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Abstract

Multimedia Data Hiding:

From Fundamental Issues to Practical Techniques

by

Kaushal M. Solanki

The rapid growth in the demand and consumption of the digital multimedia

content in the past decade has led to some valid concerns over issues such as

content security, authenticity, and digital rights management. Multimedia data

hiding, defined as imperceptible embedding of information into a multimedia host,

provides potential solutions, but with many technological challenges. In this

thesis, we address several fundamental issues in this field, which provide the

framework for the design of practical techniques that can seamlessly be deployed

in real-world applications.

The first problem we address is that of embedding high volume of information

in an image without incurring any perceptual distortion, and achieve robustness

against compression, additive noise, and image tampering attacks. Key to this is

the use of image-adaptive perceptual criteria, and a coding framework that em-

ploys turbo-like codes, leveraging the huge advances in coding theory made over

the last decade. Next, a hybrid digital-analog scheme is proposed for hiding an

image into another image in such a way that the quality of the recovered image

improves as the attack gets milder. This graceful improvement is permitted by a

novel joint source-channel coding scheme. We then present techniques that allow

xi



robust embedding of hundreds of bits into images, in a manner that survives print-

ing followed by scanning. Autocalibration methods, such as automatic algorithm

for undoing rotation induced by the scanning process, play a key role. Finally,

we present a framework for the design of perfectly secure covert communication

(steganographic) techniques that can potentially evade any statistical steganalysis

of the stego signal.
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Chapter 1

Introduction

Ever improving network bandwidths, computer speeds, digital storage capacities,

and wireless capabilities are changing our lives right from the way we entertain

ourselves, communicate with each other, or assimilate and disseminate knowledge,

to the way we operate our bank accounts. A key driver for these changes has

been the rapid growth in the demand and consumption of digital multimedia

content. This has, however, lead to some valid concerns over multimedia content

security, authenticity, and intellectual property rights. There is an urgent need to

address these issues, failing which, the true potential of recent as well as future

technological advances (in this area) may not be realized.

Multimedia data hiding, defined as imperceptible embedding of information

into a multimedia host, provides potential solutions, though with many unseen

challenges. Because of its potential applications in multimedia content security,

data hiding continues to receive considerable attention from the research commu-

nity. Multimedia data hiding offers unique challenges that require integration of
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various disciplines, such as image processing, computer vision, information theory,

signal compression, error correction coding, and communication theory. In this

dissertation, we address several fundamental issues in this field, which provide the

framework for the design of practical techniques that can seamlessly be deployed

in real-world systems. Through a mix of experimental and analytical approach,

we are able to provide practical solutions to several problems important to the re-

search community. The work presented in this dissertation is mainly focussed on

embedding information into images, however, several of the proposed approaches

and analyses are general, and can be easily applied for other media data, such as

audio and video.

Data hiding can be defined more formally as the process by which a mes-

sage signal or signature is imperceptibly embedded into a host or cover to get

a composite signal. The general framework of a data hiding system is shown in

Figure 1.1. There are three main conflicting requirements of a multimedia data

hiding system: perceptual transparency, robustness, and capacity. Information

embedding into a multimedia host should not incur any perceptual distortion to

the host, i.e., the composite signal should be perceptually transparent. The data

should be recoverable even after the composite multimedia signal has undergone a

variety of processing, intentional or unintentional, to remove the embedded data.

In other words, the hidden data must be robust against a variety of attacks. We

would also like to embed as many bits into the host as possible, or, the capacity

of the embedding system should be high. Different applications have different

specific requirements of robustness and the volume of embedding. Most applica-

tions, however, require near-perfect perceptual transparency. There are several
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other design issues, based, again, on the target applications, which are consid-

ered or defined in this thesis. This include maintaining statistical transparency

to conceal the presence of embedded data, or providing graceful improvement in

the quality of recovered signature data as the attack strength reduces. We shall

elaborate these issues later in this chapter.

1

Message

Encoder

Host Image

Secret key

Composite 

Image

Intentional or 

unintentional 

processing

“Attacks”

Decoder Message

Figure 1.1: General framework of a data-hiding system.

The first problem we consider is that of embedding high volume of informa-

tion into images, which could survive attacks such as compression and additive

noise. A significant issue here is to embed large number of bits without caus-

ing perceptual degradation to the host image. This requires embedding data in

a way that adapts with the local characteristics of an image. Key to this is a

coding framework that employs turbo-like codes, leveraging the huge advances in

communication/coding theory made over the last decade.

Next, a hybrid digital-analog scheme is proposed for hiding an image into

another image in such a way that the quality of the recovered image improves as
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the attack gets milder. This graceful improvement is permitted by a novel joint

source-channel coding scheme. To the best of our knowledge, this is the first joint

source-channel coding approach for data hiding proposed in the literature.

We present methods to hide data into images that achieves resilience to print-

ing and scanning process. The design of these techniques is based on extensive

analytical as well as experimental modeling of the print-scan process. The em-

bedding rates we report provide significant improvement over the state of the

art.

A framework, termed statistical restoration, for the design of techniques for

secret communication is proposed next, which can potentially evade any statis-

tical detection of the presence of hidden data. Using the techniques based on

the framework, several thousand bits1 can be hidden into images without modi-

fying the relevant statistics of the cover image, so that the presence of embedded

information cannot be detected by statistical analysis.

1.1 Motivation

This dissertation is motivated by several emerging applications of multimedia

data hiding. The advent of digital age with the Internet revolution has empow-

ered consumers with capabilities and luxuries that were unthinkable just a decade

ago. However, the availability of inexpensive hardware (such as printers, scan-

ners, and compact disc and digital versatile disc burners), and powerful software

(such as image, video, and audio editing and processing software) have made it

1For example, 30 000 bits can be hidden into 512×512 images while maintaining complete
statistical transparency.
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very easy for users to make illegal copies of copyrighted material, and share it

with other Internet users through one of several available peer-to-peer file-sharing

utilities (such as KaZaA, BitTorrent, and eDonkey2000). Now, users can easily

photoshop digital images, or edit audio or video clips. The advent of digital age

has, ironically, destroyed the authenticity of digital multimedia information.

To counter this, digital watermarking is a technology being developed, in

which, copyright information is embedded into the host in a way that is robust

to a variety of processing intended to remove the watermark. In multimedia au-

thentication applications, the embedded digital watermark must detect malicious

tampering, but should not get destroyed by ‘benign’ attacks, such as compres-

sion and enhancement. We present our approach for image tamper detection and

localization in Chapter 3.

In copyright protection applications, the embedded digital watermark must

survive extreme malicious processing of the image. Several freeware packages

are available that attack the images without inducing perceptual distortion (e.g.,

Stirmark [85], and Checkmark [84]). The ease with which images can be converted

from the print to the digital form and vice versa makes it necessary that the em-

bedded digital watermark is resilient to the print-and-scan operation. In Chapter

5, we study data hiding methods that are resilient to the print-scan operation as

well as the attacks included in the Stirmark package.

Security concerns have grown tremendously in past few years all over the

world. The main concern for government agencies is to catch the malicious ele-

ments, but at the same time, provide hassle-free movement for law-abiding cit-

izens. This calls for developing strong deterrents against forgery of important

5



Introduction Chapter 1

documents such as passports, driving licences, and ID cards. Here too, print-scan

resilient data hiding provides a potential solution: security information (such as

fingerprints, signature, or passport number) can be imperceptibly embedded into

a picture in the document. Only specific devices, which have access to a secret

key, can decode and authenticate the hidden information. Forgery of such docu-

ments become extremely difficult because the embedded data is inseparable from

the picture.

With the technological advances made in telecommunications and network-

ing, the world is connected today. So are the terrorists. It is easier than ever

before for them to plan large-scale destructions because they can communicate

anonymously across the globe without inciting anyone’s suspicion. Government

agencies, such as the central intelligence agency (CIA), are concerned that the

terrorists might be communicating secretly by embedding information in images

or video and passing them around through the World Wide Web (for example, see

an article that appeared in the popular press [55]). An application of data hiding

is steganography, the art and science of communicating in such a way that the

very existence of communication is not known to the third party. It is very im-

portant to investigate steganalysis, the study of techniques to detect the presence

of hidden data. Also significant is to understand the limits of steganography, and

analyze how much information can be embedded into images, audio, or video hosts

without being detected. In this context, we present, in Chapter 6, a framework

to design steganographic techniques that hide significant volume of information,

yet, evade most steganalysis techniques available in the literature.

The consumer electronics and computer industry is advancing rapidly with
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the products gaining performance à la the famous Moore’s Law [96]. New func-

tionalities are being added everyday and the older devices are getting outdated

quickly. For multimedia-related devices such as satellite television receivers, it

is not realistic to ask consumers to buy new receivers frequently. In such cases,

it is desirable to be compatible with the older devices, and provide new facili-

ties to those receivers that have the advanced features. This seamless upgrade of

multimedia can be provided by embedding additional control information imper-

ceptibly into the video or audio, which can be interpreted by those receivers that

have the know-how. The older receivers would continue to decode the stream in

the usual fashion and would not be affected. A system like this would require em-

bedding significant amount of data and must also be be robust to compression and

additive noise. In Chapter 3, we study techniques that fulfil these requirements.

A lot of images are being created in a variety of disciplines, such as biology,

geography, medicine, and geology. For these images to be useful, some extra

information detailing the context is required, for every image. For example, a bi-

ologist studying retinal images would want to know when the image was created,

what microscope was used, what colorant was used, and so on. Presently, this

meta data is either stored in a huge database (e.g., the biological image database

at UCSB [2]), or is stored in the headers of specialized formats specific to the

particular field. For some applications, creating a database might be an overkill.

On the other hand, using specialized formats to put the meta data in the headers

takes away the flexibility and limits the portability. The meta data would be lost

if the images are converted from its original proprietary format to any other (com-

pressed or non-compressed) format. Also, specialized viewing programs might be
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needed to interpret the formats. Having the flexibility of changing the storage

format or allowing compression is especially significant now, as the researchers in

these fields are collaborating with those in image processing and computer sci-

ence in order to understand, interpret or process these images efficiently. Image

data hiding can provide a way to get around this problem: the meta-data can be

embedded into the images without distorting the images. This way, no special-

ized formats are required, and the meta-data stays with the image even when it

changes the storage format or if it is compressed. Note that, in these applications,

it is very important to preserve the perceptual quality of the images while embed-

ding the significant number of bits. The techniques presented in Chapter 3 can be

employed these applications too, such as for the annotation of medical, biological,

geo-spatial, or cartographic images. We now summarize the main contributions

of this thesis.

1.2 Summary of Contributions

We address several important problems in data hiding, add new requirements,

and propose practical schemes that meet many stringent design requirements.

Below is a list, with brief description, of the fundamental contributions of this

thesis, which, we believe, have applicabilities beyond the schemes presented in

this thesis.

1. A coding framework for adaptive hiding: A flexible coding framework

is presented, which allows the encoder to select hiding locations dynamically

without needing to send the side information about hiding locations to the
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decoder. The framework is applied in two embedding schemes presented

in this thesis: high volume hiding using perceptual criteria, and print-scan

resilient embedding.

2. A joint source-channel coding method to hide analog information:

A method to embed analog information into general host samples is pro-

posed. We show that the mean squared distortion in the recovered data

reduces as the attack gets milder. This method is used in our image-in-

image hiding scheme that uses hybrid digital-analog embedding scheme to

achieve graceful improvement in the received image quality.

3. Data hiding resilient to printing followed by scanning: The print and

scan process has been systematically characterized, and the main sources of

distortion during the print-scan process have been identified. These findings,

based on detailed analysis of some components, are used to design practical

print-scan resilient hiding schemes. We can further improve upon these

techniques by studying the other components that have not yet been studied

in detail.

4. A framework for design of statistics-preserving data hiding schemes:

A statistical restoration framework is proposed that allows design of schemes

that can embed data into a host without changing its relevant statistics. We

show that this framework can be used to design steganographic techniques

that can evade the best image steganalysis tool out there. This framework,

however, is general and can be applied to any host data, not just images,

and can also be employed to restore any particular statistics.
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Figure 1.2: The main contributions of the thesis, sorted (roughly) according
to the capacity and robustness.

We propose several practical techniques that are based on the above funda-

mental contributions. Figure 1.2 shows the various parts of the thesis, and where

they fit in terms of the volume and robustness requirements. In the following, we

study each of them separately.

1.2.1 Image-Adaptive High-Volume Data Hiding

Embedding high volume of information into images without causing perceptual

distortion has been quite challenging. The earliest approaches were to simply

modify the least significant bits (LSB) of the image samples to hide the data

(see [53], Chapter 2). However, embedding in LSBs is very fragile, since the

hidden data will be lost by simple modifications of the image, such as compression.

Spread spectrum (SS) techniques were proposed to counter this problem [26].
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Here, a spread version of the data is added to the image either in spatial or

transform domain. Perceptual transparency is achieved in these techniques by

an approach called perceptual shaping, in which the added spread sequence is

scaled by a parameter determined by the perceptual sensitivity of the region.

While spread-spectrum methods do provide robustness against attacks such as

compression and noise, it is difficult to embed higher volume of information in

images using these techniques.

A class of data hiding methods, called quantization index modulation (QIM),

based on quantization of the host samples were proposed and shown to be superior

to spread-spectrum techniques [19, 18, 21, 20]. Using a simplified version of QIM,

called the scalar QIM, data can be hidden such that it can survive attacks like

compression and additive noise. However, when hiding large volume of data, we

must adjust to local characteristics within an image in order to control perceptual

distortion. For QIM hiding, adaptation cannot be done as simply as SS that

employs perceptual shaping.

We show, in Chapter 3, that high volume of information can be hidden in

images by using dynamically selected discrete cosine transform (DCT) coefficients

for embedding (also see [109, 51, 108]). The use of local criteria to choose where

to hide data can potentially cause desynchronization of the encoder and decoder.

This synchronization problem is solved by the use of powerful, but simple to

implement, erasures and errors correcting codes, which also provide robustness

against a variety of attacks.

The problem of adaptive hiding has been addressed by prior researchers with

varying degree of success. Wu et al [136, 137] propose an adaptive embedding
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method, termed uneven hiding. This system either uses a fixed embedding rate

through an approach called shuffling, or explicitly sends the side information

about hiding locations in a variable rate embedding approach. Apart from a

complicated implementation, the volume of data hidden using this approach is

quite less. More recently, Fridrich et al [41] propose an interesting approach,

called wet paper codes, which allows the encoder to choose the embedding locations

without needing to send any side information to the decoder. This approach,

however, is primarily geared towards applications in steganography, and is fragile

against any attacks or modifications to the image. On the other hand, the coding

framework proposed in this thesis (also published in [109] and [51]) not only does

not require any side information to be sent, but it also allows information to

be recovered against a number of attacks such as compression, additive noise,

resizing, or tampering.

The framework can also be employed to design a system for multimedia au-

thentication. With appropriate design, one can detect malicious tampering of

the image at the decoder and also localize the tampered area. An example is

presented in Figure 1.3, in which we embed 6912 bits into a 512×512 Lenna im-

age. Even after the tampering of the image as shown in the figure, all the hidden

bits are received successfully. This system, described in Chapter 3, can distin-

guish between the malicious tampering of the image and benign processing such

as compression.

The effectiveness of the system is demonstrated by an online system available

at [1]. The interface allows the user to upload an image, provide a text message

which is to be hidden in the image, and also give a secret passcode. An option to
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Figure 1.3: High-volume data hiding with robustness against malicious tam-
pering. All the embedded 6912 bits are recovered successfully at the decoder
in spite of the attack.

choose the desired volume of embedding is provided that determines the amount

of robustness. If low volume of data is embedded, the composite image will

have higher robustness, and vice versa. The data can be recovered after the

hidden image has undergone several attacks such as compression, additive noise,

or tampering, as stated before.

1.2.2 Gracefully Improving Image-In-Image Hiding

We here consider the problem of image-in-image hiding, in which an image,

called the signature image, is to be embedded into another image, called the host
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image, to get a composite image. The high volume embedding method described

in the previous section can be used to hide an image into another image. However,

the system must be is designed for the worst anticipated attack. In practice, the

attack level is seldom known apriori, and if the actual attack is less severe than

the design attack, we are still stuck with the design signature image quality.

Ideally, we would like an image-in-image hiding scheme that results in graceful

improvement in the image quality with less severe attacks. Such schemes require

joint source-channel coding, which has been studied for the Gaussian channel (see,

for example, [17, 103]).

To the best of our knowledge, such schemes have not been studied for the data

hiding channel2. An important contribution of this thesis is the development of

joint source-channel coding techniques for data hiding. In Chapter 4, we present

a hybrid digital-analog (joint source-channel) coding scheme for image-in-image

hiding (also published in [107]). It leverages the digital scheme (described in

previous section) based on image-adaptive criteria and turbo-like codes (Chapter

3, and [109, 51]), and involves the transmission of the analog residue using a new

method.

Focussing on JPEG compression attacks, we derive the minimum mean squared

error (MMSE) decoding strategy for the proposed hybrid embedding scheme. We

demonstrate a practical image-in-image hiding system that can hide signature

images as big as 256×256 into a 512×512 host image, in such a way that there

is perceptual as well as mean-squared error improvement in the recovered image

quality as the attack gets milder.

2A somewhat-related approach is discussed in [136, 137], in which a multi-level embedding
is considered. We discuss this work in Chapter 4.
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1.2.3 Print-Scan Resilient Hiding

In Chapter 5, we consider the problem of hiding information into an image

in such a way that the embedded data can be recovered even after it is printed

and scanned. There has been a growing interest among researchers in the area

of print-scan resilient embedding, but little progress has been made because of

the complex nature of the problem. One of the first approaches was by Lin

and Chang [61], who model the print-scan process by considering the pixel value

and geometric distortions separately. There are some watermarking methods

[93, 105, 10] that were not specifically designed for the print-scan attack, but they

do report robustness against the print-scan operation under specified experimental

setup.

Most of the above methods embed only a single bit (or a few bits) of informa-

tion, as they assume the availability of the watermark sequence at the decoder.

In Chapter 5 of this thesis (also see [112, 110, 111, 106]), we propose methods to

hide information into images that achieves robustness against printing and scan-

ning. Using these techniques, several hundred information bits can be embedded

into images with perfect recovery after the print-scan operation, which is a signif-

icant improvement over the state of the art. An example is presented in Figure

1.4, in which we embed several bytes of information using a technique proposed

in the chapter, and successfully recover the embedded data after the print-scan

operation.

An important contribution of this work is a systematic analytical modeling of

the print-scan process by breaking it down into simpler sub-processes, which is

appropriately complemented by extensive practical experiments. The analytical
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Figure 1.4: An example of print-scan resilient data hiding presented in the
chapter. The number of bits that can be embedded in a typical 512×512
image varies from 200 to 500 bits depending on the detail and texture content
in the image.

and experimental findings form the basis of the proposed embedding schemes, in

which data is hidden in dynamically chosen transform coefficients, with synchro-

nization and error correction using powerful turbo-like channel codes. This also

provides robustness to the hidden data against several other attacks included in

Stirmark, such as Gaussian or median filtering, scaling or aspect ratio change,

heavy JPEG compression, and rows and/or columns removal.

Also proposed is a novel approach for estimating the rotation that an image

might undergo during the scanning process, by exploiting knowledge of the digital

halftoning scheme employed by the printer. The employed derotation method

is completely different from the previously used approaches, in which rotation

invariance is typically achieved by using FM transform [61, 93]. The advantage of

the proposed technique for print-scan resilient hiding is that there is no penalty

in hiding rate for achieving robustness against rotation.
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1.2.4 A Framework for Secure Steganography

In Chapter 6, we propose a framework that allows design of embedding schemes

that can evade statistical steganalysis while hiding at high rates, and also achieve

robustness against attacks. We are motivated by the notion of ε-secure steganog-

raphy proposed by Cachin [12], in which the relative entropy (also called Kullback-

Leibler or K-L divergence) between the cover and stego distributions is less than

or equal to ε. Our approach for achieving a small ε is to employ statistical restora-

tion, wherein a portion of the data-hider’s “distortion budget” is spent in repairing

the damage done to the image statistics by the embedding process.

Modern steganography is a game with escalating sophistication between the

hider and the steganalyst. One of the first popular steganalysis tools was Stegde-

tect [90], which uses a chi-square statistic on the histogram of transform coeffi-

cients to detect least significant bit (LSB) hiding. Stegdetect can be improved

upon by more sophisticated detection-theoretic approaches [29]. Such methods,

which are based on the histogram of the host coefficients, have spurred the de-

velopment of hiding techniques that make as little change to the histogram as

possible. Provos’ Outguess algorithm [89] was an early attempt at histogram

compensation for LSB hiding, while Eggers et al [32] suggest a more rigorous ap-

proach to the same end, using histogram-preserving data-mapping (HPDM). In

turn, steganalysis tools that counter such histogram-preserving hiding methods

have been developed, such as detection, for image-based hiding, of block-DCT

embedding by evaluation of the increase in blockiness due to hiding [39, 128].

While both HPDM and OutGuess attempt to match the quantized histogram of

the discrete cosine transform (DCT) coefficients, more recent proposals [48, 129]
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try to match the continuous marginal statistics.

Unlike most of the steganography approaches in the literature, our framework

allows design of schemes that can have perfect security by achieving zero Kullback-

Leibler (K-L) divergence between the cover and the stego signals. One can match

continuous statistics using the proposed approach, not just discrete (or quantized)

statistics. Only a couple of prior schemes, to the best of our knowledge, can

potentially achieve zero KL divergence for continuous host statistics: Gullion et

al [48], and Wang and Moulin [129, 75]. Both the approaches, however, have some

serious issues that limit their practical applicability. Guillon et al [48] suggest

transforming the source to get a uniform PMF source. The message is hidden

in this with the quantization hiding scheme, which is known not to change the

PMF of uniform sources. Therefore, the PMF after transforming back is also

the same as the original. This method, however, is not likely to be robust, and

also, there is no way to control the distortion induced by the embedding process.

Wang and Moulin [129] propose a reduced rate variant of standard QIM, called

the stochastic QIM, which can be made to have zero K-L divergence. However,

because of the stochastic nature of the hiding process, the method is likely to

yield high error rates when embedding large volumes of data. Note that in [75],

the proposed stochastic QIM technique embeds only one bit of information.

The proposed framework allows design of robust techniques that are not frag-

ile against attacks, unlike most of the methods proposed in the literature so far.

While certainly not the most important issue for steganographic systems, robust-

ness against “natural” attacks such as compression or additive noise is highly

desirable. Most of the prior schemes, such as OutGuess [89], HPDM [32], Sallee’s
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model based methods [94, 95], and Fridrich et al’s perturbed quantization [40],

are fragile against any modifications to the image.

The techniques do not rely on accurate modeling of the host statistics. This is

unlike Sallee’s model-based steganography [94, 95], in which the hider ensures that

the stego signal conforms to a given model. In the absence of a perfect model for

the host, nothing stops the steganalyzer from selecting a better model by spending

more computational power, and hence detect the embedded data. This is indeed

practically shown in [11], where Sallee’s Cauchy-model based JPEG steganogra-

phy is broken by using only the first order statistics. Our approach is very difficult

to detect in this manner, since the stego marginals are simply restored to conform

to the host’s empirical density, rather than invoking a statistical model for the

host’s marginals.

The framework can be employed for restoring statistics of any order, not just

the first-order statistics. Most of the histogram preserving techniques can be

detected by steganalysis approaches that use cover memory, such as Fridrich et al

[39], and Wang and Moulin [128], who detect block-DCT embedding by modeling

the increase in blockiness of the image due to the hiding in DCT coefficients. Our

framework can be employed to design methods that can restore such statistics as

well.

1.3 Organization of the Dissertation

The rest of this thesis is organized as follows. We start with an overview of

data hiding field along with a survey on prior approaches in Chapter 2. Here we
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discuss information-theoretic analyses, robust watermarking techniques, image-

adaptive techniques, as well as approaches for steganography and steganalysis.

Having provided the context, in Chapter 3, we move on to our image-adaptive

embedding schemes that allows us to embed high volume of information without

causing perceptual degradation, and also be robust to attacks such as compression,

additive noise, and image tampering. We add a new design requirement for data

hiding systems in Chapter 4: along with robustness and perceptual transparency,

we would like to recover the signature data with high fidelity if the attack strength

is small. To achieve this goal, we propose a hybrid digital-analog joint source-

channel coding scheme. An image-in-image hiding system is demonstrated, which

achieves perceptual as well as mean-squared error improvement in the recovered

image quality as the attack gets milder. In Chapter 5, we address the problem

of embedding information robust to the printing followed by scanning operation.

Extensive experimental modeling is taken up to learn the channel characteristics,

which leads to a couple of image-adaptive embedding schemes. We then move

on, in Chapter 6, to the problem of hiding large volume of data without changing

the statistical properties of the host data so as to communicate without inciting

anyone’s suspicion. A framework, called statistical restoration, is proposed to

this end, which allows the design of such embedding schemes, providing several

advantages over the current state-of-the-art techniques. Finally, in Chapter 7, we

present the concluding remarks and discuss some interesting avenues for future

work.
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Chapter 2

Data Hiding: Overview and Prior

Art

Secure transmission of information has always been very important to mankind.

There is some historical evidence that covert communication is as old as the

civilization itself. Secret writing has been traced back to ancient China, India,

and Greece. Interesting discussions on the history of data hiding can be found

in [117, 86]. Ancient Chinese rulers were known to communicate secretly by

writing the messages in thin sheets of silk or paper, and making them into small

balls, which are then swallowed by the messengers. Several ancient Indian texts

(for example, Kautilya’s Artha-śāstra, which dates back to 321-300 B.C., and

Vātsāyana’s Kāmasūtra) discuss the art of covert communication in detail, with

explicit formulas for secret writing. Trithemius, in 1500 A.D., defined the term

steganography (as secret writing) in his book Steganographia [119]. There are

several other examples of secret communication in history, such as the use of
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invisible inks, or writing a message on a shaved head and then growing the hairs.

Digital data hiding, however, is a relatively young field with a majority of

publications coming up in less than a decade. The potential for solving some im-

portant problems like content authentication, and digital rights management, and

several emerging applications such as seamless upgrade of multimedia, and anno-

tation of images, have made sure that the interest in this field keeps growing. This

is evident from the fact that a new journal (IEEE Transactions on Information

Forensics and Security) has been started for research publications in data hiding,

digital watermarking, information security, biometrics, and forensics. A series of

Supplements on Secure Media for the IEEE Transactions on Signal Processing

have appeared recently (October 2004 and February 2005).

Along with the excitement among researchers about the potential applications

of data hiding and digital watermarking, there have also been some counter-

views on whether or not can data hiding solve the problems in digital rights

management. Interesting discussions by the intelligentsia of the field on these

issues can be found in the literature (see Herley’s article on “Why watermarking

is nonsense” [50], and Moulin’s comments on this article [74]).

In a relatively short span, notable progress has been made both in the theo-

retical and the practical aspects of the information hiding problem. Several books

are available now that provide a comprehensive treatment of the well-established

concepts: Johnson, Duric and Jajodia [53], Cox, Miller and Bloom [28], Eggers

and Girod [34], and Barni and Bartolini [9]. A recent tutorial paper by Moulin

and Koetter [76] provides an excellent overview of the field, with a focus on

the core mathematical concepts. Some earlier survey papers in this area include
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[117, 86, 135].

