∆)

]
(sn, sn−1)

where ∗ represents a two-dimensional convolution, and u2 is a two-dimensional

rectangle function. This is similar to spread spectrum hiding, except the convolu-

tion is not with a Gaussian. As with SS, we expect sharply peaked distributions

to be changed more by the smoothing. When considering a two-dimensional his-

togram, both the variance σ2
X and ρ affect the concentration of probability. As

with the one-dimensional case, a low variance is associated with a large peak.

Additionally, as noted in Chapter 4, a strongly correlated distribution, corre-

sponding to a large ρ value, has probability concentrated on the center line; this

concentration is be spread by hiding, just as in the SS case.

We calculated the 90%-safe rates for both one- and two- dimensional histogram

(empirical matrix) restoration. In Figure 5.11, we see that for data that is weakly

or not correlated, there is a large cost to compensating the empirical matrix. Ad-
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ditionally the security gain in this cases is quite small, as the divergence of the

histogram is nearly equal to the divergence of the empirical matrix. For trans-

form coefficients, which are only weakly correlated, it is probably not worthwhile

to consider joint statistics. However we are surprised to find that for strongly

correlated covers, the matrix compensation rate approaches and even passes the

histogram compensation rate. We note that since

PZ [i] =
∑

j

PZn,Zn−1 [i, j]

then if PZn,Zn−1 = PXn,Xn−1 , then PZ = PX . Therefore a perfect matrix restoration

implies perfect histogram restoration, and a higher rate can be achieved for greater

security! Though this seems to violate intuition, we point out that the ratio

of distributions is non-linear, and it is difficult to guess results beforehand. In

particular, although these ratios are equivalent∑
j PXn,Xn−1 [i, j]∑
j PSn,Sn−1 [i, j]

=
PX [i]

PS[i]

these are not ∑
j

(
PXn,Xn−1 [i, j]

PSn,Sn−1 [i, j]

)
6= PX [i]

PS[i]
.

and we do not expect any obvious relationship between the distribution of Γ[i]

and Γ[i, j] .

There is a key caveat to this finding however. For the matrix restoration,

we have used a probability threshold to decide which bins to hide in. Though
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Figure 5.11: A comparison of the rates guaranteeing perfect marginal and joint
histogram restoration 90% of the time. Correlation does not affect the marginal
statistics, so the rate is constant. All factors other than ρ are held constant:
N = 10000, w = 0.1, σX = 1, ∆ = 2. Surprisingly, compensating the joint
histogram can achieve higher rates than the marginal histogram.

the probability threshold can be achieved in the one dimensional case by a value

threshold, the opposite is not true. That is, a value threshold is not equivalent

to a probability threshold in the joint distribution. We find that if instead a

value threshold is used a for matrix restoration, it is not possible to achieve

these rates. Geometrically, the probability threshold corresponds to an ellipse-
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like region in the joint distribution, whereas the value threshold is a square region.

The former is better fitted to the distribution of correlated data. In particular,

the balance between the number of embedding coefficients and λ∗ is more difficult

to do with a square region. The smallest possible change in the threshold causes

a large change in both G(T ) and λ∗. Therefore using a square region (i.e. a value

threshold) reduces the rate significantly. In the one-dimensional case we had

practical difficulties implementing the value threshold, and our solution achieved

a lower rate than the ideal rate. We expect further difficulties with a probability

threshold, and in practice these rates are may be difficult to achieve.

5.5 Summary

We have analyzed a hiding scheme designed to increase security by explicit

restoration of the pdf. We believe there are two advantages of this approach over

earlier compensation schemes. First, continuous valued covers, for example, un-

compressed transform coefficients, can be used. Second, because a proven QIM

method is used for hiding, the scheme is robust against some noise, attacks, and

image processing. By first considering allowing a small amount of divergence be-

tween cover and stego by not compensating a small low-probability region, we find

the tradeoff using compensation is better than the tradeoff achieved by simply
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embedding less. We continue the analysis be examining perfect compensation.

We derive expressions to evaluate the rate guaranteeing perfect security within a

specified probability for both the ideal case and a practical implementation. We

expand these results to the case of protecting against steganalysis using a level

of dependency. By comparing these results with the simpler case we find that,

theoretically, empirical matrix compensation can outperform histogram compen-

sation. However, this only occurs in very strongly correlated data, and caution

that it may be very difficult to achieve these results in practice.
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Chapter 6

Future Work and Conclusions

The proliferation of steganographic tools has created a demand for powerful

means to detect hidden data. The primary focus of this dissertation is to employ

a systematic approach to the study of steganalysis allowing both the derivation of

optimal bounds and the design of practical solutions. Using a detection-theoretic

approach, we investigated the inherent detectability of several commonly used

data hiding techniques, devised methods to detect these schemes, and used this

knowledge to devise and analyze a means of escaping detection.