With many books and good survey papers available, our treatment, in this

chapter, of the overview of data hiding will be brief. Readers are referred to

the above references for a more comprehensive study. In the short survey pre-

sented here, we focus mainly on the techniques that are closely related to the ones

presented in this thesis.

The rest of the chapter is organized as follows. We introduce the data hid-

ing problem as communications with side information at the encoder in Section

2.1. This is followed by a discussion on the design issues (Section 2.2). The ba-

sic embedding methods: least significant bit (LSB), spread spectrum (SS), and

quantization index modulation (QIM) are briefly described in Section 2.3, followed

by an overview of the information-theoretic and game-theoretic results (Section

2.4). Next, in Section 2.5, we discuss several robust techniques popular in the

literature. Image-adaptive techniques are studied next (Section 2.6). Finally, we

survey the steganography and steganalysis literature in Section 2.7, followed by

a brief summary of the chapter in Section 2.8.

2.1 The Data Hiding Problem

It was recognized quite early that data hiding can be modeled as a communi-

cations problem [26, 27], with the adversary’s “attack” being the de facto channel.

In non-blind data hiding systems, it is assumed that the original host or cover

is available at the decoder. In this case, the problem reduces to the classical

communications (or data transmission) problem, in which a message has to be
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transmitted to a receiver in the presence of noise due to the attacks. For blind

information hiding systems, the decoder does not have access to the original host

signal, so the host itself acts as a noise in the system. However, viewing the host

signal as noise disregards the fact that it is actually known to the encoder, who

can use this extra information to its advantage. By considering the knowledge of

the host signal at the encoder, the information hiding problem can be modeled as

communications with side information about the channel-state at the encoder.

Figure 2.1 shows a typical data hiding scenario: we want to embed a message

m into a host signal x ∈ RN to get the composite signal s ∈ RN . The received

signal y is corrupted by noise n due to attacks, from which the decoder estimates

the message m̂ that was hidden.

1

Encoder DecoderAttack 

“channel”

Secret Key K

A(y/s)

x
Host Signal s y

m
Message

^

m

Figure 2.1: A typical data hiding scenario.

A natural requirement of a data hiding system is that there should not be

any perceptual distortion during the embedding process. This is modeled by a

constraint on the amount of change that is made to the host signal. Furthermore,

the attacker is also limited by the amount of distortion he or she can induce
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to the signal, because the usability of the attacked composite signal has to be

maintained. The distortion constraints can be complex functions motivated by

the human visual system. For simplicity of analysis, an average mean squared

distortion is quite commonly used.

D(s,x) =
1

N

N∑
n=1

(sn − xn)2

As said before, the data hider is allowed to induce the distortion of at most

D1, i.e., D(s,x) ≤ D1, and the attacker can induce a maximum distortion of D2,

i.e., D(x,y) ≤ D2. The constraint at the encoder is similar to power constraint in

the classical communication setting. Likewise, the attack distortion constraint is

equivalent to the noise power. Several authors have analyzed the problem from an

information-theoretical point of view, which we described in Section 2.4. Let us

now move on to the issues involved in the design of various data hiding systems.

2.2 Design Issues

There are several issues, or requirements, that are involved in the design of

data hiding systems. Figure 2.2 illustrates various requirements of a data hiding

system. This figure is an update of Figure 1.1 presented in the previous chapter.

In the following, we briefly describe the important technical considerations that

come up regardless of the particular application.

• Perceptual transparency. Almost all application require that the dis-

tortion induced to the host signal is not perceptible, or in other words the

composite signal is perceptually transparent.
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Figure 2.2: General requirements of data hiding systems, which come up irre-
spective of the particular application.
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• Robustness. The composite signal must survive several intentional or un-

intentional attacks that might remove the embedded data. The attacks that

a system must survive can be ‘benign’ operations such as compression, addi-

tive noise, and filtering, or they can be malicious attacks such as geometric

transformations, and printing followed by scanning. The exact robustness

requirements of a system would obviously depend on the particular appli-

cation.

• Capacity. This refers to the number of bits that can be embedded by a

given system while satisfying the other design constraints (such as robust-

ness). We would like to embed as many bits as possible while satisfying

these other constraints.

• Statistical transparency. This refers to the change that occurs in the

statistics of the host signal during the embedding process. Embedding in

such a way that there is only a minimal change to the statistics of the host

signal (statistical transparency), is required when the data-hiding system is

employed for secret communication, in which the existence of communica-

tion is not to be revealed. Applications other than steganography may not

require that the presence of embedded data is kept a secret.

• Graceful improvement. This refers to the improvement in the fidelity of

the received signature signal at the decoder as the attack strength reduces.

Since the attack strength is seldom known apriori, graceful improvement is

highly desirable for media signature signals.
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• Computational complexity. In many applications, it is important to

have fast encoding or decoding or both. Low computational complexity may

be required for applications where data must be embedded or recovered in

real-time (such as having a watermark encoder and/or reader in a video or

still-picture camera). Fast decoding is also desirable in systems that spider

the Web for copyrighted images with inserted watermark.

Of the above list of design issues, only perceptual transparency is required

in almost all applications. Most applications have different specific requirements

for the other factors. For example, watermarking systems designed for copyright

protection require that the system is robust to a variety of intentional and unin-

tentional processing. However, the payload, or the number of bits hidden, need

not be too high. The complexity of decoder must be low if images are to be

crawled from the Internet. Other design issues, such as statistical transparency

and graceful improvement are not generally important. Note that the design of

robust techniques have received the most attention in the literature.

Steganographic systems, on the other hand, require statistical transparency,

but they need not be robust against intentional attacks. The volume of embedding

should be as high as possible. Computational complexity, unless prohibitive, is

not a significant issue, and graceful improvement is desirable if the signature is a

media data.

For systems that target applications such as seamless upgrade, or annotation

of multimedia databases, the requirements for robustness are moderate (need to

survive compression and/or additive noise). The the volume of embedding should

not be too low, but again, it need not be very high. The complexity of systems
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providing seamless upgrade should be low since it must work real time.

As seen in above paragraphs, the requirements vary from application to ap-

plication, and hence, a good data hiding scheme would be one which provides

trade-offs between the design issues. Let us now describe the basic embedding

methods that are popular in the literature.

2.3 Embedding Methods

A natural way to embed information into a media host without inducing any

perceptual distortion is to modify the least significant bit of the media samples.

The method, accordingly called least significant bit or LSB hiding, is one of the

first methods proposed for data embedding. This scheme has been applied for

both the classical applications of data hiding: digital watermarking [124], and

covert communication [53]. Though the method is quite simple to encode and

decode, it has severe limitations for both the applications. Any processing of the

image, e.g. compression, will change the LSBs and hence, render the hidden data

undecodable. The data hidden in LSBs of images or other media can be easily

detected using simple statistical analysis. In spite of these limitations, LSB hiding

is quite popular even today, with a number of freeware and shareware packages

based on LSB embedding available online (check [3]).

Spread-spectrum (SS) hiding was introduced by Cox et al [26] to alleviate

the problems of LSB hiding against attacks. The method, derived from its com-

munications counterpart, involves adding a spread sequence to the image. The

spread sequence is constructed from the message to be hidden. The method and
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its variations (e.g., [93, 65]), proposed for watermarking applications, are robust

against many attacks such as compression, noise addition, and signal processing

operations. Spread-spectrum hiding has been used for steganography [66] as well.

However, in general, it is well-known that the embedding capacity of SS tech-

niques is quite low1, especially for blind implementations. This is because the

additive methods do not utilize the fact that the host is known to the encoder.

Thus the host itself ends up as being the noise, or interference, in the system.

Looking at information hiding in multimedia hosts as communication with en-

coder side information, new embedding methods have been proposed that reject

the host signal interference. These methods are based on Costa’s work on writing

on dirty paper [24]. In Costa’s setting, there is a Gaussian side information known

only to the encoder, but not to the decoder (i.e., a paper with Gaussian dirt).

There is a Gaussian noise which gets added to the paper before it reaches the de-

coder. Costa showed that there is no loss of embedding rate due to the presence of

encoder side information. Based on this work, a new class of embedding schemes,

called quantization index modulation (QIM), was proposed by Chen and Wornell

[19, 18]. The data is hidden by the choice of quantizer (based on the message

to be hidden) at the encoder. The decoder just determines which of the possible

quantizers were used.

While the methods proposed by Chen and Wornell are based on vector quan-

tizers, simplified version of the schemes employing scalar quantizers have been

proposed and applied to multimedia hosts [109, 33]. In [109], it is shown that

there is roughly only a 2 dB penalty in terms of resilience to attacks for using

1Recently, a high-capacity SS embedding scheme has been demonstrated in [71]. It should,
however, be noted that the embedding capacities we consider in Chapter 3 are much higher.
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scalar quantization as compared to vector quantization. When there are only

two possible symbols in the message set, the method reduces to the well known

odd-even embedding, where the odd reconstruction points represent, say a ‘1’ be-

ing embedded, and even reconstruction points represent a ‘0’. More generally, in

the information-theoretic terminology, the QIM methods are also known as bin-

ning schemes [76]. The binning schemes have been proved to achieve very good

performance as compared other embedding methods such as SS or LSB [76].

It should be noted that any of the above techniques, LSB, SS, or QIM, can be

employed on the pixels of the image (i.e., the spatial domain), or the transform

coefficients. Because of their compatibility with the joint pictures expert group

(JPEG) [127] and JPEG 2000 compression standards (see [4] for an implemen-

tation), discrete cosine transform (DCT) and discrete wavelet transform (DWT)

remain the most popular transforms used for data embedding. Discrete Fourier

transform (DFT) is also employed because of its properties (e.g., DFT magni-

tudes are invariant to translation). For LSB embedding in transform domain,

such as DCT or DWT, the coefficients must have been already quantized (i.e.,

compressed).

In the following section, we turn our attention to the information-theoretic

analysis of the information hiding problem.

2.4 Information Theoretic Analyses

Several authors have developed and analyzed the data hiding (or watermark-

ing) problem from an information theoretic perspective. Right from the landmark
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paper from Shannon [98], which started the field of information theory, there have

been a number of works analyzing the problem of communication with side infor-

mation about the channel-state at the encoder [100, 44, 24]. Shannon himself had

introduced this problem in [100]. Gel’fand and Pinsker [44] consider this prob-

lem in more detail and prove some results for this scenario (communication with

channel state information at the encoder but not at the decoder). Heegard and

El Gamal [49] analyzed a closely related problem of storing in memory with de-

fects. Based on these works, Costa [24] showed, for Gaussian side information and

Gaussian noise channel, that the capacity is same for the encoder side-information

case as that for the no-side-information case.

Since then, several authors developed and analyzed the data hiding (or water-

marking) problem from an information-theoretic and game-theoretic perspective

(Steinberg and Mehrav [114], Chen and Wornell [19], Chou et al [20], Cohen and

Lapidoth [23], and Moulin and O’Sullivan [79], and Moulin and Mihcak [78, 77]).

It has been shown that the information-theoretic prescriptions (for mean-

squared distortions D1 and D2) translate, roughly speaking, to hiding data by

means of choice of the vector quantizer for the host data (i.e., the QIM scheme dis-

cussed in the previous section), with the additive white Gaussian noise (AWGN)

attack being the worst-case under certain assumptions.

Game-theoretic analyses of data hiding, with the hider and attacker as ad-

versaries, have been provided by Moulin and O’Sullivan [79], and by Cohen and

Lapidoth [23]. Estimates of the hiding capacity of an image, based on a parallel

Gaussian model in the transform domain, have been provided by Moulin and Mih-

cak [78, 77]. The method of types, an important concept from information-theory,
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was leveraged for data embedding in [46]. We now move on to practical schemes

in the following sections.

2.5 Robust Data Hiding: Techniques and At-

tacks

Here we provide a brief overview of the techniques for robust data hiding. We

do not attempt to provide a comprehensive overview here, but rather focus only

on approaches that are closely related to the schemes presented in this thesis. As

expected, almost all robust embedding methods are designed for digital water-

marking applications. Note that many of these techniques assume the availability

of the watermark sequence at the decoder and simply correlate it with the received

sequence to detect, essentially hiding only one bit of information.

Some of the earlier work on robust watermarking focussed on additive tech-

niques [26, 59, 93, 135]. These techniques are based on spread-spectrum embed-

ding, and could survive a number of attacks, such as compression, additive noise,

and signal processing operations. However, a significant downside of some of

these early methods is that they require the presence of the original host signal at

the decoder (i.e., they are non-blind). Moreover, as stated before, most of these

techniques also assume the availability of the watermark sequence at the decoder.

Ruanaidh and Pun [93] propose a rotation, scale, and translation (RST) in-

variant watermarking scheme based on embedding in the log polar map of the

discrete Fourier transform (DFT) coefficients (also called Fourier-Mellin or FM

transform). FM transform has been popular in the pattern-recognition literature
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as RST invariant features. The problem with using FM transform for data hiding

is that it is difficult to modify the log-polar coefficients without inducing percep-

tual distortion to the image. Lin et al [62] alleviate the problem to some extent

using a slightly modified approach. It should be noted that these approaches,

still, have effectively only a single bit of payload.

Although it is now well-accepted that binning methods (QIM) are better suited

for high-capacity hiding [76], SS techniques continue to receive a lot of attention

because of their perceived advantage for achieving robustness. In [109], robust

QIM-based schemes are demonstrated that provide robustness against several

attacks while embedding large number of bits.

Powerful attack freeware packages are available now, such as Stirmark [85], and

Checkmark [84], that induce severe geometric transformations without causing

significant visual distortion to the image, effectively de-synchronizing the encoder

and the decoder rendering the watermark undetectable. For example, random

bending of the grid of an image turns out to be a simple yet very effective attack.

For applications in costumer tracing, in which a watermark is used as a digital

fingerprint (embedding different specific watermark sequences in different versions

of the same work), attacks by the way of collusion of many costumers need to be

survived [118].

To counter the desynchronization attacks, several approaches have been pro-

posed that either attempt to resynchronize at the decoder using pilot sequences

[33, 83], or embed data in geometrically invariant feature spaces [10, 7]. In the

pilot sequence based schemes, the idea is to periodically embed a sequence known

to both the encoder and the decoder, which can be used to synchronize. In [10],
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tessellation points that are invariant to geometric transformations are used to em-

bed information. These tessellation points can be recovered after any geometric

processing such as rotation, cropping, or random bending. Another interesting

approach is by Mihcak and Venkatesan [69], who embed data in some semi-global

statistics of the image.

Printing followed by scanning represents a valid attack on the image with hid-

den copyright information. The print-scan operation induces severe distortions to

the image, which include non-linear processing and geometric distortions. Only

a few embedding approaches proposed in the literature can survive printing fol-

lowed by scanning operation. Notable work is by Lin and Chang [61, 62], who

model the print-scan process by considering pixel value and geometric distortions

separately. In the pixel value model, they consider non-linear processing, blurring

due to halftoning, and noise at the edges. In the geometric distortion model, au-

thors consider rotation, scaling, and cropping attacks. An embedding scheme is

proposed that is based on the log-polar map of the DFT coefficients. The effective

payload here, again, is one bit as the watermark sequence is correlated at the de-

coder to detect the watermark. In Chapter 5, we present techniques that provide

significant improvement over these schemes in terms of volume of embedding2.

As seen above, most of the schemes achieve robustness against many severe

attacks, however, they are either non-blind, or have a payload of just one bit,

or both. In practical applications, it is desirable to have much higher payloads.

We consider robust techniques with higher capacity in this thesis. Let us now de-

scribe how various approaches achieve perceptual transparency by image-adaptive

2The work has also been published in [110, 111, 112]
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hiding.

2.6 Image-Adaptive Techniques

For data hiding in images (or any media), it is necessary to be adaptive to

the local characteristics of the host signal, because in general all the parts of the

host image do not have the same hiding capacity. In other words, we cannot

make same amount change all the porions of an image to hide data. Thus, any

scheme embedding data into a media host must provide for a way to adapt to

local perceptual characteristics. Many methods for perceptual adaptation have

been proposed in the literature. Early works include Chae [14], Wolfgang et al

[135], and Podilchuk and Zeng [87].

For JPEG data hiding, now it is well accepted that hiding in DCT coefficients

whose values are zero (after JPEG quantization), should not be used for embed-

ding information. Examples of DCT LSB techniques that do not embed in DCT

coefficients that are either 0 or 1 are JSTEG [122], and OutGuess [89]. In the

following we briefly review the approaches for perceptual adaptation for SS and

QIM approaches.

2.6.1 Perceptual Shaping for Spread-Spectrum Hiding

In SS hiding, a spread version of the message signal is added to the host in

order to embed the data. The strength of the watermark that is added is controlled

a scaling factor by which the spread sequence is multiplied before adding. These

techniques adapt the strength of the watermark based on a strategy commonly
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known as perceptual shaping (see, for example, [135], [87], and [28]). Perceptual

shaping refers to the idea of adjusting the strength of the watermark based on

the perceptual sensitivity of a region in the image. All these methods use some

perceptual model (e.g., Watson’s DCT [130] and wavelet models [131]) that assigns

weights to various regions of the image. This weight determines the strength of the

watermark that is added to that part of the image. A disadvantage of perceptual

shaping is that, by reducing the strength of the hidden data in the perceptually

sensitive area, the robustness of this data against attacks is compromised. Still,

the use of perceptual shaping for image-adaptation remains the most popular

approach to maintain perceptual transparency.

2.6.2 Adaptive QIM Schemes

For quantization based hiding, the idea of perceptual shaping cannot be read-

ily applied because here the watermark is not being added whose strength be

adjusted. As seen before, the QIM schemes provide a good performance by re-

jecting the host signal interference. However, without a good way to control the

perceptual degradation by local adaptation, quantization based schemes cannot

be employed for embedding high volumes of information in media hosts.

One of the earlier work on adaptive quantization based embedding was by

Ramkumar [91], in which the zero-valued DCT coefficients were not modified.

However, this method was designed for JPEG compression attack only, and it

could not survive any other attacks. Also notable is the work by Mukharjee et

al [81] who use lattice quantization to embed data and provide image adaptation

by choosing different lattice structures for different types of blocks. A perceptual
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model determines the level of embedding in a block.

Wu and Lui [136, 137] propose an adaptive method for QIM, called uneven

embedding, in which the encoder chooses the hiding locations based on a percep-

tual model. In their implementation, either the information about the embedding

locations is sent as side information (variable embedding rate), or the rate is fixed

and embedding locations vary by shuffling (constant embedding rate). They can

embed 1024 bits in a 512x512 image that survives JPEG compression attacks and

moderate additive noise attacks. In Chapter 3, we propose a new image-adaptive

framework that enable embedding more than 7500 bits in a 512x512 image that

can also survive JPEG compression, additive noise, image resizing and tampering

attacks3.

Fridrich et al [40, 41], propose an interesting approach, called wet paper codes

for adaptive data hiding. The idea is to write on a paper with some wet pots

where one cannot write. In data hiding terms, there are some locations that are

not good for embedding, so that the encoder is now allowed to embed information

there. A disadvantage is that the method is fragile against attacks (or performs

very poorly against attacks). This technique is targeted towards applications in

steganography, where no attack is anticipated. In the following section, we look

into approaches for steganography and steganalysis in more detail.

3The work has also been published in [109, 106, 51, 108]
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2.7 Prior Work in Steganography and Steganal-

ysis

Steganography, the art and science of communicating in a manner that the

very presence of communication is not known to a third party, has a rich history

(e.g., [119], and references in [117] and [86]). In 1983, Simmons [102] introduced

the modern version of the problem: Alice and Bob are in jail, and want to hatch

up an escape plan, but all their communication pass through Willie, the war-

den. Hence, the communication should be hidden, so that it does not incite the

suspicion of Willie. The challenge in the design of steganographic systems is to

communicate at high rates without being detectable via statistical, or perceptual

analysis. It is also desirable that the embedded data is robust against benign

attacks, such as recompression, and additive noise.

From a historical perspective, it is interesting to mention Shannon’s work on

cryptography [99], in which three possible methods for secure data transmission

are pointed out. First, what he called, concealment systems, in which the exis-

tence of the message is concealed from the enemy (what we call, steganography),

second, privacy systems, in which a technology is employed, such as advanced ra-

dio systems, that noone else has access to, and third, “true” secrecy systems, the

ones in which the meaning of the message is concealed by a code or cipher. The

paper (i.e., [99]) deals with the third type, the cryptography. It is argued that the

second method (privacy systems) is a technological problem, and the first, i.e.,

steganography, is a psychological problem, which is indeed true. However, for

multimedia hosts, steganography has also become a statistical problem, because
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the process of data embedding changes the statistics of the media host, which can

be detected by the steganalysts. We now describe the particular algorithms used

for steganography and how steganalysts have attempted to detect them.

One of the earliest steganography approaches were based on modulating the

least significant bit (LSB), both in spatial domain and transform domain (e.g.,

JSTEG [122]). Hiding in LSB changes the histogram in a predictable way: the

number of pixels in adjacent bins with different LSBs would get equalized after

embedding a binary message with equiprobable 0 and 1. The was recognized

early, and used for steganalysis by using the chi-squared, or χ2, statistic [133].

Provos’s stegdetect [90] algorithm uses the same statistic to detect the JPEG

LSB hiding. Stegdetect can be improved upon by more sophisticated detection-

theoretic approaches [29, 116].

Westfeld proposed a LSB-based JPEG steganography scheme, named F5 [132],

which can evade the χ2 steganalysis. In this technique, instead of replacing the

LSB, the DCT coefficients are either increased or decreased by one. This way,

the equalization of adjacent frequency bins of the histogram happening due to

the replacement of LSBs with random-bit messages can be avoided. This method

has since been generalized to ±k embedding. A closely related approach, called

stochastic modulation, was recently proposed by Fridrich et al [36]. Note that

both ±k and stochastic modulation are primarily designed for spatial domain

hiding; not for the transform domain.

Provos’ OutGuess [89] algorithm is another technique that can evade the χ2

steganalysis. In this algorithm, only about half of the coefficients are used for

embedding, and the rest are used to compensate for the hiding, so that the his-
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togram looks the same as before. Thus, if the hiding process changes a coefficient

from value A to B, another coefficient is with value B is found, and changed to

A. Eggers et al [32] suggest a more rigorous approach to the same end, using

a method of data-mappings that preserve the frequencies of occurrence, called

histogram-preserving data-mapping (HPDM).

To counter the JPEG LSB schemes such as OutGuess and F5, Fridrich et al

[39, 38] propose a steganalysis technique that detects the JPEG-based methods by

evaluating the increase in blockiness in the image due to block-DCT embedding.

More recently, Wang and Moulin [128] propose a similar steganalysis method that

evaluates the increase in smoothing within a block in addition to the increase in

blockiness.

A powerful technique to detect LSB hiding, called RS steganalysis, was re-

cently proposed by Fridrich et al [37], which can detect LSB hiding schemes, such

as the ±k steganography. In this technique, sample pairs of adjacent pixels is clas-

sified into three types: regular group (R), singular group (S), and unusable group.

The number of pixel pairs in each group in the cover image is approximately the

same, however, LSB embedding such as F5, changes this. Thus, a statistic derived

from RS analysis can be used to detect this type of steganography.

Sallee’s model-based steganography [94] provides an interesting and different

perspective in the design of steganographic systems, with the hider ensuring that

the stego signal conforms to a given model. A method for JPEG steganography is

proposed, in which the DCT coefficients are models as Cauchy random variables.

It should, however, be noted that in the absence of a perfect model for the host,

nothing stops the steganalyzer from selecting a better model by spending more
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computational power. This is indeed practically shown in [11], where Sallee’s

Cauchy-model based JPEG steganography is broken by using only the first order

statistics. In order to evade the blockiness-based steganalysis, Salle also proposes

a method that compensates for blockiness [95].

While the above methods focus on quantized statistics for embedding, there

are only a few approaches that look for security in the continuous domain (Guillon

et al [48], and Wang and Moulin [129]). Guillon et al [48] suggest transforming

the source to get a uniform PMF source. The message is hidden in this with the

quantization hiding scheme, which is known not to change the PMF of uniform

sources. Therefore, the PMF after transforming back is also the same as the

original. This method, however, is not likely to be robust, and also, there is

no way to control the distortion induced by the embedding process. Another

interesting approach is that of Wang and Moulin’s [129], who propose a reduced

rate variant of standard QIM, called the stochastic QIM, which can be made

to have zero K-L divergence. However, because of the stochastic nature of the

hiding process, the method is likely to yield high error rates when embedding

large volumes of data.

Most of the approaches for steganalysis focus on detecting a particular stegano-

graphic technique. Lyu and Farid [63] propose a universal steganalysis method

based on supervised learning machine (SVM). The features they use are higher-

order statistics of wavelet subband coefficients. A few more approaches use su-

pervised learning using various features for detecting the presence of data (e.g.,

[115, 35]). These schemes perform very well when the SVM is trained and tested

for one particular steganography algorithm. The good performance of supervised
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learning can be explained by the fact that, unlike other steganalysis schemes, the

decision of the detector is not based only on one image. Here, the typical changes

made by the hiding algorithm can be learned by the detector. Obviously, the

learning-based techniques would not perform that good if it is to be employed as

truly universal (i.e., without knowing the hiding algorithm).

Analysis of steganography problem from a theoretical perspective was done by

Cachin [12]. Here, the author propose that, for achieving secure communication,

the Kullback-Leibler (KL) divergence between the cover and the stego distribu-

tions should be less than ε. Taking this perspective, the capacity of steganographic

schemes has been analyzed for certain specific constraints on host distributions,

and embedding schemes (O’Sulivan et al [82], and Moulin and Wang [80]). The

capacities for more general cases, however, still need to be analyzed.

2.8 Summary

In this chapter, we have provided a brief overview of the data hiding problem,

and discussed several techniques that are closely related to the methods proposed

in this thesis. There are many issues that have not been addressed adequately

in the state of the art. For example, an important point is to investigate the

performance of practical image hiding schemes in the context of the capacities

predicted by the information-theoretic analysis. We propose high-volume image

hiding schemes in the next chapter, which employs image-adaptive criteria for

embedding along with an error and erasure correction coding framework.
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Chapter 3

Image-Adaptive Data Hiding

The past decade has witnessed a surge of research activity in multimedia in-

formation hiding, targeting applications such as steganography (or covert com-

munication), digital rights management, and document authentication. Another

important class of applications is the seamless upgrade of communication or stor-

age systems: additional data and meta-content can be hidden in existing data

streams, such that upgraded receivers can decode both the original and the hidden

data, while existing receivers can still decode the original data. This application

requires embedding relatively large volumes of data, compared to, say copyright

protection applications. Robustness against attacks such as compression, and

additive noise is also required. Annotation of images in the fields of medicine,

biology, geography, and geology, is another application where we must hide large

number of bits with robustness against a variety of compression attacks. In both

these applications, it is very important not to induce any perceptual distortion to

the host due to data embedding.
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3.1 Introduction

In this chapter, we propose a framework for hiding large volumes of data in im-

ages while incurring minimal perceptual degradation. The embedded data can be

recovered successfully, without any errors, after operations such as compression,

additive noise, and image tampering. The proposed methods can be employed

for applications that require high-volume embedding with robustness against cer-

tain non-malicious attacks (example applications include the ones discussed in

the previous paragraph: seamless upgrade of multimedia, and annotation of im-

ages). Readers are referred to Section 1.1 for a more detailed discussion on the

motivation for this work.

The hiding methods we propose in this chapter are guided by the growing

literature on the information theory of data hiding (summarized in the next para-

graph), but are adapted to the specific application of hiding in images. Because of

our target applications, we aim for robustness not against malicious attacks such

as Stirmark’s geometric attacks, but against “natural” attacks such as compres-

sion (e.g., a digital image with hidden content may be compressed as it changes

hands, or as it goes over a low bandwidth link in a wireless network). It turns

out, however, that our schemes are actually robust against a broader class of at-

tacks than we initially designed for, such as tampering, and a limited amount of

resizing.

Information-theoretic treatments of the data hiding problem typically focus on

hiding in independent and identically distributed (i.i.d.) Gaussian host samples.

The hider is allowed to induce a mean squared error of at most D1, while an
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attacker operating on the host with the hidden data is allowed to induce a mean

squared error of at most D2. Information-theoretic prescriptions in this context

translate, roughly speaking, to hiding data by means of the choice of the vector

quantizer for the host data, with the AWGN attack being the worst-case under

certain assumptions. This method of hiding was first considered by Costa [24],

based on results of Gel’fand and Pinsker [44] on coding with side information (with

the host data playing the role of side information). Game-theoretic analyses of

data hiding, with the hider and attacker as adversaries, have been provided by

Moulin and O’Sullivan [79], and by Cohen and Lapidoth [23]. Estimates of the

hiding capacity of an image, based on a parallel Gaussian model in the transform

domain, have been provided by Moulin and Mihcak [77]. Chen and Wornell [19]

present a variety of practical approaches to data hiding, with a focus on scalar

quantization based hiding, and show that these schemes are superior to spread

spectrum hiding schemes, which simply add a spread version of the hidden data

to the host [26]. A scalar quantization based data hiding scheme, together with

turbo coding to protect the hidden data, is considered in [56], while a trellis coded

vector quantization scheme is considered by Chou et al [21].

Relative to the preceding methods, a key novelty of our approach is that our

coding framework permits the use of local criteria to decide where to embed data.

The main ingredients of our embedding methodology are as follows.

(a) As is well accepted, data embedding is done in the transform domain, with a

set of transform coefficients in the low and mid frequency bands selected as pos-

sible candidates for embedding. (These are preserved better under compression

attacks than high frequency coefficients)
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(b) A novel feature of our method is that, from the candidate set of transform

coefficients, the encoder employs local criteria to select which subset of coeffi-

cients it will actually embed data in. In example images, the use of local criteria

for deciding where to embed is found to be crucial to maintaining image quality

under high volume embedding.

(c) For each of the selected coefficients, the data to be embedded indexes the choice

of a scalar quantizer for that coefficient. We motivate this by an information-

theoretic analysis showing that, for an idealized model [24], scalar quantization

based hiding is only about 2 dB away (in terms of resilience to attack) from op-

timal vector quantization based hiding.

(d) The decoder does not have explicit knowledge of the locations where data is

hidden, but employs the same criteria as the encoder to guess these locations. The

distortion due to attacks may now lead to insertion errors (the decoder guessing

that a coefficient has embedded data, when it actually does not) and deletion er-

rors (the decoder guessing that a coefficient does not have embedded data, when

it actually does). In principle, this can lead to desynchronization of the encoder

and decoder.

(e) An elegant solution based on erasures and errors correcting codes is provided

to the synchronization problem caused by the use of local criteria. Specifically, we

use a code on the hidden data that spans the entire set of candidate embedding

coefficients, and that can correct both errors and erasures. The subset of these

coefficients in which the encoder does not embed can be treated as erasures at

the encoder. Insertions now become errors, and deletions become erasures (in

addition to the erasures already guessed correctly by the decoder, using the same
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local criteria as the encoder). While the primary purpose of the code is to solve

the synchronization problem, it also provides robustness to errors due to attacks.

Two methods for applying local criteria are considered. The first is the block-

level Entropy Thresholding (ET) method, which decides whether or not to embed

data in each block (typically 8×8) of transform coefficients, depending on the

entropy, or energy, within that block. The second is the Selectively Embedding

in Coefficients (SEC) method, which decides whether or not to embed data based

on the magnitude of the coefficient. Reed-Solomon (RS) codes [134] are a natural

choice for the block-based ET scheme, while a “turbo-like” Repeat Accumulate

(RA) code [31] is employed for the SEC scheme. We are able to hide high volumes

of data under both JPEG and AWGN attacks. Moreover, the hidden data also

survives wavelet compression, image resizing and image tampering attacks.

The use of perceptual models and image-adaptation is not new in the water-

marking literature. Many of the techniques proposed in the literature are based

on a strategy commonly known as perceptual shaping (see, for example, [135],

[87], and Chapter 7 in [28]). Mostly used in conjunction with spread-spectrum

watermarking, perceptual shaping refers to the idea of adjusting the strength of

the watermark based on the perceptual sensitivity of a region in the image. All

these methods use some model that assigns weights to various regions of the im-

age. This weight determines the strength of the watermark that is added to that

part of the image. However, by reducing the strength of the hidden data in the

perceptually sensitive area, the robustness of this data against attacks is compro-

mised. It should be noted that the hiding techniques presented in this paper are

significantly different from the aforementioned methods. Our approach is based
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on the idea of not “disturbing” the sensitive coefficients, so as to achieve good

image quality without compromising robustness. The number of bits hidden is

determined dynamically by the scheme based on the host image content.

Wu and Lui [136, 137] also propose the concept of uneven embedding, where

certain transform coefficients are not used for embedding based on a perceptual

criteria. Their method, however, requires side information about the hiding loca-

tions to be sent to the decoder, which reduces the size of the payload. In contrast,

our coding framework obviates the need for sending synchronization data explic-

itly, while providing great flexibility in terms of the use of application-specific

local adaptation criteria (e.g., not hiding data in a sensitive portion of a medical

image). In addition, it provides robustness against a variety of attacks such as

tampering and resizing.

Note that, while the proposed coding schemes solve the specific insertion-

deletion problem that arises in this setting, they do not apply to the more general

insertion-deletion channel considered in [30], where the length of the overall sym-

bol sequence can vary. In our situation, the set of candidate coefficients for em-

bedding is the same, and is known to both encoder and decoder: the uncertainty

only lies in which of these candidates were actually used for embedding.

Apart from the use of the local criteria and the coding framework, the information-

theoretic analysis of scalar quantization based hiding for the idealized model in

the paper by Costa [24] is also new. A similar result has been derived in indepen-

dent work by Eggers et al [33]. In order to compare the theoretical capacity with

practically achievable rates, we have also implemented a hiding scheme specifi-

cally optimized for AWGN attacks, which gets to within 2 dB of the scalar hiding

49



Image-Adaptive Data Hiding Chapter 3

capacity.

The rest of the chapter is organized as follows. In section 3.2, we find the

mutual information for the scalar quantization based hiding methods and also

derive a decision statistic to be passed to the decoder. In Section 3.3, we in-

troduce our image-adaptive hiding schemes. The coding framework to counter

insertions/deletions and errors is described in Section 3.4 followed by a discus-

sion on decoding (Section 3.5). A hiding method optimized to AWGN attacks

is described in Section 3.6. Results are presented in section 3.7 and discussed in

section 3.8.

3.2 Quantization based data hiding

In this section, we introduce our quantization-based embedding methods and

derive the decision-statistic for the AWGN attack.

3.2.1 Embedding data in choice of quantizer

Data is embedded in the host medium through the choice of scalar quantizer,

as in [19]. For example, consider a uniform quantizer of step size ∆, used on

the host’s coefficients in some transform domain. Let odd reconstruction points

represent a hidden data bit ‘1’. Likewise, even multiples of ∆ are used to embed

‘0’. Thus, depending on the bit value to be embedded, one of two uniform quan-

tizers of step size 2∆ is chosen. Moreover, the quantizers can be pseudo-randomly

dithered, where the chosen quantizers are shifted by a pseudo-random sequence

available only to encoder and decoder. As such, the embedding scheme is not
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readily decipherable to a third party observer, without explicit knowledge of the

dither sequence.

Hard decision decoding in this context is performed by quantizing the received

coefficient to the nearest reconstruction point of all quantizers. An even recon-

struction point indicates that a ‘0’ has been hidden. Likewise, if a reconstruction

point lies on an odd quantizer, a ‘1’ has been hidden. However, if more informa-

tion regarding the statistics of the attack is available, soft decisions can be used to

further improve performance. In Section 3.2.2, we compute the capacity of scalar

quantization based hiding for the specific case of AWGN attacks. Implicit in our

formulation is the use of soft decisions that account for both the quantization

noise and the AWGN.

3.2.2 Capacity of scalar quantization based data hiding

We now show that our scalar quantization based hiding incurs roughly only

a 2 dB penalty for the worst-case AWGN attack. Letting D1 and D2 denote the

mean squared embedding induced distortion and mean squared attack distortion,

the hiding capacity with AWGN attack is given by Cv = 1
2
log(1 + D1

D2
), in the

small D1, D2 regime that typical data hiding systems operate [24, 79]. We com-

pare this “vector capacity” (termed thus because the optimal strategy involves

vector quantization of the host) to the mutual information of a scalar quantizer

embedding scheme with soft decision decoding.

Consider a data hiding system where the information symbol to be embedded

is taken from an alphabet X . The host’s original uniform quantizer is divided into

M uniform sub-quantizers (each with quantization interval M∆), where M = |X |,
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a power of two. Thus, log2 M bits are hidden per host symbol.

We consider the distortion-compensated quantization embedding scheme of

[19] with soft decision decoding. Here, the uniform quantizer is scaled by α ∈
(0, 1], increasing the distance between adjacent quantizers to ∆/α. As such,

the embedding robustness is increased by a factor 1/α2 (in the squared minimum

distance sense), and embedding induced distortion is increased by the same factor.

Encoding the information symbol as a linear combination of the host symbol and

its quantized value, as in the following, compensates for the additional distortion.

Denoting the host coefficient by C, and the hidden message symbol by X, the

symbol transmitted by hider is given by

QX(C) = αqX(C) + (1− α)C (3.1)

where qx(·) the scaled uniform quantizer used to embed the information symbol

x (with quantization interval M∆/α). Under an AWGN attack, the received

symbol is

Y = QX(C) + W

= αqX(C) + (1− α)C + W

= qX(C) + (1− α)(C − qX(C)) + W

where W is AWGN with mean zero and variance D2.

The parameter α achieves a tradeoff between uniform quantization noise and

AWGN. The optimal value for α for maximizing the signal-to-noise ratio (SNR)

at the decoder, which we have found numerically also to maximize the mutual

information I(X; Y ), is [19]

αopt =
D1

D1 + D2

(3.2)
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The probability density function of the combined additive interferers, N = (1 −
α)Z + W , where Z ≡ C − qX(C) is the uniform quantization noise, is given by

convolving the uniform and Gaussian densities:

fN(x) =
α(2πD2)

− 1
2

(1− α)M∆

∫ (1−α)M∆
2α

− (1−α)M∆
2α

exp(−(x− τ)2

2D2

)dτ (3.3)

We compute the mutual information I(X; Y ) = H(X) −H(X|Y ) for X uni-

form over its M -ary alphabet as an estimate of the capacity with scalar quan-

tization based embedding. Thus, H(X) = log2 M . To find, H(X|Y ), we now

compute pX|Y , the conditional probability mass function of X given Y , and fY ,

the probability density function of Y .

Consider the quantization interval in which the received symbol Y appears,

and define its midpoint as the origin. Letting y denote the abscissa, the nearest

quantizers appear at y = ± ∆
2α

. Conditioned on the input X = x and host

coefficient C = c, the distribution of Y is given by fY |X,C(y|x, c) = fN(y−mx
∆
2α
−

kc
M∆
α

), with fN as in (3.3). Here, mx ∈ M = {±1,±3, ...,±2M − 1} is uniquely

determined by the information symbol x, kc ∈ Z by the host coefficient c, and the

hidden quantized host coefficient qx(c) by the pair (mx, kc). Thus we have

fY |X(y|x) =

∫

C
fY |X,C(y|x, c)fC(c)dc

∝
∑

k∈Z
fN(y −mx

∆

2α
− k

M∆

α
) (3.4)

fY (y) =
∑
x∈X

fY |X(y|x)pX(x)

∝
∑

m∈M

∑

k∈Z
fN(y −m

∆

2α
− k

M∆

α
) (3.5)
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where we have assumed that the host C and message X are statistically indepen-

dent, and that the host’s density fC is roughly constant on an interval around Y ,

an assumption that is reasonable in the low distortion regime, where the quan-

tization interval is small with respect to variations in the host’s density. This

implies that the density of Y is ∆
α
–periodic, so that it suffices to restrict attention

to the interval [− ∆
2α

, ∆
2α

], with fY normalized accordingly. Applying Bayes’ rule,

the distribution of X given Y is

pX|Y (x|y) =
fY |X(y|x)pX(x)

fY (y)
(3.6)

so that we can now compute

H(X|Y ) =

∫

Y

∑
x∈X

pX|Y (x|y) log pX|Y (x|y)fY (y)dy

and hence I(X; Y ).

Due to the exponential decay of the Gaussian density, the summation in (3.4)

is well approximated with only the k = 0 term, i.e. the nearest quantization

point to y corresponding to x being transmitted. Figure 3.1 plots the mutual

information obtained with 2, 4 and 8-ary signaling, as well as the vector capacity.

We observe roughly a 2 dB loss due to the suboptimal scalar quantization encoding

strategy.

3.2.3 Soft decision statistic for Distortion Compensated

hiding

We conclude our analysis by noting that the soft decision statistic, used by an

iterative decoder, is the log likelihood ratio (LLR), given in the following for the
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Figure 3.1: Gap between scalar and vector quantizer data hiding systems.

case of binary signaling.

Λ(y) = log
pX|Y (0|y)

pX|Y (1|y)
= log

fY |X(y|0)

fY |X(y|1)
(3.7)

When α = 1 and (3.4) is approximated with k = 0 term, the LLR reduces to

Λ(y) = log
fW (y − ∆

2
)

fW (y + ∆
2
)

=
y∆

D2

(3.8)

We now compute log likelihood ratio (LLR) for any value of α ∈ (0, 1]. We

proceed by finding the conditional probability density functions fY |X(y|0) and

fY |X(y|1), which could be written using (3.4) as convolution of uniform and Gaus-

sian densities. Again, approximating (3.4) using the k = 0 term, we obtain,

fY |X(y|0) =
α(2πD2)

− 1
2

2(1− α)∆

∫ (1−α)∆
α

− (1−α)∆
α

exp(−(y − τ − ∆
2α

)2

2D2

)dτ

fY |X(y|1) =
α(2πD2)

− 1
2

2(1− α)∆

∫ (1−α)∆
α

− (1−α)∆
α

exp(−(y − τ + ∆
2α

)2

2D2

)dτ
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The integrals in the above equations can be written as difference of two Q func-

tions, the complimentary cumulative distribution function of a standard Gaussian

random variable. We get,

fY |X(y|0) =
α

2(1− α)
{Q(

y + ∆− 3∆
2α√

D2

)−Q(
y −∆ + ∆

2α√
D2

)}

fY |X(y|1) =
α

2(1− α)
{Q(

y + ∆− ∆
2α√

D2

)−Q(
y −∆ + 3∆

2α√
D2

)}

Substituting above equations in LLR expression (3.7), we get,

Λ = log
Q(

y+∆− 3∆
2α√

D2
)−Q(

y−∆+ ∆
2α√

D2
)

Q(
y+∆− ∆

2α√
D2

)−Q(
y−∆+ 3∆

2α√
D2

)
(3.9)

Thus we get a relatively simple expression for the soft decision statistic for a

general value of α ∈ (0, 1]. The decision- statistic derived here is employed in the

iterative decoding of the AWGN optimized hiding (Section 3.5). Note that, while

we have used the k = 0 term in (3.4) in deriving these analytical expressions, an

arbitrary degree of accuracy can be obtained by considering more terms.

3.3 Image adaptive data hiding

In order to robustly hide large volumes of data in images without causing

significant perceptual degradation, hiding techniques must adapt to local char-

acteristics within an image. Many prior quantization based blind data hiding

schemes use global criteria regarding where to hide the data, such as statisti-

cal criteria independent of the image (e.g. embedding in low or mid-frequency
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bands), or criteria matched to a particular image (e.g. embedding in high-variance

bands). These are consistent with information theoretic guidelines [77], which call

for hiding in “channels” in which the host coefficients have high variance. This

approach works when hiding a few bits of data, as in most watermarking appli-

cations. However, for large volumes of hidden data, hiding based on such global

statistical criteria can lead to significant perceptual degradation. Figure 3.2 shows

512×512 Harbor image with 16,344 bits hidden using local criteria and with 16,384

bits hidden (a rate of 0.0625 bits/pixel) using statistical criteria (hiding in low

frequency band). Both the images were designed to survive JPEG compression at

a quality factor of 25. Note that the statistical criteria based scheme is one that

hides in all the coefficients in a predefined band. In this particular example, a low

frequency band comprising of 4 AC coefficients was used. It is observed that the

perceptual quality as well as the PSNR is better for the image with hidden data

using local criteria. Note that though the PSNR is only marginally better (0.8 dB

higher), the actual perceptual quality is much better. This illustrates that local

criteria must be used for robust and transparent high volume embedding.

Although we do not use specific perceptual models, we refer to our criteria

as ‘perceptual’ because our goal in using local adaptation is to limit perceivable

distortion. As evident in the example presented (Figure 3.2), the employed cri-

terion does succeed in limiting perceptual distortion when hiding a large volume

of data. We describe two image-adaptive hiding techniques, which we had first

proposed for uncoded hidden data in [108] and then with a coding framework in

[51]. Figure 3.3 shows a high-level block diagram of the hiding methods presented

in the following. Both the embedding methods, the entropy thresholding (ET)
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(a) 16,344 bits hidden using local criteria,

PSNR = 32.6 dB

(b) 16,384 bits hidden using statistical cri-

teria, PSNR = 31.8 dB

Figure 3.2: Local vs Statistical criteria: 512×512 Harbor image with approxi-
mately same number of bits hidden using local and statistical criteria. It can
be seen that the perceptual quality of the composite image is better in the
former.
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Figure 3.3: Image-adaptive embedding methodology. Data is hidden by quan-
tizing dynamically selected DCT coefficients. In the ET scheme, the selection is
done for every 8×8 block, while for the SEC scheme, a per-coefficient selection
is done.
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scheme, and the selectively embedding in coefficients (SEC) scheme, are based on

joint photographic experts group (JPEG) compression standard. As seen in the

Figure 3.3, the techniques involve taking 2D discrete cosine transform (DCT) of

non-overlapping 8×8 blocks, followed by embedding in selected DCT coefficients.

We now explain these two methods in more detail.

3.3.1 Entropy Thresholding scheme

The entropy thresholding (ET) scheme uses the energy (or 2-norm entropy) of

an 8×8 block to decide whether to embed in the block or not. Only those blocks

whose entropy exceeds a predetermined threshold are used to hide data.

The embedding procedure is outlined as follows. The image is divided into

8×8 non-overlapping blocks, and an 8×8 DCT of the blocks is taken. Let us

denote the intensity values of the 8×8 blocks by aij and the corresponding DCT

coefficients by cij, where i, j ∈ {0, 1, ..., 7}. Thus,

c = DCT2(a) (3.10)

where DCT2 denotes a 2D DCT.

Next, the energy of the blocks is computed as follows

E =
∑
i,j

‖cij‖2, ∀ i, j ∈ {0, 1, ..., 7}, (i, j) 6= 0.

It should be noted that the DC coefficient is neither used for entropy calculation

nor for information embedding. This is because JPEG uses predictive coding for

the DC coefficients and hence, any embedding induced distortion would not be

limited a single 8×8 block.
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The blocks whose energy E is greater than a predefined threshold are selected

for information embedding. These blocks are now divided by the JPEG quantiza-

tion matrix whose entries are computed for a given design quality factor (QF) as

per the codec implementation of independent JPEG group (IJG) [127]. The de-

sign quality factor determines the maximum JPEG compression that the hidden

image will survive. Let us denote the quantization matrix entries for a particu-

lar quality factor QF as MQF
ij , where i, j ∈ {0, 1, ..., 7} and QF ∈ {1, 2, ..., 100},

where QF = 100 corresponds to the best quality image. The coefficients cij used

for information embedding are computed as

c̃ij =
cij

MQF
ij

, ∀ i, j ∈ {0, 1, ..., 7}. (3.11)

Next, the coefficients c̃ij are scanned in zig-zag fashion, as in JPEG, to get one

dimensional vector c̃k where 0 ≤ k ≤ 63. The first n of these coefficients are

used for hiding after excluding the DC coefficient (k = 0 term). Thus, low

frequency coefficients are used for embedding. Bits are hidden using choice of

scalar quantizer (Section 3.2). For a binary signature bitstream b, the hidden

coefficients d̃k are given using the notation in (3.1) as,

d̃k =





Qbl
(c̃k) if 1 ≤ k ≤ n,

c̃k otherwise.
(3.12)

where bl ∈ {0, 1} is the incoming bit that determines which one of the two quan-

tizers Q1(·) and Q0(·) is used.

The hidden coefficients d̃k are reverse scanned to form an 8×8 matrix {d̃ij}8
i,j=1,

and multiplied by the JPEG quantization matrix to obtain {dij}8
i,j=1. Finally, the

inverse DCT of {dij}8
i,j=1 yields the hidden image intensity values a′ij for that
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block.

Low frequency coefficients are used to embed in qualifying blocks (i.e., blocks

that satisfy the entropy test). Hiding in these coefficients induces minimal distor-

tion due to JPEG’s finer quantization in this range. Thus, this scheme employs a

statistical criterion by hiding in the frequency subbands of large variance, while

satisfying a local perceptual criterion via the block entropy threshold.

In general, compression (quantization of the DCT coefficients) decreases the

entropy of the block. Hence, in the uncoded version of the scheme, it is necessary

to check that the entropy of each block used to embed information, compressed

to the design quality factor, still exceeds the threshold entropy. If a particular

block passes the test before hiding but fails the test after the hiding process, we

keep it as such, and embed the same data in the next block. However, such a test

becomes unnecessary when the ET scheme is used along with a coding framework

(Section 3.4).

The decoder checks the entropy of each 8×8 block to decide whether data

has been hidden. Two parameters are shared by the encoder and decoder in this

scheme, namely, the block entropy threshold and the set of coefficients used for

embedding in a block. As stated, the coefficients are scanned in zig-zag fashion,

and only first n are used, excluding the DC coefficient. The parameters values are

independent of the host image, and are determined based on the design quality

factor used for embedding. Table 3.1 shows the values of these parameters used

in our experiments.

Figure 3.4 shows the 512×512 peppers image with data hidden using the ET

scheme at varying design quality factors. It can be seen that the composite images
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(a) The original 512×512 peppers im-

age.

(b) Embedded Image (design QF 75)

with 35,540 bits hidden.

(c) Embedded Image (design QF 50)

with 14,658 bits hidden.

(d) Embedded Image (design QF 25)

with 6,504 bits hidden.

Figure 3.4: ET scheme example: Thousands of bits hidden into 512×512 pep-
pers image at varying design quality factors. As the design quality factor
decreases, the robustness increases, but the volume of embedding reduces.
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Table 3.1: Typical values of parameters used in ET scheme for various design
quality factors

Design Number of Block Entropy
Quality Factor coefficients/block Threshold

75 20 4000
50 14 14000
25 8 25000

are perceptually very similar to the original images, in spite of embedding several

thousand bits, and robustness against high levels of JPEG compression attacks.

3.3.2 Selectively Embedding in Coefficients scheme

In the Selectively Embedding in Coefficients (SEC) scheme, instead of deciding

where to embed at the block level, we do a coefficient-by-coefficient selection,

with the goal of embedding in those coefficients that cause minimal perceptual

distortion.

Here too, an 8×8 DCT of non-overlapping blocks is taken and the coefficients

are divided by the JPEG quantization matrix at design quality factor. Thus, cij

are computed using (3.10) and then divided by JPEG quantization matrix using

(3.11) to get c̃ij in the same way as in ET scheme, but the entropy calculation

and thresholding steps are skipped. Again, the coefficients are zig-zag scanned

(to get c̃k) and only a predefined low frequency band is considered for hiding (i.e.,

1 ≤ k ≤ n).

Next, we quantize these coefficient values ck to nearest integers and take their

magnitude to get rk,

rk = |QI(c̃k)|, 1 ≤ k ≤ n. (3.13)
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We embed in a given coefficient only if rk exceeds a positive integer threshold t.

Embedding is again done using choice of scalar quantizers. We send either Q1(c̃k)

or Q0(c̃k) depending on the incoming bit. Thus d̃k can be given as

d̃k =





Qbl
(c̃k) if 1 ≤ k ≤ n, and rk > t,

rk if rk = t,

c̃k otherwise.

(3.14)

After reverse scanning, multiplication by JPEG quantization matrix, and inverse

DCT, we get the hidden image intensity values a′ij for that block.

A check is required in the scheme when the magnitude of the coefficient lies

between t and t + 1. If the quantized value Qbl
(c̃k) equals t in (3.14), then the

decoder cannot tell whether this coefficient was not chosen for hiding because

of the threshold criteria, or whether bl was hidden in this coefficient. In coded

version of the scheme, this is regarded as an erasure and decoding is performed

accordingly. In the uncoded version of the scheme, the same bit bl is embedded

in the next coefficient eligible for embedding. This is done in order to maintain

synchronization between encoder and decoder. Note that the decoder simply

disregards all coefficients that quantize to a value with magnitude ≤ t. This

check also makes sure that there are no insertions or deletions for JPEG attacks

with smaller quantization intervals (higher QFs).

The simplest SEC scheme is the zero-threshold SEC scheme (t = 0), where

the coefficients that are not quantized to zero are used to embed information.

High embedding rates are achieved using this zero-threshold SEC scheme with

very low perceptual degradation, which resembles that due to JPEG compression.

To understand this intuitively, it should be noted that there are many image
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coefficients that are very close to zero once divided by the JPEG quantization

matrix, and would be quantized to zero upon JPEG compression. Embedding ‘1’

in such coefficients introduces a large amount of distortion relative to the original

coefficient size, a factor that seems to be perceptually important. This is avoided

by choosing not to use zeros for embedding.

Figure 3.5 shows the peppers image with several thousand bits embedded

using the zero-threshold SEC scheme at varying design. Notice that, the volume

of embedding is, in general, higher than the that for the ET scheme at comparable

design quality factors1. The difference gets higher at more severe attacks (i.e.,

higher attack quality factors).