Though our approach has gained satisfying results in the study of steganog-

raphy, we acknowledge there are problems yet to be solved. We conclude with

a look to future research directions which we believe will advance the study of

stealthy transmission of, and interception of, hidden data in images.
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6.1 Improving Model of Images

We have seen that using a Markov chain image model has increased the ac-

curacy of our steganalysis results, by allowing one level of dependency. Markov

random field (MRF) models, with larger neighborhoods of dependency, have had

some success in characterizing images. Many other models [83, 80] for describ-

ing spatial and transform domain statistical characteristics have been proposed.

However, while a more complex model may be a more accurate representation

of image data, a problem with increasing the complexity of the model is the

increasing inaccuracy of estimates of the model for a given number of samples

[15].

Typically statistical models assume the distribution is the same for all image

pixels, that is, the random process is stationary. However we have seen some

data hiding methods [81, 37, 31] that adaptively embed data according to the

local statistics, suggesting that a careful steganalyst should consider a variation

in statistics across the image. A piece-wise stationarity assumption, in which

a different stationary random process is assumed for several regions within the

image, is perhaps a better way to model real images while remaining analyti-

cally tractable. There is however a significant challenge with this approach: how

to choose regions that accurately group statistically related pixels. Certainly a
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smaller region is more likely to follow a stationarity assumption, however a smaller

region has fewer samples with which to estimate the distribution of the region.

Grouping pixels from the same distribution is essentially image segmentation, a

very difficult problem and an active field of research. By leveraging the results of

this field, an appropriate means of selection may be found.

In addition to variation within an image, we have observed in our testing a

noticeable disparity in detector effectiveness according to the source of the cover

image. By source we mean both the scene represented in the image and the

technology used to create a digital representation of the scene. For example,

small sections of a very high resolution image are much more homogenous than a

lower resolution image of the same size. Assumptions based on stationarity and

strong correlation therefore work better for the former than the latter. We have

attempted to account for this in our experiments by using images from several

different sources; however the choice of an “ideal” natural image database remains

an ill-posed problem. To improve detection on images with widely varying sources,

for example images grabbed randomly off of the Internet, it may be beneficial to

use a two-stage classifier. The first stage classifies the image into rough groups

based on source, the second stage discriminates between cover and stego within

these groups.
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6.2 Accurate Characterization of Non-Optimal

Detection

A key advantage of the detection-theoretic approach is provable bounds on

detector performance giving a steganographer a guarantee of security. A decrease

in hiding rate is generally accepted to effect an increase in security. However, an-

ticipating optimal detection may be too pessimistic, causing a greater sacrifice of

rate than is actually necessary to avoid detection. Practical detectors will always

fall short of optimal, due to the insufficiency of information practically available.

In particular, the steganalyst’s lack of knowledge of the cover distribution means

she or he has to use general observations on natural images, either directly or

through supervised learning. If the exact cost to detector performance caused by

estimating this information could be accurately characterized, the steganographer

could hide at an increased rate while still remaining effectively stealthy. Addi-

tionally, the steganalyst will know when the practical limits of detection have

been reached. Accurately characterizing the difference between optimal detection

and the best that can be realistically done is a very challenging problem, but the

potential benefits are great.
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6.3 Summary

In this thesis we implemented a detection-theoretic approach to the analysis of

steganographic security from both the detector’s and hider’s point of view. This

theory is well-developed and is naturally suited to the steganalysis problem. This

approach allows us to estimate the performance of optimal statistical detection

of hiding in images.

In addition to characterizing optimal steganalysis under idealized conditions,

we developed methods for practical detection in realistic scenarios. Specifically,

we develop tools to detect three general classes of data hiding in natural images:

least significant bit (LSB), quantization index modulation (QIM), and spread

spectrum (SS).

Though powerful detection schemes exploiting image dependencies exist, sys-

tematic approaches to steganalysis have typically focused on an independent and

identically distributed (i.i.d.) assumption. We extend the detection-theoretic ap-

proach to the next logical step by using a Markov chain model of hiding media,

thus allowing a systematic approach using a measure of dependency.

Finally, we leveraged our steganalysis knowledge to design a system to evade

optimal steganalysis. In addition to designing a system which successfully reduces

the effectiveness of previously successful detection for dithered QIM, this analysis
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is also used to derive a formulation of the rate of secure hiding for arbitrary cover

distributions.

Steganalysis and steganography are complex problems, and there are many

avenues available for further exploration. Image data is difficult to succinctly

characterize. We note that a more complex image model could be used, allowing

for more accurate statistical description of images. Additionally, the detection

theory provides estimates of the performance of optimal steganalysis. However

optimal steganalysis is practically impossible. If the deviation from optimality

could be accurately characterized, an estimate of inherent practical detectability

may be possible. Finally we have generally focused on grayscale still images.