As the threshold increases, fewer coefficients qualify for embedding, and hence

less data can be hidden, which provides a tradeoff between hiding rate and per-

ceptual quality. For thresholds t ≥ 2, it becomes difficult for a human observer to

distinguish between the original and composite image, while embedding reliably

at fairly high rates. Figure 3.6 shows example of embedding into a 512×512 pep-

pers image such that it can survive 0.4 bpp JPEG compression (QF=25). Note

that the composite images are indistinguishable from the original one.

In the SEC scheme, we have more control on where to hide data compared

to the ET scheme, hence it achieves better performance in terms of smaller per-

ceptual degradation for a given amount of data. Another key advantage of the

scheme is that it automatically determines the right amount of data to be hidden

in an image based on its characteristics.

1We use the same host image in presenting the examples for ease of comparison.
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(a) The original 512×512 peppers im-

age.

(b) Embedded Image (design QF 75)

with 33,085 bits hidden.

(c) Embedded Image (design QF 50)

with 19,477 bits hidden.

(d) Embedded Image (design QF 25)

with 11,073 bits hidden.

Figure 3.5: Zero-threshold SEC scheme example: Thousands of bits hidden
into 512×512 peppers image at varying design quality factors.
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(a) The original 512×512 peppers im-

age.

(b) Unity threshold SEC embedded

image with 5,402 bits hidden.

(c) ‘2’-threshold SEC embedded im-

age with 3,007 bits hidden.

(d) ‘3’-threshold SEC embedded im-

age with 2,048 bits hidden.

Figure 3.6: Higher threshold SEC scheme example: Thousands of bits hidden
into 512×512 peppers image at various threshold values. Design quality factor
for all the hidden images is 25.
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3.4 Coding for insertions and deletions

In the previous section, we noted that use of image-adaptive criteria is nec-

essary when hiding large volumes of data into images. A threshold is used to

determine whether to embed in a block (ET scheme) or in a coefficient (SEC

scheme). More advanced image-adaptive schemes would exploit the human vi-

sual system (HVS) models to determine where to embed information. As shown

in Figure 3.7, distortion due to attack may cause an insertion (decoder guessing

that there is hidden data where there is no data) or a deletion (decoder guessing

that there is no data where there was data hidden). There could also be decoding

error, where the decoder makes a mistake in correctly decoding the bit embedded.

While the decoding errors can be countered using simple error correction codes,

insertions and deletions can potentially cause catastrophic loss of synchronization

between encoder and decoder.

In the ET scheme, insertions and deletions are observed when the attack

quality factor is mismatched with the design quality factor for JPEG attack.

However, for the SEC scheme, there are no insertions or deletions for most of the

images for JPEG attacks with quantization interval smaller than or equal to the

design interval. This is because no hidden coefficient with magnitude ≤ t can be

ambiguously decoded to t + 1 due to JPEG quantization with an interval smaller

than the design one. Both the ET and SEC schemes have insertions/deletions

under other attacks.
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Figure 3.7: The insertion-deletion problem: Due to the presence of attacks,
some coefficient values that are below the threshold increase above the thresh-
old causing insertions, and values of some coefficient in which data was hidden
as they were above the threshold, decreases below the threshold causing dele-
tions.

3.4.1 Coding Framework

Figure 3.8 illustrates the coding framework that employs the idea of erasures at

the encoder. The bit stream to be hidden is coded, using a low rate code, assuming

that all host coefficients that meet the global criteria will actually be employed for

hiding. A code symbol is erased at the encoder if the local perceptual criterion for

the block or coefficient is not met. Since we code over entire space of coefficients

that lie in a designated low-frequency band, long codewords can be constructed

to achieve very good correction ability. A maximum distance separable (MDS)

code, such as Reed Solomon (RS) code, does not incur any penalty for erasures at

the encoder. Turbo-like codes, which operate very close to capacity, incur only a
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minor overhead due to erasures at the encoder. Figure 3.9 shows how the sequence

is decoded in the presence of attacks. As it is seen, insertions become errors, and

deletions become additional erasures. It should be noted that a deletion, which

causes an erasure, is about half as costly as an insertion, which causes an error.

Hence, it is desirable that the data-hiding scheme be adjusted in such a manner

that there are only a few insertions.

Thus, using a good erasures and errors correcting code, one can deal with

insertions/deletions without a significant decline in original embedding rate. Reed

Solomon codes [134] have been used for ET scheme and Repeat Accumulate codes

[31] have been used for the SEC scheme as described in following sections.

3.4.2 Reed-Solomon (RS) coding for ET scheme

Reed Solomon codes [134] are MDS codes, such that any k coordinates of an

(n,k) RS code can be used to recover the k message symbols, so that the code

can correct (n-k) erasures, or half as many errors. The block length n of a Reed-

Solomon code must be smaller than the symbol alphabet. More generally, an RS

code can correct a pattern of e erasures and r errors as long as e+2r ≤ n−k, which

means that errors are twice as costly as erasures. RS codes use large nonbinary

alphabets whose size is a power of 2, so that each symbol can be interpreted as

a block of bits. This is well-matched to the block-based ET scheme, where an

entire block gets inserted or deleted. Interleaving of the code symbols is required

to deal with block erasures at the encoder, which tend to occur in bursts. For

example, if an entire codeword were placed in a smooth area of the image, all or

most of the symbols would be erased, and it would be impossible to decode this
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Figure 3.8: Coding framework illustration: How the idea of erasures at the
encoder is employed to counter the synchronization problem. Note that the
host value indicates either the block energy or the host coefficient value.
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Figure 3.9: Coding framework at the decoder. Notice how the insertions be-
come errors, and the deletions become additional erasures.
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particular codeword at the receiver. The objective of the interleaving is to spread

the erasures at the encoder as evenly as possible across codewords, so as to ensure

that at least k out of n symbols are received at the decoder with high probability

for each codeword. In particular, codewords are arranged in an image in such a

way that at least certain code symbols of the codeword are in the center of the

image, where the image is most likely to have details.

Let us consider an example of hiding in a 512×512 image. The image is

partitioned into 4096 non-overlapping 8×8 blocks. A (128,32) RS code (i.e., rate

1/4) with symbols of size 7 bits is used. 14 coefficients are used per block. Thus

there are 2 code symbols per block, and a total of 64 codewords spanning the

whole image. The encoder scans the blocks one at a time, evaluates the entropy

in the block, and embeds the two code symbols corresponding to the block if it

passes the entropy threshold test. Otherwise, the code symbols are erased at the

encoder. The rate achieved is computed as follows,

Rate = 64
codewords

image
× 32

symbols

codewords
× 7

bits

symbol

= 14, 336 bits/image

= 0.0547 bits/pixel (bpp)

Reed-Solomon codes are not well matched to AWGN channels (where they

might more typically serve as an outer code for cleaning up after an inner code

matched to the channel), but are ideal for the purpose of illustrating how to

deal with the erasures caused by application of local criteria at the encoder and

decoder. We now turn to the SEC scheme, where we consider powerful binary

codes that are well-matched to AWGN attacks, as well as close to optimal for
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dealing with erasures.

3.4.3 Repeat-accumulate (RA) coding for SEC scheme

Any turbo-like code that operates close to Shannon limit for the erasures

channel, while possessing a reasonable error-correcting capability, could be used

with the SEC scheme. We used RA codes [31] in our experiments because of their

simplicity and near-capacity performance for erasure channels [52]. A rate 1/q RA

encoder involves q-fold repetition, pseudorandom interleaving and accumulation

of the resultant bit-stream. Decoding is performed iteratively using the sum-

product algorithm [58].

The set of candidate coefficients, which governs the length of the RA code,

lies within a designated low frequency band. Let us consider an example wherein

we want to hide in a 512×512 Lena image. Here, 14 coefficients per block are

used (note that this parameter is independent of the host image), giving us a

total maximum codeword length of 14×4096 = 57,344 for a 512×512 image. It

is observed that about 11,000 coefficients satisfy the zero-threshold test for the

Lena image. We choose a hiding rate of 1/7, which gives us a payload of 8192

bits. This input bitstream is coded using rate 1/7 RA code to form a codeword

which is 57,344 bits long. This codeword is now hidden using the local criteria

such that if a coefficient does not pass the threshold test, the corresponding code

symbol is erased (i.e. not hidden).
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3.5 Decoding

Hard decision decoding is used for JPEG attacks for both the ET and the

SEC schemes. For the case of the RA coded SEC scheme under AWGN attack,

soft decision or probablistic decoding is employed. It is well known [88] that a

soft decisions decoder, leveraging knowledge of attack statistics, outperforms the

hard decisions decoder. Hard decision decoding is employed for all other attacks

in this paper because a detailed statistical model for these attacks is not available.

3.5.1 Hard decision decoding for JPEG attacks

The decoder estimates the location of the embedded data, and uses hard

decisions on the embedded bits in these locations. The bits in the remaining

locations (out of the set of candidate frequencies) are set to erasures. Since the

embedding procedure of both the ET and the SEC scheme is tuned to JPEG, the

decoding of embedded data is perfect for all the attacks lesser than or equal to

the design quality factor (QF). The coding framework imparts robustness against

insertions/deletions as well as occasional errors.

3.5.2 Soft decision decoding for AWGN attacks

Soft decision decoding can be employed for RA coded SEC scheme under

AWGN attack. The decoder uses the coefficient threshold to determine whether

data has been hidden or not. If the coefficient exceeds the coefficient threshold,

decoder passes a soft decision statistic computed using (3.7) to the RA decoder.

Otherwise an erasure (LLR, Λ = 0) is passed. The RA decoder uses the sum-
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product algorithm [58] to iteratively decode the bits. We now illustrate how the

coding framework employed for correcting insertions and deletions, can deal with

image tampering.

3.5.3 Image Tampering

The coding framework provides flexibility to the encoder in choosing the hid-

ing locations. The code symbols that do not pass the hiding threshold test are

erased at the encoder. The hiding rate is chosen such that it can deal with inser-

tions/deletions as well as errors due to attacks so that the hidden data is decoded

perfectly. Here we explain how this framework can be employed to recover the

embedded data against local or global image tampering, and then localize the

tampered area.

By image tampering, we mean that a part of image is maliciously replaced

by some other image data. Such a tampering can be local or global. In order

to survive tampering, the code rate used is further lowered so that we can deal

with the errors caused due to the replacement of the image data. Note that code

rate is a design parameter shared by encoder and decoder, and hence if tampering

attack is anticipated, then a low enough code rate should be chosen beforehand.

Once the hidden bitstream is decoded, localization of the tampered area can

be done easily. The decoded bitstream is encoded using the same RA code pa-

rameters, so that the originally hidden RA coded stream is reconstructed. Next,

the locations in the host image where errors occurred can be found by compari-

son. If the host image has undergone tampering, then most of the errors would

be concentrated at the locations where the tampering was done. Such an ability
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to robustly decode the bitstream and then localize the tampered area can be use-

ful in medical or forensic applications to detect whether a malicious attacker has

tampered with the “evidence”.

3.6 Hiding optimized for AWGN attacks

In this section we present a scalar quantization based hiding strategy that is

specifically tuned to AWGN attacks. The goal is to compare the achievable rates

with the scalar capacity bound derived in Section 3.2.2 and the vector capacity

([24],[77]). Note that the image adaptive hiding schemes considered so far are

not optimized to AWGN attacks. They use a local criteria, so that some of the

coding effort is ‘used-up’ in dealing with insertions and deletions. Also, the DCT

coefficients are divided by JPEG quantization matrix, which does not provide

equal robustness to all of them against AWGN attacks. In the following we

describe the embedding system, which uses scalar quantization based distortion

compensated hiding, RA codes, and soft decision decoding using the statistic

derived in Section 3.2.3.

As in the theoretical formulations, the problem is to hide in a host in such a

way that the data hider induces a mean squared error of at most D1, while the

attacker is allowed a maximum mean squared error of D2. In order to compare

with the information theoretic limits (see, for example, Costa [24] and Moulin

and O’Sullivan [79]), we assume that both the encoder and the decoder know

the D1 and D2 values. We employ the distortion compensated hiding scheme

(Section 3.2.2), which has been shown in [19] to achieve capacity for some specific
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cases. Here, the uniform quantizer is scaled by 1/α, where α ∈ (0, 1], and the

information symbol is encoded as a linear combination of the host symbol and

its quantized value as in (3.1). Local criteria are not used, and the quantizer

step size is kept same for all DCT coefficients (as opposed to using the JPEG

quantization matrix). α ∈ (0, 1] is computed using (3.2) and is known to both

encoder and decoder. RA codes are used to code the input bitstream to generate

a huge codeword. This codeword is embedded bit-by-bit in all the coefficients

within a designated band using distortion compensation. At the receiver, the soft

decisions are computed using (3.9) and passed to the RA decoder which uses the

sum-product algorithm [58] to iteratively decode the bits.

We use this hiding strategy to illustrate that using relatively simple RA codes

with distortion compensated hiding, we can reach about 2 dB close to the scalar

capacity (Section 3.7). However, it should be noted that this scheme is not likely

to survive other attacks, and cannot be applied practically unless the attack is

known to be AWGN.

3.7 Results

We now show that using the proposed image-adaptive hiding methods, one

can hide a large volume of data with minimal perceptual degradation. We use

peak signal-to-noise ratio (PSNR) as an objective metric to quantify the quality

of the hidden image. PSNR is defined as,

PSNR = 10 log10

(
2552

MSE

)
(3.15)
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where MSE stands for average mean squared error between the original and the

given image. Table 3.2 shows the number of bits hidden and the corresponding

observed PSNR for various images with data hidden using uncoded zero-threshold

SEC scheme. Data is hidden in raw (uncompressed) images, and robustness of

these images is characterized by the design QF, which determines the maximum

level of JPEG compression the images can survive. It is observed that the PSNR

of the hidden image is significantly higher than that of the corresponding JPEG

compressed image at the same design QF. Note that, the PSNR is measured with

respect to the original uncompressed image in both the cases. For example, the

PSNR of JPEG compressed Baboon image at QF = 25 is 25.89 dB, while a much

higher PSNR of 32.27 dB is observed for the same image with 25,331 bits hidden

at a design QF of 25. Similar behavior has been observed for all the test images.

The hidden image quality can be further improved by using higher threshold

SEC scheme, which provides us with a trade-off between the image quality and

the volume of embedding at a given robustness (determined by design QF). Table

3.3 shows the performance of the higher threshold SEC scheme for various images

at a design QF of 25. In almost all these cases, it is impossible for a human

observer to tell the hidden image apart from the original one.

We now present the performance of our schemes under various attack sce-

narios. Coding is used in all the attack scenarios (except JPEG compression

where uncoded transmission is good enough for error free recovery), so that all

the hidden bits can be decoded in spite of the errors due to attack. Note that

the ‘number of bits’ reported in the following sections are actually the ‘number of

information bits’ (i.e., the number of bits hidden before coding). Results for both
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RS-ET and RA-SEC systems have been provided for JPEG and AWGN attacks.

For all other attacks, only the RA-SEC system is used. We discuss in Section 3.8

why RA-SEC system is preferred.

3.7.1 JPEG attacks

Since the embedding procedure of both ET and SEC schemes is tuned to

JPEG, the decoding of embedded data is perfect for all the attacks lesser than

or equal to the design quality factor (QF). Table 3.4 shows the number of bits

embedded (with perfect recovery) in uncoded and coded ET and SEC schemes at

various design QFs, under JPEG attacks for 512×512 Lena image.

3.7.2 AWGN attacks

Table 3.5 summarizes the results for the ET scheme with RS coding and SEC

scheme with RA coding against AWGN attack. The number of bits embedded is

listed for the 512×512 Lena image. The ‘attack power’ reported here is the actual

power of the added noise converted to the dB scale (i.e., the ratio of variance of

the added noise to that of a Gaussian with unit variance). Figure ?? shows the

attacked 512×512 Lenna image, in which 6301 bits are embedded.

Although the RS code is not the best choice for AWGN, it is adequate for

mild attacks. RA-coded SEC scheme uses soft decision statistic of the AWGN for

decoding (as in (3.8) in Section 3.2.2), and performs better than RS coded ET

system at higher attack powers. A worst case attack D2 is assumed by the decoder

to compute the soft-decision statistic, and the hidden image is also attacked at
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Table 3.2: Zero-threshold SEC scheme: PSNR and number of bits hidden for
various 512×512 images at different design quality factors. The number of bits
hidden are reported for uncoded hiding.

QF=25 QF=50 QF=75
Image # bits PSNR # bits PSNR # bits PSNR

(dB) (dB) (dB)
Lena 11,044 34.58 18,786 38.07 31,306 39.90

Peppers 10,447 35.89 18,972 38.03 32,567 39.63
Baboon 25,331 32.27 44,142 34.50 66,911 36.05
Bridge 24,633 32.34 42,615 34.64 63,955 36.32
Couple 15,545 34.05 27,823 36.25 44,227 38.03
Boat 15,234 34.21 26,518 36.47 41,826 38.33

Table 3.3: Higher-threshold SEC scheme: PSNR and number of bits hidden
for various 512×512 images using different threshold values at design QF=25.
Using higher thresholds provide very good quality hidden images with a lower
volume embedding.

Thresold = 1 Thresold = 2 Thresold = 3
Image # bits PSNR # bits PSNR # bits PSNR

(dB) (dB) (dB)
Lena 4,913 41.43 2,595 44.58 1,820 46.60

Peppers 5,063 41.12 2,810 44.09 1,976 46.18
Baboon 13,065 35.98 5,763 39.92 3,247 43.27
Bridge 11,403 37.19 5,202 41.03 3,185 43.96
Couple 7,329 39.20 3,751 42.76 2,513 45.18
Boat 6,859 39.39 3,362 42.97 2,264 45.46
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Table 3.4: Performance of coded and uncoded ET and SEC schemes under
JPEG attacks at various quality factors

attack ET scheme SEC scheme
compr. # of bits # of bits

QF (bpp) uncoded coded uncoded coded
25 0.42 6,240 4,608 11,044 7,168
50 0.66 15,652 12,096 18,786 13,824
75 1.04 34,880 30,560 31,306 23,893

Table 3.5: Performance of ET scheme with RS coding and SEC scheme with RA
coding under AWGN attack. For the ET scheme, one codeword (8 bits long) is
hidden per block. 20 AC coefficients constitute the candidate embedding band
for the SEC scheme.

Attack ET Scheme SEC Scheme
power # of RS code # of RA code
(dB) bits (n,k) bits (1/q)
10.0 7,040 (256,55) 7,447 1/11
12.5 6,528 (256,51) 6,826 1/12
15.0 3,584 (256,28) 6,301 1/13

the same D2. Note that if the actual attack is lesser than D2, the performance

would at least be as good as the one reported here.

3.7.3 Wavelet compression attacks

Wavelet compression (JPEG 2000) was used to attack the images with hidden

data using SEC scheme with RA coding. Table 3.6 gives the number of bits hidden

in 512×512 Lena image under various levels of attack compression. Figure 3.11

shows the composite Lenna image after wavelet compression attack at 0.8 bits

per pixel. Note that, in the results reported in Table 3.6 (including the image in

Figure 3.11), data was hidden in the image using SEC scheme at design quality

factor of 25, and 20 coefficients were used per block, scanned in the zig-zag fashion.
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Figure 3.10: AWGN attacked composite Lenna image. 6301 hidden bits hidden
against an additive noise (SNR = 15dB). All the embedded bits are recovered
successfully.

The JPEG 2000 compression was done using the Jasper codec [4].

3.7.4 Image Tampering

The hiding schemes presented here are resilient to image tampered in various

ways. Table 3.7 gives the number of bits hidden in 512×512 Lena image when a

part of host image is replaced by other image data. Figure 3.12 shows an example

attacked image where 20% of the image is cropped out and new image data is put

in that place. In spite of this malicious tampering of the image, all the embedded

5,208 bits are recovered successfully after the attack. The hidden data can be
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Table 3.6: Performance of RA coded SEC scheme for 512×512 Lena image
under wavelet compression attack

Attack Compression Hiding Rate RA code rate
(bpp) # of bits (1/q)
0.800 7,447 1/11
0.530 4,096 1/20
0.400 2,730 1/30

Table 3.7: Performance of RA coded SEC scheme for 512×512 Lena image
under image tampering. Here, 27 coefficients are used per block

Percentage of Number RA code rate
image tampered of bits (1/q)

10 % 9,216 1/12
20 % 5,820 1/19
30 % 4,608 1/24

decoded even if the tampering is not localized. Figure 3.13(a) shows Lena image

tampered globally, and still all the 6,301 hidden bits can be recovered successfully.

Figure 3.13 (b) shows the localization results for the tampered image of Figure

3.13 (a).

3.7.5 Image Resizing

Image resizing is a popular attack method wherein the image is shrunk to a

smaller size and scaled back to its original size so that there is loss of information

in the process without causing significant perceivable distortion. Various inter-

polation methods can be used to resize and the most popular ones are bilinear,

bicubic and nearest neighbor interpolations. Again, the RA coded SEC scheme is

used for hiding in 512×512 Lena image at design quality factor of 25 and 20 co-

efficients are used per block. The hidden image survives large amount of resizing
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Figure 3.11: Wavelet compression attack: all the hidden 7447 bits are recovered
successfully after the composite image is compressed using wavelet transform
at 0.8 bits per pixel.

using bicubic interpolation method. Table 3.8 gives the number of bits hidden

against the percentage of resizing done using bicubic interpolation. Less data

can be hidden when hidden image is resized using other interpolation techniques.

Table 3.9 gives the number of bits hidden against bilinear and nearest neighbor

resizing attacks. It should be noted that the perceptual quality of the attacked

image is also worse in the latter cases, which forbids the attacker from using a

higher percentage of resizing with bilinear or nearest neighbor interpolation.
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Figure 3.12: 20 % of 512×512 Lena image tampered. All the embedded 5820
bits were recovered successfully after the tampering attack.

3.7.6 Image-in-Image hiding

In steganographic applications it is desirable to hide an image called signa-

ture image into another image called host or cover image. The hiding techniques

developed here allows us to hide large volume of data with perfect recovery and

hence can be used to hide large signature images with robustness against JPEG

attacks. For example, signature images as large as 256×256 pixels can be hidden

in a 512×512 cover image (Figure 3.14). The uncoded scheme is employed here,

because we need robustness only against JPEG compression and higher embed-

ding rate is desirable. First, the maximum number of bits that can be hidden
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(a) 512×512 Lena image tampered globally

(b) Localization of tampered area at the de-

coder for the globally tampered image above

Figure 3.13: Global and Localized image tampering and localization of the
tampered area. All the embedded 6301 bits are recovered after the attack.
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Table 3.8: Performance of RA coded SEC scheme for 512×512 Lena image
under image resizing attack using bicubic interpolation

Percentage Hiding Rate RA code rate
Resizing # of bits (1/q)

10 % 7,447 1/11
15 % 6,826 1/12
20 % 6,301 1/13

Table 3.9: Performance of RA coded SEC scheme for 512×512 Lena image
under image resizing attack using bilinear and nearest neighbor interpolation

Nearest neighbor interpolation Bilinear interpolation
Percentage Number of RA code Number of RA code
Resizing bits (1/q) bits (1/q)

2 % 6,301 1/13 2,275 1/36
5 % 4,096 1/20 2,155 1/38
10 % 2,275 1/36 1,241 1/66

in the host image is determined by going through the image and computing the

number of coefficients that satisfy the local criteria at desired design quality fac-

tor. Then, the signature image is hidden after being JPEG compressed to a level

that its size is smaller than the maximum number of bits that can be hidden.

3.7.7 AWGN optimized hiding

For the AWGN optimized hiding scheme discussed in Section 3.6, we found

the minimum distortion to noise ratio (DNR) for which decoding was perfect for a

512×512 image at various RA code rates. Table 3.10 compares the DNR observed

for simple scalar quantization based hiding (α = 1), and distortion compensated

scalar quantization hiding with optimal α (= D1

D1+D2
) to the theoretical scalar

(Section 3.2.2) and vector [77] capacities.

We observe that we are only about 2 dB away from the theoretical scalar
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(a) Original 512×512 Harbor image (b) Composite image

(c) Original

256×256 signature

image

(d) Recovered sig-

nature image

Figure 3.14: Image-in-Image hiding example
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Table 3.10: Comparison of observed and theoretical capacities
Scalar quant. Theoretic Capacity

RA code schemes, DNR (dB) DNR (dB)
rate (α = 1) (opt. α) Scalar Vector
1/3 4.3180 2.1261 0.2500 -2.3107
1/4 3.2790 0.8365 -1.0000 -3.8278

capacity using distortion compensated quantization based hiding with RA coding.

Most of this gap is probably due to the limits on the performance of the regular RA

codes, which exhibit gaps of comparable size (e.g., about 1.5 dB for rate 1/3) from

the Shannon limit over the classical AWGN channel as well [31]. An interesting

question for future study is whether this gap can be closed further using more

powerful codes such as regular and irregular LDPCs [43, 64] and irregular RA

codes [52], known to work close to the Shannon limit over the AWGN channel.

Another significant observation is that there is a gain of more than 2 dB when

distortion compensation scheme is used as compared to the performance without

distortion compensation (α = 1).

3.7.8 Online Demonstration

A Web demo of the system proposed in this chapter is available at [1]. A

screen-shot of the demo webpage is shown in Figure 3.15. The user is allowed to

select the volume of data that is to be embedded, which determines the amount

of robustness. User can provide an image and a message, which is then hidden

into the uploaded image. A secret passcode needs to be given by the user while

encoding, which is needed to retrieve the message at the decoder. This demo uses

the SEC scheme with RA coding, and can survive the attacks mentioned earlier.
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Figure 3.15: A screen-shot of the online demonstration of the high-volume data
hiding system proposed in this chapter.
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3.8 Discussion

The hiding methods presented in this paper are geared towards high volume

embedding while preserving the perceptual quality and achieve robustness against

JPEG attacks. It should be noted that we use ET scheme with RS coding mainly

to explain our ideas of local adaptation and coding framework, while in most

practical scenarios, the RA coded SEC scheme is used. The RA-SEC system

provides a better performance in terms of robustness and perceptual quality. This

is because the turbolike RA codes operate operate very close to the capacity, and

the SEC scheme provides a better control on ‘where to hide data’. Soft decision

decoding of the RA codes is performed for AWGN attack, and hard decision

decoding is performed otherwise.

While the AWGN attack is not common in the watermarking literature, it has

been shown in information-theoretic studies ([23],[77]) to be the worst-case attack

in certain idealized game-theoretic settings, where the mean squared distortion

due to the attack is constrained. The information-theoretic “goodness” of our

schemes is therefore demonstrated by our numerical results that show that, by

appropriate use of soft decisions, we do approach the information-theoretic hid-

ing capacity (with scalar quantization) under AWGN attacks. Of course, from a

practical point of view, hard decisions must be employed for attacks (such as com-

pression) whose statistics are difficult to quantify. Also, there are many attacks

that induce large mean-squared distortion, but little perceptual distortion. Ex-

amples include Stirmark random bending [85], rotation, cropping, and print-scan.

These geometric attacks tend to de-synchronize the decoder. Modifications to the
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current hiding framework so that it allows re-synchronization of the decoder for

these attacks is an avenue of future work.

It can be seen that the proposed hiding schemes survive wavelet based com-

pression and image resizing attacks. This is because these attacks do not entirely

destroy the low frequency DCT coefficients where the majority of bits have been

hidden. Note that wavelet-based compression does not change the image mean

squared error drastically (as opposed to geometric attacks). Hence, based on the

arguments of the previous paragraph, it is not surprising that the hidden bits

survive this attack. The same arguments hold true for the image resizing attack

when the original image size is known to the decoder, or if the attacker scales the

image back to its original size. In spite of this restriction, the presented results are

significant because they indicate that the hidden bits can survive errors caused

due to interpolation.

The image-in-image hiding presented here uses the fact that we can send a high

volume of data with robustness against JPEG compression using uncoded SEC

scheme. The signature image is compressed into a sequence of bits and these bits

are hidden into the host (disregarding the actual meaning of the bits). The system

is designed for the worst anticipated attack. In practice, the attack level is seldom

known apriori, and if the actual attack is less severe than the design attack, we

are still stuck with the design signature image quality. Ideally, we would like an

image-in-image hiding scheme that results in graceful improvement in the image

quality with less severe attacks. Such schemes require joint source-channel coding,

which has been studied for the Gaussian channel (see, for example, [17, 103]).

Development of similar techniques for data hiding is an important research area. A
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first attempt at building such gracefully improving image-in-image hiding system

is presented in the next chapter, where a hybrid digital-analog (joint source-

channel) coding scheme is proposed. It leverages the current image-adaptive

hiding framework for sending digital data and involves transmission of the analog

residues using a new method.
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Joint Source-Channel Hiding

In several applications, the signature signal, which is to be hidden into a media

host, is also a media data such as an image, video, audio, or speech. Examples

include embedding an image into another image, or hiding video in video [15].

The need to embed a media signal arises in applications such as steganography,

in which an image need to be conveyed to another party without revealing the

existence of communication. Another application in which image-in-image hiding

comes up naturally is when a logo is to be embedded into another image or video.

More recently, data hiding has been applied for error concealment of video

and images. With commercialization of wireless video, and high-quality video

webcasts, there is an increasing push for video coding techniques that can provide

good-quality video without annoying artifacts in the presence of packet loss during

transmission. Several authors have used data hiding to embed a low resolution

version of the same video into the original video which is to be concealed ([5,

6, 113]). Then, at the receiver, the embedded low resolution version can be
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recovered in the presence of packet loss during transmission, and the appearance

of annoying artifact can be avoided. Many authors report results better then

conventional error concealment systems [5, 6, 113]. In these applications too, the

signature signal is a media data.

For hiding media signature signals, it is not needed to recover the signature

perfectly. In this case, the signature data need to be received only with a fidelity

criteria, and some error in the received signature signal is acceptable. When

designing practical systems for hiding media in media (using conventional separate

source and channel coding), the signature signal must be compressed to a size

less than the number of bits that can be embedded into the host (or the message

carrying capacity of the host). These compressed bits of the signature signal are

then embedded into the host using appropriate channel coding. The message

carrying capacity of the host is determined by the strength of the attack that is

anticipated.

Obviously, in the above scenario, for a system that must survive strong attacks,

fewer bits can be embedded, and hence, the signature signal need to be heavily

compressed before hiding. In real-world scenario, the attack strength is seldom

known beforehand, and hence, a practical system must be designed keeping the

worst-case attack in mind. Thus, even when actual attack is very mild, one has to

live with the poor heavily compressed signature signal quality, which was designed

for the worst-case attack. It is highly desirable to have a system that can allow

better quality of received signature data when the actual attack is mild. Design of

such schemes require joint source-channel coding, which we study in this chapter.
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4.1 Introduction

We consider the problem of image-in-image hiding in this chapter, where,

the basic design criteria are as follows: (a) the degradation to the host image is

imperceptible, (b) it should be possible to recover the hidden, or signature, image

under a variety of attacks, and (c) the quality of the recovered signature image

should be better if the attack is milder. In recent work [19, 33, 51, 108, 109], it

has been shown that digital data can be effectively hidden in an image so as to

satisfy criteria (a) and (b) by hiding in the choice of quantizer for the host data.

The main idea is to view the data hiding problem as communication with channel

side information ([22, 24, 79]): the channel experienced by the data comprises

of the host interference and the attack, and the channel side information is the

knowledge of the host. Therefore, recent advances in source coding and channel

coding can be leveraged for developing data hiding schemes.

Unfortunately, these schemes do not satisfy the design criterion (c) - they

exhibit the threshold effect: if the actual attack is more severe than the attack the

scheme was designed for, there is a catastrophic failure in recovering the hidden

image, while if the actual attack is less severe, then we are still stuck with the

design attack image quality. In practice, the attack level is seldom known apriori,

and ideally, we would like a scheme that results in graceful improvement and

degradation in the image quality with less and more severe attacks respectively.

Such schemes require joint source-channel coding, which has been studied for the

Gaussian channel in [17, 72, 73, 123]. However, to the best of our knowledge, such

schemes have not been studied for the data hiding channel.
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Having provided the motivation, let us now summarize the main factors that

led us to investigate joint source-channel codes for information embedding.

1. In many applications, the information to be hidden is a media data (e.g.

images, video, speech and audio). These signals are inherently analog, or in

more technical terms, continuous alphabet sources. For these signals, perfect

recovery is not required, and receiving the signal with predetermined fidelity

criteria is enough.

2. Since the attack strength is seldom known beforehand, it is desirable to

have a system that allows recovering better quality signature data when

the attack is mild. This way, we can construct robust data hiding systems,

which are designed for severe attacks, but would enable us to receive better

quality signature if the composite signal undergoes a milder attack.

3. If the embedded data is meant for more than one receivers with different

channels (i.e., the broadcast scenario), it is desirable to have a system that

can provide better quality signature signal for the receivers seeing mild

attacks.

In this chapter, we present a hybrid digital-analog (joint source-channel) cod-

ing scheme for image-in-image hiding. It leverages an earlier digital scheme based

on image-adaptive criteria and turbo-like repeat-accumulate (RA) codes, pre-

sented in Chapter 3 (also published in [51, 109]), and involves the transmission

of the analog residue using a new method, which is similar in flavor to the quan-

tization index modulation commonly used in digital schemes. At the decoder,

we focus on JPEG attacks. The proposed scheme shows (perceptual as well as
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mean-square error) improvement over the purely digital scheme in [51, 109] as the

level of the JPEG compression attack decreases.

The rest of the chapter is organized as follows. In Section 4.2, we provide a

background of joint source-channel coding for the data hiding problem. In Section

4.3, we describe our method for transmitting the analog residue and derive the

minimum mean-square error estimator (MMSE) for the analog signature under

uniform quantization attack. We assume that the quantization matrix of the

JPEG attack is known to the decoder. In Section 4.4, we describe our hybrid

digital-analog scheme and present the results. We present the conclusions in

Section 4.6.

4.2 Joint Source-Channel Hiding

In this section, we develop the concept of joint source-channel data hiding, and

provide an overview of the system that is employed in this chapter. We start with a

discussion on joint source-channel coding for the classical communication systems

in Section 4.2.1. After that we analyze the theoretical limit for the performance

of any joint source-channel hiding scheme (Section 4.2.2). A prior approach for

graceful improvement is briefly described next (Section 4.2.3), followed by a big

picture overview of the employed system (Section 4.2.4).

4.2.1 Joint Coding for Classical Communication Systems

A number of joint source-channel coding methods have been proposed for the

Gaussian channel ([17, 72, 73, 103, 123]). In [17], codes based on chaotic systems
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have been proposed, which recently were shown to have optimal scaling properties

in the high signal-to-noise regime in [123]. In [73, 103], hybrid digital-analog

codes have been proposed. For the data hiding channel (communication with side

information about the channel state at the encoder), joint source-channel codes

have not been studied so far and a number of issues are open.

4.2.2 Theoretical Limit

Let us first describe some fundamental limits for a common model for the data

hiding channel ([24, 79]). The hider is at most allowed to introduce a mean-square

error D1 per host symbol. Further, we assume a Gaussian attack (which simply

adds i.i.d. Gaussian noise), which introduces an additional distortion of at most

D2 per host symbol.

An information theoretic analysis of the Gaussian data hiding channel, reveals

that the maximum possible rate of data transmission over this channel (the ca-

pacity of the channel) can be achieved by hiding in the choice of the host vector

quantizer ([24], [19]). Motivated by these results, a number of practical schemes

have been developed in the literature using recent advances in source and channel

coding (see, for example, [109], [22]).

Now, we consider an embedding scenario in which there is a continuous al-

phabet signature source, which is to be embedded into the host signal, with the

same hider and attacker distortion constraints of D1 and D2 respectively. At the

receiver, we are interested in recovering the signature with distortion of D3 per

signature symbol. Note that, in general, the host and the signature have different

sizes, and so we assume that ρ channel uses per source symbol are allowed. We
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are interested in finding an answer to the following question: What is the smallest

D3 that can be achieved for a given D1, D2, ρ? Here, we answer this question for

a Gaussian signature source with zero mean and variance σ2. To obtain distortion

D3, from rate distortion theory ([25]), we know that at least

R(D) =
1

2
log2

(
σ2

D

)
bits/source symbol (4.1)

have to be transmitted. On the other hand, we know from [24] that at most

C =
1

2
log2

(
1 +

D1

D2

)
bits/channel use (4.2)

can be transmitted over the above described data hiding channel. Since we are

allowed ρ channel uses per source symbol, we have D3 ≤ ρC, which yields,

D3 ≥ σ2

(
1 + D1

D2

)ρ =: Dmin. (4.3)

Thus we get an expression for the lower bound on the distortion that is incurred

by the signature source. Given D1, D2 and ρ, the smallest feasible distortion

above can be approached in principle by separate source and channel coding; the

source encoder aims to optimally compress the source to within distortion D3 and

the channel encoder transmits the compressed source reliably over the channel.

It should, however, be note that the separation theorem for communication

with encoder side information [49], holds only asymptotically, i.e., for infinitely

long codewords. Moreover, a separate coding scheme has the following threshold

behavior.

• Even if the Gaussian attack channel introduces a distortion less than D2,

we suffer distortion Dmin, even though in principle we can have smaller

distortion.

102



Joint Source-Channel Hiding Chapter 4

• If the Gaussian attack channel introduces a distortion more than D2, the

channel does not have enough capacity to transmit the source, and channel

decoder makes mistakes most of the time.

The goal of joint source-channel coding is to smoothen out this threshold behavior.

Moreover, a much simpler code can potentially be designed, which can match the

performance of much more complicated separate source and channel codes.

4.2.3 Prior Art: Multi-bit Hiding

While joint source and channel coding for the data hiding channel has not be

analyzed in the literature so far, here, we briefly overview a prior approach, that

aims to receive data with better fidelity for less severe attacks.

Wu and Lui [136, 137] propose the concept of multi-bit embedding with the

goal of receiving some bits for strong attacks, and receive more bits when the

attack is mild. Here, bits are embedded into both low and high frequency bands,

so that those bits that are hidden in the low frequency bands are received for

lower quality factor JPEG attacks1, and the bits in the mid frequency bands will

also be received when the attack quality factor is higher.

This system though achieves some basic graceful improvement, it is quite

naive in its design. It is not derived from the vast literature on joint source-

channel codes. Only a limited number of levels of improvement are possible with

this design. Also, it is not straightforward to use this kind of implementation

for embedding media signature data. Note that a similar approach was briefly

1Note that lower quality factor JPEG attack means that the compression is higher.
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Figure 4.1: The proposed hybrid digital-analog joint source-channel coding scheme.

suggested in [16] too. We now describe a much more powerful and flexible system,

which is based on hybrid digital-analog joint source-channel coding.

4.2.4 Proposed System: Hybrid Digital-Analog Hiding

We exhibit a practical hybrid digital-analog scheme for image-in-image hiding,

which is similar to the scheme proposed in [103] for the Gaussian channel. A block

diagram of the proposed hybrid digital-analog system is shown in Figure 4.1. The

idea is to compress the signature image efficiently into a sequence of bits, which is

hidden using a digital hiding scheme proposed in last chapter (also published in

[109, 51]). The residual error between the original and compressed signature image

is then hidden using an analog hiding scheme (proposed in Section 4.3). With

practical issues in mind, we focus our attention to JPEG compression attacks

instead of the Gaussian attack. We chose to develop a hybrid digital-analog

scheme for the following purposes.

1. It allows us to exploit advantages of the digital scheme in [109, 51], which

hides high volume of data using image-adaptive criteria and turbo-like codes,
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Figure 4.2: The hybrid scheme employed in this chapter: SEC scheme with
RA encoding is used for digital transmission, and a new analog information
hiding scheme is proposed.

and is also robust against a variety of attacks.

2. Due to the limited dynamic range of the analog residue, it is feasible to send

them reliably over a limited number of host symbols.

With above observations, we now present a more refined block diagram of

the proposed hybrid scheme in Figure 4.2. An important ingredient of our joint

source-channel coding scheme is a new method to embed analog residue into the

host, which is described in the following section.

4.3 Hiding Analog Information

In this section, we propose a strategy to hide an analog number into a host

sample. The hiding strategy involves quantization of the host followed by replac-

ing the residue with the appropriately scaled source and is given in Section 4.3.1.

The MMSE decoder is derived in Section 4.3.2.
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4.3.1 Hiding using scalar quantization of the host

To hide an analog number m into a host sample h, we first quantize the host

h using a quantizer of step size ∆, and then replace the residue with the source

m, which has been companded or scaled to lie in the interval (0, ∆). Let us

consider an example, shown in Figure 4.3 (a), where ∆ = 1 and the host symbol

is, say, 2.25. We want to send a source symbol whose value is 0.65 (a real number

∈ (0, ∆)) through the hiding channel. The encoder first determines that the host

symbol lies between 2 and 3 (an interval (n∆, (n+1)∆)), then it sends the source

symbol directly within that interval, i.e., it just sends 2.65. In practice, we use a

hiding strategy that always measures the message m from an even reconstruction

point of the host. This is shown in Figure 4.3 (b), in which the host symbol is

1.85, and we again wish to send the source whose value is 0.65. The encoder

determines that the host value is between 1 and 2, and hence, sends 1.35 (which

is 0.65 measured from 2). This is done to avoid catastrophic error when a hidden

coefficient switches to a different integer interval as a result of attack. Thus, the

symbol y to be sent for hiding a message m into a host symbol h is given by,

y = ∆(bh/∆c) + m, if bh/∆c is even,

= ∆(bh/∆c+ 1)−m, if bh/∆c is odd.

(4.4)

Here, b·c denotes the floor operation (defined as the largest integer smaller than

or equal to the given number).
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(a) Embedding message m = 0.65 into host symbol with value 2.25, and ∆ = 1.
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(b) Embedding message m = 0.65 into host symbol with value 1.85, and ∆ = 1.

Figure 4.3: Analog information hiding: data is hidden simply by quantizing
the host, and replacing the residue by the analog signature data after scaling
or companding. As seen in (b) above, the host value is between 1 and 2, the
message is always measured from the even reconstruction point (i.e., 2).
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4.3.2 JPEG attacks and MMSE decoding

The JPEG compression performs uniform quantization of the discrete cosine

transform (DCT) coefficients of 8×8 blocks of the image. Hence we derive the

MMSE decoder for the above hiding scheme under uniform quantization attack,

when the reconstruction points of the attack quantizer are known to the decoder,

but not to the encoder. In this section, we use bold italics to represent random

variables; their realizations are denoted by corresponding italic letters.

We consider the case of hiding a uniform random variable mmm ∼ U [0, 1] using

(4.4) into an independent host coefficient hhh to obtain yyy. In practice, even if mmm is

not U [0, 1], it can be transformed in to an uniform random variable by applying

the inverse of its distribution function. Without loss of generality, we assume

∆ = 1. In this analysis, we restrict our attention only to attacks with quantization

interval less than or equal to the design interval. Note that, in practice, the

design interval will be an entry in the design JPEG quantization matrix, which

will be chosen to be the worst case attack. Denoting the attack quantization

interval by δ ≤ 1, the received symbol zzz = Q(yyy), where Q(·) denotes the uniform

quantization with an interval δ, and with zero as one of the reconstruction points.

Note that all JPEG quantizers have zero as one of its reconstruction points.

Thus, zzz ∈ {...,−2δ,−δ, 0, δ, 2δ, ...}. The MMSE decoder is simply the conditional

expectation E[mmm|zzz = z]. In the following, we consider various cases depending

upon z, and find the conditional expectation by identifying the conditional density

of mmm given zzz = z.

If z = aδ is received, then y necessarily lies in the interval [(a − 1/2)δ, (a +

1/2)δ), which we call its ambiguity interval (see Figure 4.4). Let us consider the
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δ 2δ 3δ 4δ 5δz
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Figure 4.4: Ambiguity interval: If z = aδ is received, then the sent symbol,
y, necessarily lies in the interval [(a − 1/2)δ, (a + 1/2)δ), which is termed its
ambiguity interval.
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Figure 4.5: The three cases of ambiguity interval.

integer interval in which z is received, say [n, n + 1). As shown in Figure 4.5,

there are three possibilities with the ambiguity interval:

(i) No crossing: The ambiguity interval for y does not cross into another integer

interval, that is,

z − δ

2
≥ n and z +

δ

2
< n + 1. (4.5)

(ii) Even crossing: The ambiguity interval crosses an even integer, that is,

z − δ

2
< n and n is even, or,

z +
δ

2
≥ n + 1 and (n + 1) is even.

(iii) Odd crossing: The ambiguity interval crosses an odd integer, that is,

z − δ

2
< n and n is odd, or,

z +
δ

2
≥ n + 1 and (n + 1) is odd.
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Now we proceed to find the MMSE estimates of the message mmm for all the

three cases.

(i) No crossing: In this case,

fmmm|zzz(m|z) = U [(a− 1/2)δ, (a + 1/2)δ) .

The corresponding MMSE estimate is,

m̂ =





z − n if n is even,

(n + 1)− z if n is odd.
(4.6)

(ii) Even Crossing: As mentioned above there could be two cases for even crossing,

each involving either n or (n + 1) being even. The analysis is similar in both the

cases and hence we just consider the first case (n even). Let us define R1 =

n− (z − δ/2) and R2 = (z + δ/2)− n as the distances between the even crossing

point n, and, the lower and upper points of the ambiguity interval respectively.

Note that R1 + R2 = δ. Defining the events A := {yyy ∈ [n − R1, n)} and B :=

{yyy ∈ [n, n + R2)}, we have,

fmmm|zzz(m|z) = fmmm|zzz,A(m|z, A) · P (A|z)

+ fmmm|zzz,B(m|z, B) · P (B|z)

where,

P (A|z) = P (bhhhc = (n− 1),mmm ∈ [0, R1]|zzz = z)

=
P (bhhhc = (n− 1),mmm ∈ [0, R1], zzz = z)

P (zzz = z)

=
P (bhhhc = (n− 1)) · P (mmm ∈ [0, R1])

P (zzz = z)

=
P (bhhhc = (n− 1)) ·R1

P (zzz = z)
. (4.7)
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Similarly,

P (B|z) =
P (bhhhc = n) ·R2

P (zzz = z)
(4.8)

where,

P (zzz = z) = P (bhhhc = (n− 1)) ·R1 + P (bhhhc = n) ·R2.

Note that, for a slowly varying host distribution, we have, P (bhc = (n − 1)) ≈
P (bhc = n), so that, (4.7) and (4.8) can be approximated as P (A|z) = R1/δ, and

P (B|z) = R2/δ.

Since the event A ∩ {zzz = z} = {mmm ∈ [0, R1)}, we have fmmm|zzz,A(m|z, A) =

U [0, R1]. Hence, the MMSE estimate is,

m̂ =
R1

2
P (A|z) +

R2

2
P (B|z).

Again, for a slowly varying host distribution, after some simplifications, we get,

m̂ =
δ

2
− R1R2

δ
. (4.9)

(iii) Odd crossing: Following the analysis of the even case, define R1 and R2 as

distances between the crossing point and lower and upper points of the ambiguity

interval respectively. Here, we get the MMSE estimate for the general case as,

m̂ =
2−R1

2
P (A|z) +

2−R2

2
P (B|z)

and for the slowly varying host distribution, we get,

m̂ = 1−
(δ

2
− R1R2

δ

)
. (4.10)

Hence, we have the MMSE estimate for all the cases which can be used for de-

coding when decoder knows the JPEG compression quantization matrix.
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4.4 Image-in-Image Hiding

In this section we describe the actual implementation of the entire system for

image-in-image hiding. The encoding process can be divided into following parts.

Processing the signature image: This step involves separating the signature

image into digital and analog parts. We use a JPEG-based implementation as

illustrated in Figure 4.6. Note that a block-DCT approach is used here just to il-

lustrate our ideas, and in general, any compression mechanism could be employed.

As shown in Figure 4.6 (b), the image is compressed using JPEG to generate a

bitstream, which constitutes the digital part. The analog part is obtained by

computing the residual errors of pre-selected DCT coefficients after the quantiza-

tion based on design signature quantization matrix. Note that, the design quality

factor, and the number of analog residues chosen to send, are predetermined at

the design stage.

Allocating the channels: Here, we allocate the host coefficients (i.e., channel)

for the digital and analog parts respectively. A few low frequency coefficients

(other than the DC coefficient) of each 8×8 host block are reserved for the analog

channel. Remaining low and/or mid frequency coefficients are dedicated to the

digital channel. An example allocation is presented in Figure 4.7. The allocation

of the digital and analog channels is done beforehand at the design stage. Thus

the decoder would know where to look for analog and digital data respectively.

Hiding the digital part: The digital bitstream is hidden into its allocated chan-

nel using the RA-coded Selectively Embedding in Coefficients (SEC) scheme of

[109, 51]. The bitstream to be hidden is coded using turbo-like RA code at a low
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(b) Conversion of signature image into digital part and analog residue.

Figure 4.6: Processing the signature image into digital part and analog residue:
It can be seen that the particular implementation used here is based on JPEG
compression. It should be noted that, in general, any compression method can
be employed.
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Figure 4.7: An example allocation of the host coefficient block for hiding the
digital and analog parts.

rate. This coded bitstream is hidden into the host coefficients such that a code

symbol is erased at the encoder, if the floor of its magnitude is smaller than or

equal to a predetermined integer threshold. The decoder uses the same threshold

criteria to estimate the erasure locations. The RA code rate is designed in such a

way that one can also deal with the additional errors and erasures due to attack.

Hiding the analog part: The analog residues of selected low frequency coeffi-

cients are sent through its allocated channel using the hiding scheme of Section

4.3. Since the residue always lies in [0, ∆sig), where ∆sig is specified by the design

quantizer, we simply scale it to lie in [0, 1).

The decoder decodes the analog and digital parts separately and adds them

together to give an estimate of the sent signature image. The decoding of the

analog part is done using the knowledge of attack δ, and assuming a slowly varying

host distribution (Section 4.3.2). The digital part is iteratively decoded using
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sum-product algorithm.

4.5 Results

Now we present three example implementations to show that there is an im-

provement in perceptual quality as well as the mean-squared error (MSE) for the

received signature image as the attack becomes milder. Note that though we

present a few specific examples here, the scheme is applicable to any image-in-

image hiding scenario.

Example 1: We hide a 128×128 image into a 512×512 image, with the design

quality factor of 25. Figure 4.8 shows the recovered signature images when the

host image undergoes JPEG compression at varying levels, starting from the worst

case QF of 25. Table 4.1 shows the observed MSE per coefficient for these images

at various attack quality factors. The signature image is JPEG compressed at

QF = 10 to form the digital part and the residues of 16 low frequency coefficients

make up the analog part. We use one coefficient from each 8×8 host block for

transmitting the analog data. 34 coefficients constitute the digital channel.

Table 4.1: Example 1: MSE per coefficients for varying levels of attacks. A
128×128 peppers image has been hidden in a 512×512 harbor image.

QF 25 35 45 55 65 75 85 95
comp. 93.5% 90.4% 88.7% 87.2% 85.0% 81.9% 75.8% 57.7%
MSE 0.0286 0.0321 0.0193 0.0149 0.0119 0.0060 0.0043 0.0025

Example 2: A 256×256 image is hidden with a design QF of 50. Figure 4.9

shows the recovered signature images when the composite image undergoes vary-

ing levels of JPEG compression attacks. Table 4.2 shows the corresponding MSE

115



Joint Source-Channel Hiding Chapter 4

(a) attack QF = 25 (b) attack QF = 35 (c) attack QF = 45

(d) attack QF = 55 (e) attack QF = 65 (f) attack QF = 75

(g) attack QF = 85 (h) attack QF = 95 (i) No attack

Figure 4.8: Example 1: Hiding a 128×128 peppers image into a 512×512
harbor image (not shown here). The signature images received after various
levels of JPEG compression are shown along with the corresponding observed
MSE per coefficient.
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of the received image. The signature image is JPEG compressed at QF=18, and

residues of 12 low frequency coefficients constitute the analog part. 3 coefficients

per host block are used for sending analog residue and another 32 coefficients

form the candidate embedding band for the digital data.

Table 4.2: Example 2: MSE per coefficients for varying levels of attacks. A
256×256 clock image has been hidden in a 512×512 bridge image.

Attk. QF 50 60 70 80 90
compr. 84.2% 81.9% 78.3% 72.5% 60.0%
MSE/coeff. 0.0335 0.0374 0.0266 0.0146 0.0046

Example 3: A 256×256 Lenna image is hidden with a design QF of 50 into a

512x512 Bridge image. Figure 4.10 shows the recovered signature images when the

composite image undergoes varying levels of JPEG compression attacks. Table

4.3 shows the corresponding MSE of the received image. The signature image

is JPEG compressed at QF=12, and residues of 12 low frequency coefficients

constitute the analog part. 3 coefficients per host block are used for sending

analog residue and another 32 coefficients form the candidate embedding band

for the digital data.

Table 4.3: Example 3: MSE per coefficients for varying levels of attacks. A
256×256 Lenna image has been hidden in a 512×512 Bridge image.

Attk. QF 50 60 70 80 90
compr. 84.3% 81.9% 78.3% 72.5% 60.00%
MSE/coeff. 0.0267 0.0371 0.0254 0.0140 0.0046
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(a) attack QF = 50 (b) attack QF = 60 (c) attack QF = 70

(d) attack QF = 80 (e) attack QF = 90 (f) No attack

Figure 4.9: Example 2: Hiding a 256×256 clock image into a 512×512 bridge
image (not shown here). The signature images received after various levels
of JPEG compression are shown. The corresponding MSE per coefficient is
shown in Table 4.2
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(a) attack QF = 50 (b) attack QF = 60 (c) attack QF = 70

(d) attack QF = 80 (e) attack QF = 90 (f) No attack

Figure 4.10: Example 3: Hiding a 256×256 Lenna image into a 512×512 Bridge
image (not shown here). The signature images received after various levels of
JPEG compression are shown. The corresponding MSE per coefficient is shown
in Table 4.3
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4.6 Summary

In this chapter, we proposed a simple joint source-channel coding framework

for achieving graceful improvement when hiding a media signature signal. This

is practically demonstrated by a hybrid digital-analog scheme for image-in-image

hiding. As the JPEG attack quality factor increases, we recover the signature

image with better quality. It should be noted that, with appropriate design,

the framework can be applied for any media signature or host signals. While

the results show improvement over a purely digital hiding strategy, much more

further work remains in exploring the huge space of possible joint source-channel

coding strategies.