However the methods we presented here can be applied to the study of data

hiding in color images, video, and audio.
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Appendix A

Glossary of Symbols and
Acronyms

List of Symbols

n, m, i, j, k various indexes, n is typically a sample index, i, j a value or bin index

A acceptance region of detector, page 38

A regularity constraint matrix, page 52

α probability of false alarm, or SS scaling parameter page 38 or 91

B hidden message bits, page 43

Bl blockiness measure, page 89

C output of standard quantizer or compensating coefficients, page 65 or 127

c denotes complement of a set, general use

C compensated region, page 129

D dither value for dithered QIM, or SS message bearing signal, page 67 or page
90

D(·||·) Kullback-Leibler divergence (relative entropy), page 41

D(M(X),M(S)) matrix divergence between Markov chains X and S, page 85

δ(·) generic detector, page 38
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Glossary of Symbols and Acronyms Chapter A

∆∗ step size for uniform scaler quantization, page 66

∆ step size for uniform scaler QIM, page 63

ηij number of transitions from i to j in Markov chain, page 83

ε bound on Kullback-Leibler divergence, page 30

fX(x), fS(s) probability density function (pdf) of cover and stego, page 126

FX(x) cumulative distribution function of random variable X: P (X ≤ x), general
use

g(·) scaling function for practical threshold, page 145

G(·) number of embeddable coefficients as a function of threshold, page 143

Γ random variable, ratio of cover histogram to stego histogram, page 134

γ value of Γ, page 134

H(·) entropy of random variable, general use

Hb(·) entropy of binary random variable, page 27

H0, H1 cover, stego hypotheses, page 37

H hiding region for zero divergence statistical compensation, page 142

I number of bins, page 126

K composite hypothesis of stego hiding at any rate, page 45

κ ratio of matrix divergence to K-L divergence, page 86

L(·) log-likelihood statistic, page 39

L(·)χ2 chi-squared statistic, page 48

Lapprox.(·) approximate log-likelihood statistic, page 51

λ percentage of coefficients used for hiding, page 127

λ2 percentage of pairs used for hiding, joint compensation case, page 151

λ∗ percentage of coefficients available for hiding, perfect compensation, page 129
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Glossary of Symbols and Acronyms Chapter A

λ∗2 same as λ∗ for joint compensation case, page 151

M empirical matrix of Markov chain, page 85

M(X),M(S) cover, stego empirical matrices, page 85

N number of samples, page 37

PX , PS function form of PMFs of cover, stego, page 65

P (E) probability of event E, general use

p(X),p(S) vector form of PMF cover and stego, page 40

p̂(X) estimate of cover PMF, page 51

qb quantizer indexed by message, page 62

q estimated PMF of received data (normalized histogram), page 40

QR matrix corresponding to linear transformation of LSB hiding at rate R, page
44

Q(·) complementary Gaussian function, page 47

R hiding rate, page 43

R real line

u(t) rectangular function : u(t + 1/2)− u(t− 1/2), page 138

S, s stego random variable, value of stego random variable, page 37

T threshold for statistical compensation, page 142

T Markov chain transition matrix, page 83

σX standard deviation of random variable X

τ threshold for hypothesis test, page 38

w bin width of histogram, page 64

X, x cover random variable, value of cover random variable, page 37

X ∗ quantization range (Voronoi region) for uniform scalar quantization, page 65
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Glossary of Symbols and Acronyms Chapter A

X quantization range (Voronoi region) for uniform scalar QIM, page 66

χ2 closeness-of-fit statistic, used for LSB detection, page 15

{Yn}N
n=1 received data samples, page 37

y received data vector, page 40

Y alphabet of data, page 38

Z statistically compensated stego, page 127

Zn indicator vector, page 46

List of Acronyms

AWGN additive white Gaussian noise

bpp bits per pixel

bpnz-DCT bits per non-zero DCT coefficient

CACD Canon digital camera

CPCD Corel photo CD

COM center of mass

DCT discrete cosine transform

DFT discrete Fourier transform

DWT discrete wavelet transform

DOQQ digital orthophoto quarter-quadrangle (Set of aerial images.)

HCF histogram characteristic function

MISE mean integrated squared error

HMM hidden Markov model

HPDM histogram-preserving data-mapping

HVS human visual system

IQM image quality metrics
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Glossary of Symbols and Acronyms Chapter A

i.i.d. independent and identically distributed

JPEG joint photographic experts group (Image compression schemes.)

K-L Kullback-Leibler

KLT Karhunen-Loeve transform

LSB least significant bit

LRT likelihood ratio test

LLRT log likelihood ratio test

MC Markov chain

MCR message to cover (power) ratio

MRF Markov random field

MSE mean squared error

MMSE minimum mean squared error

pdf probability density function

PNG portable network graphics (Image compression scheme.)

PMF probability mass function

PR psuedorandom

PSNR peak signal to noise ratio

QIM quantization index modulation

ROC receiver operating characteristics

RS regular/singular (Used to denote detection method using sets with these
names.)

SS spread spectrum

SSIS spread spectrum image steganography

SVM support vector machine
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