We have discussed high-volume embedding schemes so far, which achieve ro-

bustness against distortion constrained attacks such as compression and additive

noise. In the next chapter, we focus on more robust techniques that can survive

several attacks including printing-and-scanning.
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Print-Scan Resilient Hiding

The advent of digital age with the internet revolution has made it extremely

convenient for users to access, create, manipulate, copy, or exchange multimedia

data. This has created an urgent need for protecting intellectual property in

both the digital and the print media. Digital watermarking is a technology being

developed, in which, copyright information is embedded imperceptibly into the

host in a way that is robust to a variety of intentional or unintentional attacks.

The ease with which images can be converted from print to digital form and vice

versa makes it necessary that the embedded digital watermark is resilient to the

print and scan operation.

Strong deterrents against forgery of important documents, such as passports,

driving licenses, and ID cards need to be developed at this time, when the con-

cerns over security are higher than ever before. Print-scan resilient data hiding

provides a viable solution to this problem: security information (such as finger-

prints, signature, or passport number) can be imperceptibly embedded into a
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picture in the document. Only specific devices, which have access to a secret key,

can decode and authenticate the hidden information. Forgery of such documents

become extremely difficult because the embedded data is inseparable from the

picture.

Another potential application of print-scan resilient hiding is in protecting

thousands of pictures that appear on magazines and newspapers everyday. With

availability of inexpensive high resolution scanners, the image can be conveniently

converted into a digital form and the ownership of the image may be claimed by

someone else. To counter this, information can be hidden into these images before

they are printed and the ownership can be verified in the digital format. A visible

watermark would not be helpful in this case because it can be easily removed

using any image processing software.

5.1 Introduction

In this chapter, we present methods for hiding information into images in a

manner that is robust to printing and scanning. The proposed methods are blind,

i.e., the original image is not required at the decoder to recover the embedded data.

Using these techniques, several hundred information bits can be embedded into

images with perfect recovery after the print-scan operation, which is a significant

improvement over the state of the art. An important contribution of this chapter

is a systematic analytical modeling of the print-scan process by breaking it down

into simpler sub-processes, which is appropriately complemented by extensive

practical experiments. The analytical and experimental findings form the basis of
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the proposed embedding schemes, in which data is hidden in dynamically chosen

transform coefficients, with synchronization and error correction using powerful

turbo-like channel codes. Also proposed is a novel approach for estimating the

rotation that an image might undergo during the scanning process, by exploiting

knowledge of the digital halftoning scheme employed by the printer.

There has been a growing interest among researchers in the area of print-scan

resilient embedding, but little progress has been made because of the complex na-

ture of the problem. One of the first approaches was by Lin and Chang [61], who

model the print-scan process by considering the pixel value and geometric distor-

tions separately. There are some watermarking methods [93, 105, 10] that were

not specifically designed for the print-scan attack, but they do report robustness

against the print-scan operation under specified experimental setup. Ruanaidh

and Pun [93] propose a watermarking method based on log-polar map of discrete

Fourier transform (DFT) magnitudes (i.e., the Fourier-Mellin or FM transform).

Lin and Chang’s approach [61] also uses the FM transform to hide information.

Technique proposed in [105] involves DFT magnitudes as well, but the watermark

itself is made circularly symmetric so that the log-polar coordinate transformation

is not required. Bas et al [10] use geometrically invariant feature points to embed

the watermark. A few approaches focus on hiding in halftone images [92, 42],

wherein, the halftone cells of the host image are shifted based on the data to be

hidden, and a composite halftone image is given out directly. More recent related

works include Voloshynovskiy et al [125], and Mikkilineni et al [70], who focus

on document security in general rather than specifically considering printing and

scanning of digital images.
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Most of the above methods embed only a single bit (or a few bits) of informa-

tion, as they assume the availability of the watermark sequence at the decoder.

In our recent work on print-scan resilient hiding [110, 111, 106], an improvement

over these methods is achieved in terms of volume of embedding. We are able

to hide several hundred bits into images against the print-scan attack with blind

decoding. We propose a model for the print-scan process which is comprised of

three main components: geometric transformations, non-linear effects, and col-

ored noise. We infer from the model that data must be embedded into high

magnitude coefficients in a band of low frequencies. This is also found to be true

in a series of practical experiments done to understand the effect of the print-scan

process.

Two methods for hiding information resilient to print-scan operation are pro-

posed. The first technique, named selective embedding in low frequencies (SELF),

hides data in the magnitude of dynamically selected low-frequency DFT coeffi-

cients. This is in contrast to previous DFT-magnitude based approaches (e.g.,

[61, 105]), in which a predefined set of mid frequency coefficients are used for em-

bedding. The second method is for hiding data in the phase spectrum of the host

image. In this technique, data is embedded by quantizing the difference in phase

of adjacent frequency locations. The method is accordingly termed differential

quantization index modulation (DQIM), drawing from QIM, now-famous class of

data-hiding methods proposed by Chen and Wornell [19]. Note that, because of

the perceptual constraints, the volume of data hidden using the DQIM embedding

in the phase spectrum is lesser than that using the SELF scheme for magnitudes.

We employ turbo-like error and erasure correcting codes in a novel fashion to
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Figure 5.1: Outline of how various parts of the embedding schemes fit into the
big picture. Below the block, we list the particular section(s) of the chapter
that discusses it. Note, ECC stands for ‘error correcting code’.

counter the synchronization problem caused due to image-adaptive hiding. This

also provides robustness to the hidden data against a variety of other attacks

such as those in Stirmark [85], e.g., heavy JPEG compression, scaling or aspect

ratio change, Gaussian or median filtering, rows and/or columns removal, and to

a lesser extent, random bending.

Prior to decoding, the scanned digital image is preprocessed by an automated

algorithm for estimating and undoing the rotation caused by random placement

of the printed image in the scanner. The method is based on the fact that laser

printers use an ordered digital halftoning algorithm for printing. The employed

derotation method is completely different from the previously used approaches,

in which rotation invariance is typically achieved by using FM transform [93, 61].

The advantage of the proposed technique for print-scan resilient hiding is that

there is no penalty in hiding rate for achieving robustness against rotation.

A big picture with the various components of our embedding techniques is

provided in Figure 5.1. The figure also presents how various sections of the paper
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are interconnected. The paper is organized as follows. We start, in Section 5.3,

with an intuitive and analytical study of the print-scan process. Here, we lay

out the three main components of the print-scan model: cropping, non-linear

effects, and colored noise. We then move on to practical experiments, and list

the observations made in Section 5.4. Based on the analytical and experimental

findings, in Section 5.5, we propose practical methods to hide data resilient to the

print-scan operation. The recovery of the embedded data is discussed in Section

5.6, where we describe a method to estimate and undo rotation undergone by

the image during scanning. Numerical results are presented next (Section 5.7),

followed by the concluding remarks in Section 5.8.

5.2 The Print-Scan Channel

In this section, we present a brief background of the printing and scanning

process. Let us start by noting that we are dealing with two representations

of an image: the digital form stored in a computer which is to be displayed on

a monitor, and the analog (printed) form on a paper. Eyes are the ultimate

consumers of pictures, and hence, directly or indirectly, the human visual system

acts as a calibration for devices such as printers, scanners, monitors, and cameras.

Obviously, if perfect printers and scanners existed, the printed picture would be

exactly same as the one displayed on the monitor, and the problem of print-

scan resilient data hiding would be very simple. In reality, however, the devices

alter the image in a highly nonlinear fashion, making it extremely difficult to

hide information resilient to the print-scan operation. Even then, the hope for
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the data hider is that, because printers and scanners try to reproduce the image

details perceptually, some image features would be preserved during the print-

scan operation, where data can be embedded. In the following, we study the

printing and scanning processes individually.

5.2.1 The Printing Process

When an image is printed, it undergoes a continuous-tone to bilevel conversion,

known as digital halftoning. Digital halftoning is required because almost all

printers are bilevel devices. It banks on the fact that human visual system can

be coarsely approximated as a low-pass filter. Thus, the printed halftone image,

which is only in black and white, would be perceived as a grayscale image when

viewed from a distance. Several algorithms have evolved for digital halftoning

over last decades, which can be classified into three main types: point algorithms

(screening or ordered dithering, [121]), neighborhood algorithms (error diffusion,

[60]), and iterative algorithms (such as direct binary search or DBS, [54]). Readers

are referred to [121, 60] for an extensive discussion of various digital halftoning

approaches.

5.2.2 The Scanning Process

In a scanner, the picture to be scanned is illuminated and the reflected inten-

sity is then converted into electrical signal by a sensor, which is then digitized.

Images are scanned into a computer for display on a monitor and for storage

in digital media. A significant process that happens at the time of scanning is
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gamma correction. Every computer monitor has an intensity to voltage response

curve which is a power function with parameter γ. This means that if we send a

computer monitor a message that a certain pixel should have intensity equal to

x ∈ (0, 1), it will actually display a pixel which has intensity equal to xγ.

In order that the scanned image is correctly displayed on a monitor, the image

data generated at the scanner is ‘gamma corrected’ (ie raised to a power 1/γ).

The correction applied at the scanner depends on the gamma of the monitor or

the screen on which the image is to be displayed. The display driver in Macintosh

systems apply partial monitor correction at 1/1.45. Cathode ray tube (CRT)

monitors natively have gamma 2.50, and hence, the gamma of an uncalibrated

Macintosh is accurately 2.5/1.45=1.72. Windows systems do not adjust the dis-

play path so the gamma-space of uncalibrated PC system is 2.50. The default

compensation is placed at 2.2, a value between to two, as defined in the sRGB

standard for the Internet images. Note that the scanner software usually allows

users to set the gamma correction that is to be applied for an image.

5.3 Modeling the Print-Scan Process

We now present a model for the print-scan operation by breaking it down into

simpler sub-processes and study how they distort the image when it is printed and

scanned. We know from the watermarking literature that, for robust embedding,

data must be hidden in the transform domain. Therefore, in our model, we

specifically analyze the effect of the print-scan process on the DFT coefficients.

Before proceeding with a detailed study, let us briefly list the most interesting
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findings of this section.

1. Frequency bands: Most components of our print-scan model tend to affect

high frequency coefficients more than the low and mid frequency ones.

2. Effect on DFT magnitude spectrum: High magnitude DFT coefficients are

preserved better than the low magnitude ones.

3. Effect on DFT phase spectrum: The difference in phase of adjacent fre-

quency locations is preserved during the print-scan operation (for the high

magnitude coefficients).

Printing followed by scanning involves conversion of from digital to analog,

and back to digital form. This is inherently a very complex process. The problem

is compounded by the fact that a variety of printing and scanning devices are

available in the market, which work on one of many different existing technolo-

gies. Obviously, constructing a unified model will be extremely difficult, if not

impossible. Hence, we limit ourselves to laser printers and flatbed scanners.

However, even when only laser printers and flatbed scanners are considered,

constructing a complete or near complete model would require so many parame-

ters that the resulting model will no longer remain very useful practically. Instead,

we just aim to dissect the print-scan process into simper sub-processes. We hope

that analyzing these sub-processes would then inspire the construction of embed-

ding schemes that survive the print-scan process.

There have been a few approaches that discuss individual models for printers

and scanners. Several models for laser printers that aid the design of digital
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halftoning methods have been proposed (for example, [54], and [126]). In [54], a

model for the electrophotographic (EP) process (the technology employed by laser

printers) has been proposed, in which various steps involved in the EP process

are analyzed mathematically. This model is then used to design an iterative

halftoning method, called direct binary search (DBS). In [126], a physical model

is used to train a signal processing model for the printer, which can then be used

for halftoning techniques. There have been a few efforts in modeling the scanner

as well (e.g., [101, 104]). In [101], the goal is to calibrate the scanner without using

calibration targets. Scanner modeling using specifically designed test targets was

done in [104]. In this study, the aim was to perform efficient optical character

recognition (OCR).

The only prior work, that we know of, in modeling the print-scan process

as a whole is by Lin and Chang [61]. In this work, the authors separate the

print-scan distortions into two categories: pixel value and geometric. The model

proposed for the pixel value distortion involves a number of parameters, which

must be determined experimentally. Due to this reason, it may be difficult to

deploy this model practically. In our approach, instead of detailed modeling of

the print-scan operation as a whole, we divide it into simpler sub-processes, and

specifically study the bottlenecks components in detail, the ones that induce the

greatest distortion.

Let us now walk through the kinds of distortions an image undergoes when

it is printed and scanned, as outlined in Figure 5.2. At the beginning, we have a

digital image stored on the computer in which data is to be hidden. The image,

which may come from one of many possible capturing devices (such as a scanner,
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Figure 5.2: Various processes that distort the image when it undergoes printing
followed by scanning.

a digital camera, or a video camera), should have been gamma adjusted when (or

after) it was generated to make sure it looks fine when viewed on a monitor. In

the following, we briefly describe how the various blocks of Figure 5.2 distort this

image.

• Gamma tweaking: In order to make sure the printed images appear the

same as on a monitor, many printer vendors change the transfer charac-

teristics of the printer to resemble that of an uncalibrated monitor. This

adjustment, called gamma tweaking, is the first non-linear transformation

that an image undergoes during the print-scan process.

• Digital halftoning: The image is converted to a digital halftone before it is

printed. Halftoning algorithms essentially quantize the image into a binary

one. The halftoning methods tend to put the quantization noise into high
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frequency spectrum of the image, which is a source of colored high-frequency

noise that gets added to the image.

• Dot gain: The digital halftone of the image is then printed dot-by-dot on

a paper. When it is printed, the image suffers from a phenomenon called

dot gain: the images tend to appear darker than expected due to several

reasons (such as spreading of the colorant on the medium, and also optical or

electrostatic causes). Dot gain is a non-linear transformation, but it can be

roughly approximated by a piecewise-linear curve. Many digital halftoning

algorithms incorporate a model for the printer dot gain in their design.

• Print-to-print instability: Uncertainties during the printing process can

lead to correlated noise. An example of print-to-print instability is banding,

which stands for horizontal imperfections appearing in the printouts.

• Scanner gamma compensation: When the image is scanned, it must be

compensated to make sure it looks fine to us when viewed on a monitor.

The scanned image pixel values are raised to a power of 1/γ, where γ is the

assumed system gamma of the monitor on which the image is to be viewed.

• Digitization: The scanned image must be digitized before storing, which

invariably leads to quantization errors. Since it follows non-linear adjust-

ment of the previous step, the effect of quantization noise may get amplified.

• Geometric Transformations: At the time of scanning, the image can

be subjected to a number of geometric transformations, such as cropping,

rotation, and scaling. These effects must be explicitly taken into account
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because, even with most careful scanning procedure, one cannot completely

avoid such geometric transformations.

In the above discussion, we have identified, roughly, various processes that

distort the image when it is printed and scanned. The extent to which each of

these processes affect the image would depend on the particular devices and the

settings used while printing and scanning. Thus, we can now model the print-scan

processes by analyzing these individual sub-processes for some specific printers

and scanners. However, in addition to the complexity issues, a detailed model just

for some particular devices would not be very useful. What we would like to do

instead is to understand the bottleneck processes in detail and apply the findings

to build resilient embedding schemes. Hence, we simplify our study by grouping

similar processes together, and divide the distortions into three broad categories:

geometric transformations, non-linear affects, and colored noise. Cropping (in

combination with scaling) and rotation are the major geometric distortions that an

image undergoes during print-scan process. There are several sources of non-linear

effects, such as gamma tweaking, dot gain, and scanner gamma compensation.

Colored noise gets added to the image as a result of digital halftoning and print-

to-print instability.

We now describe the individual components of our model in more detail (Sec-

tions 5.3.1 - 5.3.3). As stated before, rotation and cropping are the main geometric

distortions that an image undergoes during scanning. Since we have a method to

estimate and undo rotation (to be discussed in Section 5.6), we do not consider

rotation for a detailed study here. In the following, we study the effects of image

cropping.
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5.3.1 Cropping

Some mild cropping is inevitable during the scanning process, when the image

is cropped from the background either manually or automatically. As a result,

the effects due to cropping cannot be ignored in the design of a print-scan resilient

hiding method. One more point to note is that, in general, it is very difficult to

achieve perfect registration between the original and the attacked image due to

presence of cropping, however mild. When the images are analyzed, this imperfect

registration might be the reason for the observation of higher noise near the edges

within the image (as in [61]). Instead of specifically modeling this noise, we find

it more appropriate to consider cropping separately, and not worry about the

registration issue.

Cropping can be thought of as a multiplication of a masking rectangle with

the image. In the frequency domain, this is equivalent to convolution of a two di-

mensional sinc-like function with the spectrum of the image. This causes blurring

of the image spectrum. The blurring would significantly affect low-magnitude

coefficients whose neighboring coefficients are of a higher magnitude.

Consider an image f(n1, n2) with N1 rows and N2 columns, so that it is defined

over the domain Ω = {0, 1, ..., N1− 1}× {0, 1, ..., N2− 1}. Cropping of the image

can be thought of as a multiplication with a masking window. Assuming that the

image is cropped to new dimensions of M1 ×M2 (with M1 ≤ N1, and M2 ≤ N2),

the masking window r(n1, n2), also defined over Ω, can be written as,

r(n1, n2) =





1 if M1a ≤ n1 < M1b, and M2a ≤ n2 < M2b,

0 otherwise.

Here M1a and M1b define the top and bottom cropping locations respectively, so
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Figure 5.3: Mild Cropping: Natural logarithm of the magnitude spectrum of
the mask, r(n1, n2). The size of image is N1 = N2 = 256, and the cropping
window size is M1 = 248, and M2 = 250. Notice that most of the energy is
concentrated on the (0, 0) or the DC coefficient. Note that the numbers shown
here do not include the 1/N1N2 scaling in computing the DFT.

that M1 = M1b−M1a. Likewise, M2 = M2b−M2a. We can now define the cropped

image c(n1, n2) as,

c(n1, n2) = f(n1, n2)× r(n1, n2) ∀{n1, n2} ∈ Ω

This product is equivalent to circular convolution in the DFT domain. Defining

F (k1, k2), R(k1, k2), and C(k1, k2) as the 2D DFT of f(n1, n2), r(n1, n2), and

c(n1, n2) respectively, the circular convolution can be written as,

C(k1, k2) =

N1−1∑

l1=0

N2−1∑

l2=0

F (l1, l2) ·R(〈k1 − l1〉N1 , 〈k2 − l2〉N2) (5.1)

Here, 〈·〉N denotes the modulo N operator. The DFT of the masking window

r(n1, n2) would be a sinc-like function1, with its shape being a function of M1

1Note that R(k1, k2) is a discrete function, which does not strictly follow the sinc definition.
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and M2, and a phase shift that depends on the location of the masking window,

i.e., M1a and M2a. When the cropping is mild, N1 −M1 and N2 −M2 are small,

and the sinc-like function would be quite narrow. Figure 5.3 shows the ‘fftshifted’

magnitude spectrum of an example masking window. For mild cropping, most of

the energy of R(k1, k2) is concentrated on the {0, 0} coefficient, along with low

frequency part of the first row and first column. Thus, the blurring of the original

image spectrum will be mild for those DFT coefficients whose magnitude is high

or of the same order as its neighbors. However, for coefficients whose magnitude

is significantly lower than its neighbors, the blurring will cause its magnitude to

increase. This will affect low magnitude coefficients in all the frequency bands

- high, mid, or low. This is the first significant inference regarding the effect of

print-scan process on the DFT coefficients: the high-magnitude coefficients are

better suited for embedding information as compared to the low-magnitude ones.

Let us continue focusing on mild cropping, and investigate its effect on the

magnitude and phase of the DFT coefficients. It should be noted that the cropping

window, r(n1, n2), is not known to the decoder, and hence, we cannot simply

use deconvolution to estimate the original DFT coefficients. However, under

the assumption of mild cropping, and considering only those coefficients that do

not have significantly lower magnitude than their neighbors, we can write the

convolution expression (5.1) with only two dominant terms.

C(l1, l2) = R(0, 0) · F (l1, l2) + R(l1, l2) · F (0, 0) + other terms (5.2)

Once the size of the masking window is fixed (i.e., M1, M2 fixed), the magni-

tude of R(k1, k2) does not change with the actual location of the masking window

It still has a shape similar to the sinc function (Figure 5.3), and hence we call it sinc-like.
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(determined by M1a, M2a, M1b and M2b). Furthermore, the blurring caused by

mild cropping is not significant for high magnitude coefficients. In summary, for

the magnitude spectrum, the contribution from all terms in (5.2) other than the

first one would be small and also, the variation in exact location of the mask-

ing window would not make significant difference to high magnitude coefficients.

This leads to the second important inference: embedding data directly into the

magnitudes would work.

The phase of R(k1, k2) would vary as the location of the masking window

(i.e., M1a, M2a) changes. Looking at the phase shift between the original image

spectrum, F (k1, k2), and the scanned image spectrum, C(k1, k2), from (5.2), we

see that the first term does not cause a phase shift, but the second term does. The

amount of shift depends on the phase of R(l1, l2), which, as discussed above, varies

with the location of the masking window, but is fixed for a particular instance

of the cropped image. Also, since the phase of R varies slowly, the shift seen

by nearby frequency locations is approximately the same. Thus, for the phase

spectrum, there is an unknown phase shift between corresponding original and

cropped image DFT coefficients, which varies slowly across the spectrum for mild

cropping. This unknown shift can be canceled by taking difference in phase of

adjacent frequency locations. This leads to another inference: data embedding in

the phase difference of adjacent DFT coefficients might work.

5.3.2 Non-linear Effects

The main sources of non-linear effects during the print-scan process are gamma

tweaking, dot gain, and gamma compensation. While gamma tweaking and dot
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gain occur at the printer, gamma compensation occurs at the scanner. The final

effect we see between the original and the scanned image is actually a combination

of these three non-linear transformations happening at different stages. Things

are worsened by the fact that these non-linear transformations are followed by

quantization of some sort, which amplifies the affect of quantization noise. As

seen before, while gamma tweaking is followed by quantization due to digital

halftoning, dot gain and scanner gamma compensation are followed by digitization

at that scanner.

We conducted experiments to understand the effect of non-linear transforma-

tions on the DFT coefficients. It was observed that these non-linear transforma-

tions affect the mid and high-frequency coefficients more than the low frequency

ones. Further, we see that the in the low frequency band, only the coefficients with

low magnitude were affected. This leads to another inference regarding the print-

scan process, that, low frequency coefficients are more suited for data embedding

than the high frequency ones.

If the devices are under control of the data hider, using profiles to calibrate

the devices would reduce the distortion due to non-linear transformations. Under

controlled conditions, the non-linear effects can be modeled more precisely, and

an embedding scheme can be designed that can survive these transformations. In

this chapter, however, we do not attempt to do this. Constructing an embedding

method with a higher capacity and resilience to print-and-scan operation for some

specific class of devices (having known characteristics) would be an interesting

avenue of future work. We believe that many security related applications would

fit this scenario.
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In applications such as copyright protection and e-commerce of digital images,

we must assume that the devices are not under our control. In such cases, one must

deal with non-linear affects that are varied, and the design must be conservative

so as to survive heavy non-linear transformations. Sometimes the devices are only

partially under designer’s control. This would be the case when one must work

with commercially available devices. The hardware vendors usually give only a

partial control on the devices to the users. For example, most printer driver

software do not provide any way to get around gamma tweaking.

Dealing with non-linearity would require us to calibrate the devices, and/or

learn the transfer characteristics experimentally. We do not take this up in the

current work mainly because the non-linear effects are not a significant impair-

ments for low-frequency coefficients. We do, however, present a practical way

to get around incorrect gamma compensation happening at the scanner. The

technique, described in Section 5.6.2, can be employed to correct any discrepancy

in scanner gamma compensation which may happen when the devices are not

calibrated.

5.3.3 Colored Noise

Before an image is printed, it is converted into a digital halftone. Digital

halftoning algorithms tend to put the quantization noise in high frequencies [121]

since the human visual system is not very sensitive to high-frequency noise. This

introduces high-frequency noise into the image. Another source of colored noise is

the printing process itself. Uncertainties during the printing operation, or print-

to-print instability, adds correlated noise which varies every time a printout is
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taken.

Addition of the colored noise due to halftoning heavily affects the high fre-

quency DFT coefficients, so that these coefficients cannot be used for data em-

bedding. The effect of this component of our model, however, is mostly limited

to high and mid frequency coefficients. Since this component of our model does

not significantly affect low frequency bands, we do not analyze this component in

more detail here.

Inverse halftoning (see, for example, [67],[138]), to some extent, can allow us

to reduce the affect of colored noise coming from the halftoning process. This

may cause slight blurring of the image. Thus, using inverse halftoning, we may

be able to embed in a larger frequency band and possibly improve the volume of

embedding. Leveraging the inverse halftoning literature to mitigate the effect of

colored noise, and hence embed at a higher capacity, is an interesting avenue of

future work. This, however, is out of scope of the this chapter.

5.3.4 Discussion on Modeling Issues

Of all the three components of our print-scan model, only cropping contributes

to distortion in all the frequency bands equally. The other two components tend

to affect mid and high frequency coefficients more than the low frequency ones.

This makes low frequency coefficients more suitable for data embedding. In their

model, Lin and Chang [61] also consider cropping to be an important factor. They

view it as an additional source of noise. Moulin and Briassouli [75] consider crop-

ping as well, although not in the context of print-scan. Similar to our observation,

they view cropping as causing blurring in the frequency domain.
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In the print-scan model proposed by Lin and Chang [61], low-pass filtering (or

blurring) of the image has been considered via a couple of point spread functions.

Voloshynovskiy et al [125] also view the printing process as causing blurring of

the image. Here, authors specifically consider error diffusion halftoning method,

which has been modeled as combination of two filters [57]. It should be noted

that in [61] too, authors use inkjet printers in their experiments, which typically

employ error diffusion halftoning. Since our focus in this work is on laser printers

rather than inkjet printers, we do not consider image blurring in our current

proposal of the print-scan model. Also, in the printing scenario we consider, the

images are printed at high resolutions. For example, a 512×512 image is printed

at 600 dpi printer resolution on an letter paper with 72 pixels per inch (ppi), so

that the size of the image on the paper is 7.11"×7.11". In this case, it turns out

that on an average, a block equivalent to 8.33×8.33 printer dots is used for every

pixel of the image. At this resolution, the image does not get significantly blurred

during the printing process.

Having studied the print-scan operation from an analytical perspective, we

now move on to practical experiments in the following section.

5.4 Experiments

We conducted a series of experiments involving printing and scanning of a

number of images in order to practically understand the effect of print-scan process

on the transform coefficients, and to determine invariants, in which data could be

embedded.
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The devices involved in this scenario, the printer, the scanner, and the mon-

itor, must be calibrated before use to provide the best results because without

calibration, we cannot trust the color or intensity produced by these devices.

There is huge body of literature available on the world wide web and elsewhere

on how to calibrate these devices (e.g., the International Color Consortium or

ICC profiles). However, we note that most of the devices used by common users

are uncalibrated. Hence, to mimic a real world scenario, we do not explicitly

calibrate the devices we use in our experiments. Also note that, for simplicity, we

limit ourselves to grayscale images. Below we describe our experimental setting

followed by the observations that were made.

Several images were printed and scanned using commercially available laser

printers and flatbed scanners2. The images were printed at resolutions varying

from 300 to 1200 dpi. In the typical printing scenario, 512×512 images were

printed with 72 pixels per inch (ppi) setting on letter papers, so that the size of

the image on the paper is 7.11"×7.11". Widely used Xerox recycled papers (for

copiers and laser/inkjet printers) were used for printing. At the time of scanning,

the images were cropped and resized using bicubic interpolation to their original

size. The resolutions typically used for scanning were 300 to 1200 spi.

Various parameters (such as printer and scanner resolutions, scanner gamma

correction, and print image size) were varied and its effect on several image fea-

tures were studied in order to find features that are invariant to the print-scan

operation. No effort was made to explicitly register the scanned and original

image or their features in the experiments because our goal is to build a blind

2Laser printers used in our experiments: Lexmark Optra S 1620, Sharp, HP, and HP .
Scanner used: CanoScan N670U flatbed scanner.
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system where the original image would not be available at the decoder. The DFT

coefficients were identified for a more detailed study.

5.4.1 Effect on DFT Magnitudes

Below are the experimental observations for the effect of printing followed by

scanning on the DFT coefficient magnitudes. Note that, unless otherwise stated,

we refer to natural logarithm of the DFT coefficient magnitudes in the following.

1. The low and mid frequency coefficients are preserved much better than the

high frequency ones. In general, the lower the frequency, the better its

chances of surviving the print-scan process.

2. In the low and mid frequency bands, the coefficients with low magnitudes get

washed out, while those with high magnitudes are preserved much better.

It can be seen from Figure 5.4 that the coefficients with low magnitudes are

hit more severely than their neighbors with higher magnitudes. This is a

significant characteristic of the channel and has been observed consistently

for different images and various printer or scanner resolutions.

3. Coefficients with higher magnitudes (which do not get severely corrupted)

see a gain of roughly unity (with the default gamma correction). Roughly

speaking, if the print-scan operation is approximated as a linear filter (for

large enough coefficients and low enough frequencies), then the magnitude

gain is unity after application of gamma correction. One possible explana-

tion is that the printing operation in itself does not cause blurring, since

several printer dots are dedicated to each pixel of a printed image.
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(c) Original image spectrum in log

domain

Difference of log mag of fft coefficients of scanned and original image
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(d) Another instance of scanned im-

age: diff. in log DFT magnitudes

Figure 5.4: Print-scan channel: Almost all dark blue coefficients in the original
image magnitude spectrum of (a) and (c) correspond to dark red points in the
log transfer function of (b) and (d), e.g., (24,1),(25,7),(30,11), and so on. It
indicates that the error is high for all coefficients that have low magnitudes.
Note that the image in (d) has been printed and scanned with higher resolutions
than the one in (b).
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4. Slight modifications to the selected high magnitude low frequency coeffi-

cients does not cause significant perceptual distortion to the image.

5.4.2 Effect on Phase Spectrum

Our analysis of the model for the print-scan process (in Section 5.3.1) sug-

gest that the difference in phase of adjacent frequency locations would be pre-

served during the print-scan process. Here we practically investigate the effect

on phase difference of neighboring frequency locations. Following are the obser-

vations made.

1. The phase difference for the high frequency locations see a very high noise.

2. For the low frequency coefficients, the phase difference of adjacent locations

is preserved for coefficients whose magnitude is high. Figure 5.5 shows the

difference in the phase difference for original and scanned images for two

different instances of printed-and-scanned image. It is observed that phase

difference for coefficients with lower magnitude are severely corrupted. Note

that since we are taking difference of two frequency coefficients, as seen in

the figure, a high error in one gets carried to the next location as well.

5.4.3 Experimental Observations and the Print-Scan Model

We conclude this section by noting that the experimental observations of this

section are quite consistent with the analytical inferences made from the model.

Our investigation of colored noise and non-linear effects suggests that high fre-

quency coefficients are not good for embedding data, which indeed turns out
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(b) Difference in the difference of

phase of adjacent frequency loca-

tions for scanned and original im-

age.
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(c) Original image spectrum in log

domain

Difference of angle of fft coefficients of scanned and original image
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(d) Another instance of scanned im-

age: Difference in the difference of

phase of adjacent frequency loca-

tions.

Figure 5.5: Effect on phase spectrum during print-scan: The phase difference
of adjacent frequency locations is preserved except for those coefficients whose
magnitude is lower than their neighbors, e.g., (14,7), (22,7), (23,10), and so
on. The exact effect also varies for different instances of scanned images.
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to be the case practically. In the experiments, we observe that low magnitude

coefficients are affected much more than their high magnitude neighbors, a phe-

nomenon that was also predicted by our analysis of the effect of cropping. For the

phase spectrum, the analysis suggested that difference of adjacent frequencies is

likely to be preserved, which, again, is observed practically as well. Based on all

these findings, we now propose practical print-scan resilient embedding methods

in the following section.

5.5 Print-Scan Resilient Embedding

Before discussing the embedding schemes in detail, let us first re-visit the big

picture provided in Figure 5.1. We now redraw the block diagram with more

specific details of the employed embedding mechanism in Figure 5.6. The system

is divided into three main layers: auto-calibration at the receiver, data hiding

layer, and the coding framework. We study these layers as we proceed in the

paper. In the rest of this section, we discuss the hiding methods and the coding

framework.

Two practical embedding schemes are proposed. The first is the selective

embedding in low frequencies (SELF) scheme that embeds data into the magni-

tude spectrum of the host image, and the second is differential quantization index

modulation (DQIM) method for hiding in the phase spectrum. We now describe

these methods in detail next, followed by a coding framework employed to counter

synchronization problem caused due to image-adaptive hiding.
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Figure 5.6: An overview of how various parts of the embedding schemes fit into
the overall system.

5.5.1 SELF:Selective Embedding in Low Frequencies

Based on the experimental and analytical modeling of the print-scan process

described in the previous sections, we propose an image-adaptive hiding method

that achieves robustness against the print-scan operation. The model as well as

the empirical observations suggest two ideas: embed in low frequency coefficients,

and avoid hiding in low magnitude coefficients. With this in mind, we propose

a hiding method, in which information is hidden into dynamically selected high-

magnitude low-frequency coefficients. Hence the name: selective embedding in

low frequencies (SELF).

Figure 5.7 shows a block diagram of the SELF embedding methodology. Con-

sider an N×N host image in which data is to be hidden. Let us denote the natural

logarithm of the magnitudes of 2D DFT of the whole image by cij, 0 ≤ i, j ≤ N−1.

We embed in a given coefficient cij only if it lies in a predetermined frequency

band and also exceeds a threshold tij. Let us define the band as an indicator
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Figure 5.7: Hiding methodology for the SELF scheme.

function bij, such that if bij = 1, the coefficient cij lies in the band. Note that

bij, tij and the quantization interval ∆ are design parameters that are shared

between the encoder and the decoder. Embedding is done using choice of scalar

quantizers. We send either Q1(cij) or Q0(cij) depending on the bit to be hidden.

Thus, the modified coefficient, dij can be given as

dij =





Qbl
(cij) if bij = 1, and cij > tij,

cij otherwise.
(5.3)

Also note that symmetry of the DFT coefficients is maintained during the hiding

process by modifying two symmetric coefficients in the same manner so that the

inverse DFT gives real values. Finally, taking exponential, adding phase, and

taking inverse Fourier transform gives the hidden image intensity values.

The choice of the candidate embedding band, the threshold(s), and ∆ is done
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empirically through experimentation with several images. The goal is to hide as

much information as possible without causing perceptual distortion to the image

while maintaining a low error rate. The value for ∆ we use in our experiments

is 0.4 to 0.5. Using a higher value for ∆ causes perceptual distortion to the

image, while using a lower value increases the error rate significantly. Perceptual

considerations influence the our choice of the candidate embedding band bij as

well. Choosing a smaller band reduces the hiding rate but gives a good quality

composite image, while using a larger band may cause greater distortion to the

image. Using a larger candidate embedding band may also increase the error rate

since the noise level increases as we go on to the higher frequencies.

The threshold varies with respect to the frequency band, which follows the

same trend as the image spectrum itself. It is known that images have signifi-

cant low frequency component, and in general, the magnitude of the coefficients

decrease as we move to the higher frequencies. The coefficient threshold tij is

chosen such that it also reduces with the band. A typical (example) band along

with the threshold values is shown in Figure 5.8. Since we dynamically chose the

embedding locations, we must deal with the synchronization problem inherent to

image-adaptive hiding schemes, which we discuss later in the Section 5.5.3. Let

us now move on to DQIM hiding scheme for phase spectrum.

5.5.2 Differential Quantization Index Modulation

Quantization index modulation (QIM), proposed by Chen and Wornell [19],

are a class of information hiding methods, in which data is embedded into the

host sample by the choice of quantizer. Here, we propose a new quantization-
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Figure 5.8: Typically used candidate embedding band and threshold values:
Only one quadrant is shown here with the black part indicating that the coeffi-
cients are not in the band. Threshold values are shown for the coefficients that
are inside the band. Notice how the threshold value decreases as we go towards
higher frequencies. Note that the numbers shown here are for a 512×512 image
and do not include the 1/N2 scaling in computing the DFT.

based method for data hiding with the goal of surviving mild cropping and the

print-scan process. Instead of just quantizing the host signal, we embed data

by quantizing the difference of two adjacent host samples. The idea of hiding

in difference of adjacent locations is analogous to ‘differential phase shift keying’

(DPSK), used to combat the effect of unknown channel phase shifts in wireless

communication. We employ similar nomenclature, and term the proposed method

differential quantization index modulation (DQIM).

We use DQIM to embed information in the phase spectrum of the images

to counter unknown phase shift induced due to mild cropping. As discussed in

Section 5.3.1, cropping is equivalent to circular convolution of the image spectrum

with a sinc-like function. This leads to a phase shift between original and scanned
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image, which varies slowly across the spectrum of the image. This unknown

shift can be canceled by embedding data in the difference of adjacent frequency

locations. This inference has also been observed in our practical experiments

(Section 5.4.2). Below we describe how embedding in the phase differences is

practically implemented.

We first scan the image phase spectrum row-wise. Note that only those co-

efficients that lie in a predefined band are used for embedding information. Let

us denote the row-wise scanned original image phase values by φn, where n is

the index (n ∈ {0, 1, 2, ..., Nmax}), and the quantized values by θn. Then, the

embedding function is,

θn = 〈Qb(φn − θn−1)〉2π∀n ∈ {1, 2, ..., Nmax}

Note that since we are dealing with phase, we must output the modulo-2π values

after the quantization Qb(·) of the difference is done. Also note that we use the

quantized values θn to compute the phase difference for the next coefficient. This

is done to maintain consistency for the decoder, which just finds these differences,

and determines which of the two quantizers was used.

As discussed before (Section 5.3.1), the assumption of slowly varying phase

shift is not valid for those coefficients whose magnitude is significantly lower than

it neighbors. Hence, we avoid hiding in these locations, and use turbolike repeat-

accumulate (RA) codes to counter the synchronization problem caused due to

adaptive hiding, as discussed below.
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5.5.3 Coding Framework for Synchronization

An erasure and error correction coding framework is used to counter the desyn-

chronization problem caused due to the fact that the proposed methods dynami-

cally choose the embedding locations. Readers are referred to our previous work

[109], [51] for a detailed account of the coding framework, in which a local adap-

tive criteria was used to preserve the perceptual quality of the hidden image. Here

we briefly discuss the main ingredients of the framework, and describe how it is

adapted for the proposed methods.

Both the methods, the SELF hiding scheme for embedding in magnitudes,

and the DQIM method for embedding in phase are image-adaptive methods, in

which, the encoder selects DFT coefficients to embed based on a threshold criteria.

The decoder does not have explicit knowledge of the locations where data is

hidden, but employs the same criteria as the encoder to guess these locations. The

distortion due to attacks may now lead to insertion errors (the decoder guessing

that a coefficient has embedded data, when it actually does not) and deletion

errors (the decoder guessing that a coefficient does not have embedded data,

when it actually does). In principle, this can lead to desynchronization of the

encoder and decoder.

An elegant solution based on erasures and errors correcting codes is provided

to deal with the synchronization problem caused by the use of local adaptive

criteria. The bit stream to be hidden is coded, using a low rate code, assuming

that all host coefficients that lie in the candidate embedding band will actually be

employed for hiding. A code symbol is erased at the encoder if the local adaptive

criterion (i.e., the threshold criterion) for the coefficient is not met. Specifically,
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we use repeat-accumulate (RA) codes [31] in our experiments because of their

simplicity and near-capacity performance for erasure channels. A rate 1/q RA

encoder involves q-fold repetition, pseudorandom interleaving, and accumulation

of the resultant bit-stream. Decoding is performed iteratively using the sum-

product algorithm [58].

Let us consider an example wherein we want to hide in a 512×512 image.

The candidate embedding band is a design parameter known to both encoder

and decoder. Let us assume that the band spans 1000 coefficients. Suppose we

want to hide 200 bits into the image. We would use a 1/5 RA code (i.e., q = 5),

which gives a codeword length of 1000. This codeword is now hidden using the

adaptive criteria such that if a coefficient does not pass the threshold test, the

corresponding code symbol is erased (i.e. not hidden). Note that the RA code

rate and the number of bits hidden are predetermined at the design state, and

are chosen in such a way that the codeword length is equal to, or slightly greater

than the number of candidate embedding coefficients. When the codeword length

is greater than the size of the band, the excess code symbols are erased at the

encoder.

5.6 Recovery of Embedded Data

We now discuss how the embedded data is recovered and decoded. Before

decoding, the scanned digital image is pre-processed by an automated algorithm to

estimate and undo rotation. In the following, we describe this approach. Next, we

present a method to deal with incorrect gamma compensation that might happen
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at the time of scanning. After that we briefly discuss the decoding strategy.

5.6.1 Estimating and Undoing Rotation

A novel method to estimate the rotation that an image might undergo during

the scanning process is proposed in this section. The method is based on the

fact that laser printers use an ordered digital halftoning algorithm for printing.

An advantage of the proposed technique for print-scan resilient hiding is that

there is no penalty for estimating and undoing rotation, which is unlike previous

approaches [93, 61] that typically use FM transform to achieve rotation invariance.

It should be noted that the proposed derotation technique cannot be applied to

a general rotation attack (e.g., if the image is rotated digitally) since it uses the

printer halftone screen to estimate the rotation angle.

As stated before, laser printers employ an ordered halftoning algorithm to

generate the binary image. In most laser printers, the cells lie in a deterministic

periodic array oriented at an angle of 45 degrees for grayscale images. This is

because there is a sharp minimum in perceptual sensitivity for spatial frequencies

oriented at 45 degrees from horizontal. Note that some modern printers use

different orientation angle (33 degree) when printing at certain specific settings.

In order to illustrate our ideas, we restrict ourselves to a printer that uses a 45

degree halftone screen for grayscale images. It should, however, be noted that the

algorithm and the results presented here would remain perfectly valid when an

angle other than 45 degrees (such as 33 degree) is used. The idea is to capture

the halftone pattern by high resolution scanning, which is then used to estimate

the rotation angle as described in the following section.
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The angle by which an image gets rotated during the scanning process can be

estimated using the fact that the halftone cells in the printout (of the image) are

oriented at a 45 degree angle with the horizontal. Figure 5.9 (a) and (c) show

magnified portions of a printed and scanned image without rotation and with

rotation during scanning. Figure 5.9 (b) and (d) show the magnitude spectrum

of the images in Figure 5.9 (a) and (c) respectively. Due to the orientation of

the halftone cells, a peak can be seen at an angle of 45 degrees for the image

without rotation. When the image gets rotated during the scanning process, the

peaks also get rotated as in 5.9 (d). Note that a number of secondary peaks are

observed, but only a part with the primary peaks is displayed here. The angle

of the peak can be used to estimate the rotation and the image can be derotated

before the hidden data is decoded.

It should be noted that the Fourier transform is symmetric such that out of

the four quadrants, the values are same for a pair of quadrants (for the displayed

fft-shifted spectrum, quadrants I and III have same values and so do quadrants

II and IV). The rotation angle can be estimated by measuring the angle of the

peak in any of the four quadrants in the magnitude spectrum.

It is observed that the size of image on the printout is not exactly same as

that in the digital form. For example, when a 512×512 image is printed with 72

pixels per inch, the height measured on the printout turns out to be about 0.05

inches longer than its width. Due to this discrepancy, the angle measured for a

peak in the first quadrant of the Fourier magnitude spectrum is slightly different

from that in the second quadrant. In practice, we use average of the two angles

as an estimate of the rotation angle.
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Figure 5.9: Zoomed printed-and-scanned images and their Fourier spectra.
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In the following we describe the algorithm used in estimating and derotating

an image after scanning (at 600 dpi resolution).

1. Crop a block of 2048×2048 pixels from the center of the scanned image and

take its DFT.

2. Find peaks (location of the maximum values) in the magnitude spectrum

for the first and second quadrants. Let these angles (in degrees) be denoted

by θ1 and θ2.

3. Compute the estimate of the rotation angle as θr = (θ1 + θ2)/2−45 and use

bicubic interpolation to rotate the image by θr.

4. The image is then cropped from the background by finding the edges with

largest magnitudes of transition (first order difference) in intensity values.

Using the above algorithm, we can estimate the angle by which the scanned

image has been rotated. The image is then derotated and cropped automatically.

As it can be seen in Section 5.7, automatic derotation outperforms the best manual

placing of the printout on scanner flatbed.

5.6.2 Dealing with Incorrect Gamma Compensation

When the printout of an image is scanned, it undergoes gamma-correction, as

discussed before. Different computer systems may have different system gamma

(e.g., Macintosh computers use a gamma of 1.72, while the gamma for PCs is

2.5) and it is important to apply the right gamma correction at the receiver.

We experimented with various gamma correction values at the scanner in order
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(b) Image scanned with a gamma

correction of 5.0 (overcorrection).
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(c) The coefficients of the overcor-

rected scanned image of (b) are

scaled by 1.023.

Figure 5.10: Effect of gamma correction: Logarithm of low frequency DFT
coefficient magnitudes of original 512×512 peppers image are plotted against
those of the same image after printing and scanning. 1/N2 scaling has not been
applied in computing the DFT. It can be seen that the plot is spread around
the x=y line for the gamma correction of (a). If the image is overcorrected at
the scanner (b), the response shifts. However, a plot spread around x=y can
be achieved by scaling of the coefficients (c).
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to find a way to deal with incorrect gamma compensation. As in all previous

experiments, we study the logarithm of DFT coefficient magnitudes here.

In the experiments, we observed that when the gamma correction is varied at

the scanner, the logarithm of DFT coefficient magnitudes of the scanned image are

scaled by a constant factor. Figure 5.10 plots the original and scanned image DFT

coefficients (or the input/output characteristics) for the default gamma correction

(monitor gamma = 2.2) and for overcorrection (monitor gamma = 5.0). Figure

5.10 (c) shows the same plot when the scanned image DFT coefficient magnitudes

are scaled. It can be seen that the plot in (c) is quite close to the unity gain line.

The gamma correction applied, in general, depends on the system gamma. If

the devices are not calibrated, there could be some mismatch. We can, however,

deal with incorrect gamma compensation simply by scaling the log DFT coefficient

magnitudes. The scaling factor may be determined experimentally for a particular

scanner and monitor pair, or the decoder can try a few scaling factors and use

the one which works best.

5.6.3 Decoding

Once the image is automatically derotated and the gamma compensation is

corrected using the above algorithms, it is then used to demodulate and decode

the embedded information. Readers are referred to our prior work [109] for a

detailed discussion on decoding for the employed coding framework. Here we just

provide an overview.

The receiver takes the DFT of the image coefficients and scans the coefficients

in the same order as the encoder. It employs the same threshold criteria as the
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encoder to estimate the locations where data has been embedded. Hard-decision

decoding of the embedded channel symbols is performed. This is because it is

difficult to quantify the statistics of the print-scan attack. For those coefficients

that do not pass the threshold test, an erasure is passed to the channel decoder.

Finally, the sum-product algorithm [58] is used to decode the hidden information

bits leading to error-free recovery of the hidden data in spite of the strong attacks.

The use of powerful channel codes provides robustness to the embedded data

against a variety of other attacks as well.

5.7 Results

We now present the performance of our embedding schemes in this section.

Note that the setup for evaluating the hiding techniques remains same as that in

our experimental setting (Section 5.4). Images with hidden data are printed and

the digital scanned image is fed to a receiver that decodes the hidden data after

undoing the rotation using the automated algorithm of Section 5.6.1. We have

evaluated the hiding schemes for several images and for many different printers.

Note that when scanning at higher resolutions (300 samples per inch or more),

the choice of scanner does not make much difference in the performance of the

embedding schemes.

For each hiding scheme, we present the maximum number of bits that can

be hidden and recovered perfectly for five selected sample images. These images

were chosen based on varying detail and texture content so as to study their

embedding capacities. Note that though we present results for these particular
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images, we have conducted experiments with several images and observed similar

performance for the other images as well (which depends on the detail and texture

content in the images). We believe that presenting the maximum number of bits

embedded for these selected images are enough to illustrate the performance of

our schemes, and listing these numbers for more images would not provide new

insights. In the experiments, the number of bits embedded into the images are

increased (in steps of 25 bits), until we fail to recover the hidden data. The bits

reported in the Tables (5.1, 5.2, and 5.4) below are the number of bits that can be

embedded in that particular image with perfect recovery after scanning. Having

discussed the details of the setup, we start the presentation of the results with

the SELF hiding scheme.

5.7.1 Surviving Print-Scan with Automatic De-rotation

Figures 5.11-5.13 shows three example images at various stages of embedding,

attack, and decoding (for the Baboon, Man, and Couple images). The embedded

bits can be recovered from the images after they are printed and scanned, even

when the images get rotated during the scanning process. For example, Figure

5.11 (a) and (b) show the original man image and the composite image with 500

bits embedded. Figure 5.11 (c) shows the printed-and-scanned image which got

rotated during the scanning process. Figure 5.11 (d) shows the automatically

derotated image (using the algorithm proposed in Section 5.6.1). Figure 5.11 (e)

shows the image after the background is automatically cropped. Similarly, Figure

5.12 show the baboon image example, and Figure 5.13 show the intermediate-stage

images for the couple image.
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(a) Original 512×512 Man

image

(b) Image with 500 bits

hidden

(c) Printed and scanned

image

(d) Automatically dero-

tated image

(e) The derotated image

cropped automatically

Figure 5.11: Images at various stages of embedding, attack, and decoding for
the 512×512 Man image. All the 500 embedded bits have been recovered
successfully at the decoder.
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(a) Original 512×512 Ba-

boon image

(b) Image with 475 bits

hidden

(c) Printed and scanned

image

(d) Automatically dero-

tated image

(e) The derotated image

cropped automatically

Figure 5.12: Images at various stages of embedding, attack, and decoding for
the 512×512 Baboon image. All the 475 embedded bits have been recovered
successfully at the decoder.
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(a) Original 512×512 Cou-

ple image

(b) Image with 300 bits

hidden

(c) Printed and scanned

image

(d) Automatically dero-

tated image

(e) The derotated image

cropped automatically

Figure 5.13: Images at various stages of embedding, attack, and decoding for
the 512×512 Couple image. All the 300 embedded bits have been recovered
successfully at the decoder.
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Table 5.1: Number of information bits hidden along with RA code parameters
used for various 512×512 images for the print-scan attack. The images with
listed number of hidden bits also survive attacks such as 3×3 Gaussian filtering,
4×4 median filtering, heavy JPEG compression (QF = 10), 17 row and 5
columns removal, and aspect ratio change (by 0.8×1.00).

# of bits RA code # of coeff.
Image hidden rate (1/q) in band

Peppers 250 1/4 870
Baboon 475 1/6 2450
Bridge 250 1/7 1560
Man 500 1/5 2450

Couple 300 1/6 1560

Table 5.2: Comparison of number of information bits hidden in various
512×512 images in two scenarios: (i) automatic derotation at the decoder,
and (ii) careful manual placing of the image printout on the scanner flatbed.

Number of bits hidden
Image Auto. derotation Manual placing

Peppers 250 225
Baboon 475 350
Bridge 250 200
Man 500 400

Couple 300 275

Table 5.1 shows the number of information bits hidden for various 512×512

images along with the RA code rate and number of candidate embedding coeffi-

cients. The listed number of bits were recovered perfectly after the images were

printed and scanned with varying degrees of rotation.

Table 5.2 compares the number of information bits hidden in various 512×512

images with automatic derotation at the decoder and with careful manual placing

of the image on the flatbed of the scanner to avoid rotation. It can be seen that

more information bits can be hidden when automatic derotation is performed at

the decoder as compared to careful manual placing without automatic derota-
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Table 5.3: Performance of the proposed SELF hiding scheme against various attacks.
Attacks: Overall error percentage

# bits Print- JPEG 3×3 4×4 17 rows Asp. rat.
Images hidden Scan compr. Gauss. Median 5 cols change

QF=10 filter filter removed 0.8×1.0
Barbara 367 7.63% 1.77% 0% 2.72% 2.45% 0.27%

Man 1076 15.75% 8.59% 0.09% 3.86% 5.62% 0.09%
Couple 364 10.03 % 4.81% 0% 1.64% 1.24% 0.55 %

tion. It shows that automatic derotation outperforms the best human effort at

preventing rotation.

5.7.2 Other Attacks

The images with data hidden using SELF hiding scheme also survive several

other attacks included in Stirmark [85], e.g., Gaussian or median filtering, rows

and/or columns removal, heavy JPEG compression, and aspect ratio change. The

number of bits listed in Table 5.1 and 5.2 survive these attacks as well. In Table

5.3, we show the percentage of errors encountered against various attacks for an

uncoded transmission. This gives us an idea of the amount of protection needed

via error correction codes to deal with those errors. It can be seen that the print-

scan process is most severe among all the attacks. Hence, a system with sufficient

redundancy to survive the print-scan process would also work against all other

attacks. This is consistent with our observation that the images that are designed

to survive print-scan process using the SELF hiding scheme survive all the attacks

listed in Table 5.3.

It should be noted that much less data can be hidden against the Stirmark

random bending attack. For example, 73 bits are hidden in Peppers image (with-
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Table 5.4: DQIM embedding in phase: Number of information bits hidden
along with RA code parameters used for various 512×512 images for the print-
-scan attack.

# of bits RA code # of coeff.
Image hidden rate (1/q) in band

Peppers 125 1/5 576
Baboon 275 1/6 1444
Bridge 250 1/6 1444
Man 225 1/7 1444

Couple 150 1/6 784

out the channel coding) and received with 20 % error. Note that this performance

may still be good for watermarking applications, where the watermark sequence

is known to the decoder and can be correlated with the hidden data to detect the

watermark. So far we have discussed the performance of the our SELF embedding

scheme (for hiding in magnitude spectrum). Let us now move on to the DQIM

hiding method, which embeds data into the phase spectrum of the images.

5.7.3 DQIM Hiding in Phase

For our DQIM hiding in phase method, we are able to embed several hundred

bits against the print-scan attack. Table 5.4 shows the number of information bits

hidden for various 512×512 images along with the RA code rate and number of

candidate embedding coefficients. Here too, all the embedded bits are recovered

after the print-scan attack. The volume of embedding depends on the host image,

which turns out to be lesser than that of the SELF hiding scheme for embedding

in the magnitudes. This is especially true for images such as Peppers and Couple

that have many smooth regions within, so that a smaller candidate embedding

bands must be used in order to preserve the perceptual quality. Since DFT phase
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is known to have more information about the image then the magnitudes [47], it

is that much more difficult to embed data in the phase spectrum without inducing

much perceptual distortion.

5.8 Summary

We have successfully demonstrated print-scan resilient data hiding methods

with potential applications such as document authentication and image copyright

protection. The robustness of the methods are based on three key components of

our approach: choice of embedding strategy based on analytical and experimental

modeling of the print-scan process, the use of powerful turbo-like channel codes,

and automated algorithms for derotation and correcting gamma compensation at

the receiver. In the analytical modeling, we get around the complexity involved

by dividing the print-scan operation into simpler sub-processes and identifying

the bottlenecks, which are then studied in detail.

There is still much left for future investigation. One can focus on some specific

printers and scanners, and analyze the non-linear transformations in more detail

so as to design hiding schemes with higher capacities. Another interesting avenue

for future work is to leverage the inverse halftoning literature for reducing the

affect of colored noise. This way, we can possibly improve the embedding capacity

by using the mid (or high) frequency coefficients along with the low frequency ones

for hiding.

In the next chapter, we shift the focus from surviving the attacks to evading

the detection of the presence of embedded data. The main goal is covert commu-
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nication, and the approach is to achieve a small (or zero) divergence between the

original and the hidden image distributions using statistical restoration.
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Chapter 6

Secure Steganography via

Statistical Restoration

Steganography, the art and science of communicating in a manner that the very

presence of communication is not known to a third party, has a rich history (e.g.,

[119], and references in [86] and [117]). In 1983, Simmons [102] introduced the

modern version of the problem: Alice and Bob are in jail, and want to hatch up an

escape plan, but all their communication pass through Willie, the warden. Hence,

the communication should be hidden, so that it does not incite the suspicion of

Willie. The challenge in the design of steganographic systems is to communicate

at high rates without being detectable via statistical, or perceptual analysis.

A general framework for steganography problem is shown in Figure 6.1. Here,

the problem is described in terms of the above mentioned prisoner’s problem,

in which the warden monitors the communication between the prisoners. The

steganalyst has to determine whether the sent signal is cover or stego.
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1

Message
Message

cover

Encode

Secret Key

Message
Message

stego
Alice Bob

Willie

Is it cover 

or stego? 

X ~ P
X

S ~ P
S H0: PX

H1: PS

Figure 6.1: General framework of steganography: the prisoner’s problem.

6.1 Introduction

In recent years, there has been a great deal of activity in developing data

hiding techniques, which have classical applications to steganography, or covert

communication, as well as to watermarking for digital rights management. The

typical objective in high-volume data hiding is to embed data in a host or cover,

in a manner that is resistant to a number of natural and malicious attacks, and is

imperceptible to the casual observer. However, the resulting stego signal can be

subjected to increasingly sophisticated steganalysis techniques for detecting the

presence of hidden data.

In this chapter, we propose a framework for the design of embedding schemes

that can evade statistical steganalysis while hiding at high rates, and achieve

robustness against attacks. We are motivated by the notion of ε-secure steganog-

raphy proposed by Cachin [12], in which the relative entropy (also called Kullback-

Leibler or K-L divergence) between the cover and stego distributions is less than
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or equal to ε. Our approach for achieving a small ε is to employ statistical restora-

tion, wherein a portion of the data-hider’s “distortion budget” is spent in repairing

the damage done to the image statistics by the embedding process. To ensure

that the restoration does not interfere with decoding, a fixed percentage of host

symbols are set aside for restoration, while the rest are used for embedding. A se-

cret key, shared between the encoder and the decoder, determines the embedding

and compensation locations. While we focus on hiding in images in this chapter,

the approach itself applies to general host signals.

One of the first popular steganalysis tools proposed in the literature was

Stegdetect [90], which uses a chi-square statistic on the histogram of transform

coefficients to detect least significant bit (LSB) hiding. Stegdetect can be im-

proved upon by more sophisticated detection-theoretic approaches [29]. Such

methods, which are based on the histogram of the host coefficients, have spurred

the development of hiding techniques that make as little change to the histogram

as possible. Provos’ Outguess algorithm [89] was an early attempt at histogram

compensation for LSB hiding, while Eggers et al [32] suggest a more rigorous ap-

proach to the same end, using histogram-preserving data-mapping (HPDM). In

turn, steganalysis tools that counter such histogram-preserving hiding methods

have been developed, such as detection, for image-based hiding, of block-DCT

embedding by evaluation of the increase in blockiness due to hiding [39, 128].

Unlike most of the steganographic approaches discussed above, our framework

allows design of schemes that can have perfect security by achieving zero Kullback-

Leibler (K-L) divergence between the cover and the stego signals. One can match

continuous statistics using the proposed approach, not just discrete (or quantized)
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statistics. Only a couple of prior schemes, to the best of our knowledge, can

potentially achieve zero KL divergence for continuous host statistics: Gullion et

al [48], and Wang and Moulin [129, 75]. Both the approaches, however, have some

serious issues that limit their practical applicability. Guillon et al [48] suggest

transforming the source to get a uniform PMF source. The message is hidden

in this with the quantization hiding scheme, which is known not to change the

PMF of uniform sources. Therefore, the PMF after transforming back is also

the same as the original. This method, however, is not likely to be robust, and

also, there is no way to control the distortion induced by the embedding process.

Wang and Moulin [129] propose a reduced rate variant of standard QIM, called

the stochastic QIM, which can be made to have zero K-L divergence. However,

because of the stochastic nature of the hiding process, the method is likely to

yield high error rates when embedding large volumes of data. Note that in [75],

the proposed stochastic QIM technique embeds only one bit of information.

The proposed framework allows design of robust techniques that are not frag-

ile against attacks, unlike most of the methods proposed in the literature so far.

While certainly not the most important issue for steganographic systems, robust-

ness against “natural” attacks such as compression or additive noise is highly

desirable. Most of the prior schemes, such as OutGuess [89], HPDM [32], Sallee’s

model based methods [94, 95], and Fridrich et al’s perturbed quantization [40],

are fragile against any modifications to the image.

The techniques do not rely on accurate modeling of the host statistics. This is

unlike Sallee’s model-based steganography [94, 95], in which the hider ensures that

the stego signal conforms to a given model. In the absence of a perfect model for
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the host, nothing stops the steganalyzer from selecting a better model by spending

more computational power, and hence detect the embedded data. This is indeed

practically shown in [11], where Sallee’s Cauchy-model based JPEG steganogra-

phy is broken by using only the first order statistics. Our approach is very difficult

to detect in this manner, since the stego marginals are simply restored to conform

to the host’s empirical density, rather than invoking a statistical model for the

host’s marginals.

For any statistical restoration technique, the steganalyst can always go one

step further, and use higher order joint statistics1 than those that have been com-

pensated for, typically at the cost of higher computational complexity. Thus,

hiding techniques that compensate marginals are easily detected using the cover

memory. For example, a few approaches (Fridrich et al [39], and Wang and Moulin

[128]) detect block-DCT embedding by modeling the increase in blockiness of the

image due to the block-DCT hiding. We use our framework of statistical restora-

tion to design a method that defeats this type of block-based steganalysis. In this

case, the statistic to be restored is the difference of adjacent pixels values within

the blocks and on the block boundaries. In general, the framework presented in

the paper can be applied to restore statistics of any order.

We use supervised learning on a set of over 1000 natural images to evaluate the

performance of our schemes. We find that statistical restoration severely affects

the steganalysis performance of both DCT-histogram and blockiness methods.

We achieve very low K-L divergence between original and cover distributions at

fairly high embedding rates. The image could also survive JPEG compression or

1We use the term ‘first order’ statistics to denote the marginal statistics, and ‘higher order’
statistics to actually mean joint statistics with higher-order dependencies.
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recompression without compromising the undetectability.

The rest of the chapter is organized as follows. In Section 6.2, we discuss the

limits of steganographic systems. Next, we introduce the concept of statistical

restoration in Section 6.3, in which we also present a technique for restoration

with minimum mean squared error (MMSE) criteria. In Section 6.4, we extend

the statistical restoration idea to a framework that can achieve perfect security

by having zero KL divergence between original and stego distributions. Next, in

Section 6.5, we propose to use a variable bin-size in analyzing the statistics, which

provides several advantages. Based on the framework, several practical schemes

are designed for image steganography in Section 6.6. The results are presented in

Section 6.7, followed by a brief summary of the chapter in Section 6.8.

6.2 The Limits of Steganography

Modern steganography has become a game with escalating sophistication be-

tween the hider and the steganalyst. This is evident from our discussion in Section

2.7 of the state of the art in steganography and steganalysis. It is seen that, many

times, a steganography scheme is proposed to evade a particular steganalysis tech-

nique. This in turn is detected by an improved steganalysis method. With these

iterations still happening, at this point, it is not clear who, the data hider or the

steganalyst, will come out to be the winner.

In the following, we discuss a method for perfectly secure communication

under most stringent (idealized) assumptions. After that, we move on to more
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realistic setting, and present a model for the design and analysis of stegosystems2.

6.2.1 One-time Pad for Steganography

Consider the problem of steganography, in which, Alice wants to communicate

with Bob by sending an innocuous cover signal, which is monitored by Willie,

the warden. In cryptography, Shannon proposed the concept of one-time pad in

[99], which provide means for a perfectly secure communication between Alice

and Bob3. One-time pad provides information-theoretic security, i.e., the code

cannot be broken by the cryptanalyst even if he or she has infinite computational

resources. The security of the system is based only on the secrecy and randomness

of the key.

Is it possible to achieve provable security for steganography? The equivalent

of one-time pad in steganography, if it exists, would be a system that enables

communication between Alice and Bob via an innocuous cover, when Willie, the

warden, has the perfect knowledge (i.e., a deterministic model) of all the possi-

ble cover signals, and also has infinite computational resources to try all possible

secret keys. The first assumption states that the steganalyst has access to all pos-

sible original cover signals, and even a small change in just one pixel is detectable.

The second assumption regarding the key is similar to one made by Shannon in

[99]. Under these assumptions, any modification in the cover signal by Alice is

suspicious, and moreover, by trying all the possible keys, Willie can potentially

2We use the word stegosystem as a short form for a steganographic system.
3Note that the word ‘security’ in this sentence means cryptographic security (the meaning of

the message is not revealed). This is not same as the steganographic security considered in this
chapter, wherein the presence of communication must not be revealed.
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figure out the contents of the message.

Though it may seem impossible, there is a way for Alice and Bob to commu-

nicate secretly under these idealized assumptions too. As shown in Figure 6.2,

the equivalent of one-time pad in steganography would be that Alice and Bob

share a secret key and a database or library of natural images4, which is assumed

to be known to Willie as well. To communicate a message to Bob, Alice sends

an image from the library, which is indexed by the message, which in turn is

scrambled by a secret key. This is equivalent to Shannon’s idea of one-time pad,

except that, instead of sending an encrypted message, Alice now sends an image

from the database, which is indexed by the encrypted message.

1

Alice
Selects Image 

to send

Shared Image database

Shared Image library 

2n Images

Willie 
(Adversary)

Bob
Decodes the 

sent message

Cover Image

K

(Secret Key    

n bits)

Message

n bits 

Recovered 

Message 

Alternate secure channel

Figure 6.2: One-time pad for steganography: Perfect communication is possible
between Alice (the encoder) and Bob (the decoder), even when Willie (the
adversary) has the perfect knowledge of all possible cover signals. Using a
n-bit secret key, and a database of 2n images, a message of size n bits can be
securely sent once.

Let us now investigate the number of bits that can be sent, i.e., the capacity

of this stegosystem. It is clear that in order to communicate n bits, Alice and

4Note that the discussion presented here refers to digital images, but the system can be em-
ployed for any cover, such as audio, video, text, or in general, any signal that can be considered
innocuous by the warden.
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Bob must share a database of at least 2n images. Since the image library is

known to Willie as well, a secret key of at least n bits must be shared between

the encoder (Alice) and the decoder (Bob) to index the images so as to enable

perfectly secure communication. An interesting point to note is that a perfectly

secure stegosystem with a finite capacity can be constructed without using data

hiding at all.

It should, however, be noted that the above system has several limitations in

deploying it practically. Similar to Shannon’s one-time pad, the secret key, which

has the same complexity (i.e., the number of bits) as the message itself, has to

be communicated via an alternate secure channel. Also, one particular key can

be used only once (hence the name, one-time pad). Moreover, it may not be

feasible to share a large database of innocuous cover signals between the encoder

and the decoder. If we restrict ourselves to the situation where Alice and Bob

cannot share a database of images, and they must communicate through only one

given image, then the capacity of such a system is log2(1) = 0. In other words,

a perfectly secure communication is not possible. This is not entirely surprising

because of the assumption that Willie has perfect knowledge of the all possible

original cover images. In the following section, we relax this assumption.

6.2.2 A Model for Steganography

Let us now move closer to a real-world system, in which, the steganalyst does

not have a perfect knowledge of the cover signals. Willie now has, at best, only a

stochastic model for the cover signal instead of a deterministic one. In this case,

we can expected to have a finite non-zero capacity for having perfectly secure
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communication, even when one particular given image must be used as the cover.

Knowing that Willie does not have the perfect knowledge of the image, Alice can

now modify the image to hide the message.

The number of bits that can be hidden without inciting Willie’s suspicion,

i.e., the capacity of the system, strictly depends on the accuracy of the model at

Willie’s disposal. Willie’s understanding of what a ‘natural image’ is, may con-

sist of a perceptual aspect (suspicious visual artifacts), as well as some statistical

conditions (unusual statistical observations). The requirement that the hiding

process should not incur any perceptual distortion to the cover signal comes nat-

urally. A number of steganalysis techniques also employ some statistical analysis

to detect the presence of embedded data. Thus, in order to communicate without

being detected, the data-hider must obey following two conditions.

1. Perceptual constraint. The perceptual distortion between the original

and stego image should not be more than a certain maximum amount, D1,

for some perceptual distance measure.

2. Statistical constraint. The embedding process should not modify the

statistics of the host signal more than a very small number, ε, for some

statistical distance measure.

The above conditions are quite commonly used in the literature. Distor-

tion constraint for limiting the perceptual distortion has long been used in the

information-theoretic and game-theoretic analysis of the data hiding problem

([19, 23, 79]). The second condition, the statistical constraint, has been proposed

by Cachin [12], which states that the K-L divergence between original signal dis-
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tribution, PX , and the stego signal distribution, PS, should be less than ε, as

given below.

D(PX ||PS) ≤ ε (6.1)

A perfectly secure stegosystem should, obviously, have zero K-L divergence.

D(PX ||PS) = 0 (6.2)

Cachin (in [12], and its extended version [13]) considers a stegosystem from

an information-theoretic and cryptographic point of view, without considering

any distortion constraints. Anderson and Petitcolas [8] also discuss security of

steganographic systems with a similar perspective. Moulin and Wang, in [80], an-

alyze achievable rates for a very simplified system, for a Bernoulli (equiprobable

binary alphabet) source and Hamming distortion.

When the original cover and stego signals are discrete, the two conditions

mentioned above, namely the perceptual and the statistical constraints, are suf-

ficient to describe and analyze passive warden stegosystems. However, when the

distributions are continuous, there could be a trivial solution to the problem of

maximizing the embedding rate while inducing minimum statistical and percep-

tual distortion. The data can be embedded, for example, using choice of quantizer,

with the quantizer step-size ∆ tending to zero 5. In other words, for passive war-

den case, the embedding capacity is infinite for continuous alphabet sources (since

the number of bits hidden per host symbol can tend to infinity with the quantizer

step-size tending to zero).

We note that, for cover signals such as images and video, the transform domain

coefficients (such as DCT, DWT, or DFT) are generally modeled as continuous

5Actually, data can be hidden using any method, with a vanishing embedding “strength”.
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distributions. This, however, does not mean that the capacity of such signals

is infinite. The transform coefficients are not exactly continuous, since after any

modifications in the transform domain, the signal must be transformed back to

spatial domain, which leads to round-off errors.

Thus, even when there is no active adversary, there are some attacks, such as

the round-off errors, which must be survived. Instead of modeling the effect of

round-off errors on the transform coefficients, it is easier to consider the active

adversary system, in which the stego system must survive an attack causing a

distortion of at most D2. In the presence of attacks, it is not possible to get the

trivial solution to the problem of maximizing rate, and achieving infinite capacity

by modifying the cover with vanishing quantizer ∆. This is because, the encoder

must now introduce some minimum distortion DE, in order to have sufficiently

large distortion to noise ratio (DNR, or DE

D2
).

From the above paragraphs we know that the stego capacity of continuous

cover signals for an active warden is finite. The actual problem of finding the

capacity of active warden stegosystems, then, reduces to maximizing the rate

of transmission with three constraints, namely, D(PX ||PS) = 0 (zero K-L diver-

gence), d(X, S) ≤ D1 (encoder perceptual constraint), and d(S, Y ) ≤ D2 (attacker

maximum distortion), where d(·, ·) denotes a perceptual distortion measure.

In this chapter, we do not derive the above theoretical limit, but rather focus

on designing practical steganographic schemes that allow secure communication

at high rates. A simplified framework is proposed, in which we separate the two

problems of surviving the attack, and maintaining statistical transparency. This

is done by embedding data in a predefined subset of host symbols in such a way
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that they could survive the attack. The remaining symbols are used to restore

the statistics of the stego to resemble that of the cover. In the following section,

we study such a system in more detail.

6.3 Statistical Restoration

The discussion in the previous section suggests that it would be impossible to

communicate secretly if the steganalyst has perfect knowledge of the cover signal.

In the real-world scenario, the cover signal is not known to the steganalyst. Even

an imprecise stochastic model for natural images is difficult to construct. Hence,

certain simplified statistical models (such as, of DCT coefficients), are considered

for steganalysis. This is what generates the room for the data-hider. The advan-

tage with the data-hider is that he or she is ‘informed’ of the cover image, and

hence its statistics. Thus, he or she can be assured of perfectly secure commu-

nication simply by sending a composite image whose statistics resemble that of

the original cover. A natural way to accomplish this is to spend a part of the

allocated distortion budget to restore the statistics. Note that we are considering

the simplified statistics under scrutiny, and not the complete underlying random

process.

In order to make sure the restoration process does not interfere with decoding,

we allocate certain coefficients for embedding and use the rest for restoration.

By separating the hiding and compensation locations, we make sure that the

robustness properties of the employed embedding algorithm remain intact. This

is unlike previous compensation approaches that use entropy codecs [32, 94], and
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hence, are fragile against attacks. Note that in [89], Provos proposes a method to

restore the DCT histogram statistics for JPEG steganography. Note that unlike

this approach, we match continuous distribution (i.e., the probability density

function, or the pdf) of the cover, rather than discrete or quantized statistics

(PMF). Moreover, we use a MMSE criteria to minimize the distortion during

compensation (discussed in Section 6.3.3).

6.3.1 Matching Continuous Distribution

The goal, in our framework, is to match the continuous pdf of the cover

signal. Note that, in general, distributions of transform coefficients (such as DCT

or DWT) are modeled as continuous. By matching the continuous probability

density of the cover, we can advertise the stego image in an uncompressed format,

such as TIFF, or BMP. Moreover, the stego image statistics would continue to

match that of the original, even when it is compressed (i.e., if the DCT coefficients

are quantized).

Matching the continuous statistics means that we must not leave any “gaps”

in the stego image pdf. To achieve this, we must have a embedding algorithm that

does not leave any gaps in the histogram, and a compensation procedure, which

can correct the difference in the histogram after embedding. In our statistical

restoration framework, the host symbols are divided into two streams: embedding

stream, and compensation stream. We use QIM with dithering to embed the

data into host symbols that lie in the embedding stream. By using dithering, we

make sure that there are no gaps in the hidden image histogram. Next, the host

symbols in the compensation stream are modified to match the original as closely
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as possible.

Note that, in practice, both the data hider and the steganalyst have only

the empirical density of the image coefficient values. Thus, the histograms must

be studied using a bin size, denoted w. During the compensation procedure

(discussed in Section 6.3.3), some host symbols are moved from one bin to another.

We assume that, for small enough bin-width the distribution of the original cover

signal is uniform over the bin, a commonly used assumption in signal compression

literature [45]. Thus, when a host symbol is to be moved to another bin, we

generate a uniform random data, which becomes the new value of the host symbol.

Note that, in theory, we can always match any distribution that is within the

bin. This can be done by generating the pseudorandom data according to the

distribution in the particular bin to which a compensation coefficient is to be

moved. We, however, follow the uniform distribution assumption for simplicity of

implementation, and find it quite effective in practice.

Let fX(x) and fS(s) be the cover and stego probability density functions

respectively. For I bins centered at t[i], i ∈ [1, I], with a constant width w, the

expected histogram for data generated from fX(x) is as given below.

PE
X [i] =

∫ t[i]+w/2

t[i]−w/2

fX(x)dx (6.3)

Similarly, PE
X [i] is obtained from fS(s) in the same way. The superscript E

denotes that this is expected histogram, to discriminate it from empirical his-

tograms computed from random realizations. In this chapter, we generally refer

to these expected quantized pdfs as PMFs.
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6.3.2 Rate vs. Security

The restoration process reduces the size of the message that can be hidden,

which is the cost of increasing the security. We can characterize this cost by

studying the amount of data that can be hidden in an idealized data source with

a given probability mass function (PMF). Let λ ∈ [0, 1) be the ratio of host

symbols used for hiding, so 1−λ is the ratio remaining to match the cover PMF.

If PX [i] is the cover PMF, PS[i] the standard (uncompensated) stego PMF, P ′
C [i]

and PC [i] the PMF of compensating host symbols before and after compensation

respectively, and PZ [i] the PMF of the final output, our goal can be summarized

as:

PZ [i] := λPS[i] + (1− λ)PC [i]

= PX [i] ∀ i

(6.4)

Typically PS can be derived directly from PX . The amount of data that can

be hidden is proportional to the number of samples that can be hidden in. So

to maximize the amount of data we send, we seek to maximize λ for a given

cover PMF subject to the constraint in (6.4), and the constraints imposed on

the compensating PMF, namely
∑

PC [i] = 1 and PC [i] ≥ 0 ∀ i. Substituting

PC [i] = PX [i]−λPS [i]
1−λ

from (6.4), the first constraint is true for any λ. For the

second constraint we find λ ≤ PX [i]
PS [i]

∀ i. This gives us an upper limit on the

percentage of samples we can use for hiding, or equivalently, the rate at which

we can secretly embed. Since the data-hider must choose a fixed percentage

of symbols beforehand, λ can not be a function of i, and hence a worst-case λ

is chosen: λ = mini
PX [i]
PS [i]

. We now address the next obvious question of how

to actually perform the restoration. A strategy to modify the compensation host
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symbols with a minimum mean squared error (MMSE) criteria is discussed below.

Let us now study the tradeoff between embedding rate and security. Let us

revisit the conditions on the embedding rate λ derived above. If we apply the

constraint λ = mini
PX [i]
PS [i]

to typical PMFs, we run into erratic behavior in the

low-probability tails. The ratio PX [i]
PS [i]

can vary widely here, from infinitesimally

small to huge. e.g. PX(event A) = 1× 10−9, PS(A) = 1× 10−6, λ = 0.001; only a

tenth of a percent of the samples can be used. Since this happens only in the low

probability regions in general, the effect of PMF differences in these regions on

the net divergence is small. So to avoid this problem we can relax exact equality

constraint and ignore a small region of low probability. That is, we do not require

compensation in a small, low probability region of the PMF. So now λ is chosen

as the minimum PX [i]
PS [i]

over the high-probability compensated region.

In addition to the divergence introduced due to the ignored region, since (6.4)

is not true for all i, PC must be normalized to satisfy the unity sum constraint,

adding a small change across the PMF. Though the net effect is to introduce a

small amount of divergence, λ and the corresponding hiding rate can only increase.

The tradeoff between the desired security from detection and the hiding rate

can be studied by finding the rate corresponding to several different sizes of ig-

nored (uncompensated) regions. We also note that simply embedding in fewer co-

efficients also reduces the detectability. However, in Figure 6.3 we see that a large

decrease in divergence can be made with a small drop in rate using restoration,

which is not possible by merely embedding less. This is true for both Laplacian

and Gaussian PMFs over a range of variances.

An example of compensation for the Gaussian pdf is presented in Figure 6.4,
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Figure 6.3: Rate, security tradeoff for Gaussian cover. As expected, compen-
sating is a more efficient means of increasing security than simply reducing the
rate.

in which the proposed low-divergence achieving method is used to embed and

compensate. As it can be seen, there is some difference in the low-probability

tail region, which is ignored for compensation. Note that the error is quite small

compared to the total number of samples used in this Monte Carlo simulation.

6.3.3 Restoration with MMSE criteria

The distribution of the compensation host symbols P ′
C [i] must be modified to

a target distribution: PC [i] = PX [i]−λPS [i]
(1−λ)

. This would not be as straightforward

as saying that if the embedding process modifies a host symbol from A to B, find

another host symbol (in the compensation stream) with value B and modify it

to A. If for example the hiding process itself modifies another host symbol from

B to A, the above change would not be required. It would be very inefficient if

such an approach is followed. Another situation could be when P [B] < P [A] so
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Figure 6.4: Low divergence compensation for a Gaussian cover: The original,
and final histograms, and their differences for embedding in Gaussian cover
signals. Here, the low-probability tail regions are ignored for compensation.
The σ/∆ = 2, number of samples are 100,000, the bin-width is 0.05, and the
embedding rate, λ is 0.45.
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Figure 6.5: Restoration set-up: A target distribution is to be achieved using
an MMSE criteria.

that one would soon run out of symbols with value B to compensate for data

embedding. As shown in Figure 6.5, to efficiently use our distortion budget, we

must modify the compensation stream to achieve a target distribution PC [i] with

a MMSE criteria.

Histogram modification is a well studied problem in the image processing lit-

erature. The typical requirement here is that the elements of the input data with

the same values must be mapped to the same output values after modification.

This way, however, the target histogram can be matched only approximately. In

our problem, while it is important to match the target histogram nearly per-

fectly, the restriction of changing same value symbols to same output values is

not present. We are free to change to any values as long as the overall MSE is

minimized, and the target histogram is within the ε divergence range.

This problem of histogram modification with MMSE criteria was first con-

sidered by Mese and Vaidyanathan [68], who propose solving an integer linear

programming problem to obtain a mapping matrix. Tzschoppe et al [120] show
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that a simpler solution exists, which does not require solving a linear program-

ming problem. They prove a theorem essentially showing that to achieve a MMSE

mapping, all the bins of the target histogram must be filled in an increasing order

by mapping the input data with values in increasing order. This means that first

the bin i = 1 of the target histogram must be filled with PC [1] smallest compen-

sation host symbols. The bin i = 2 will be filled next with the PC [2] smallest

remaining symbols, and so on. We note that the mapping would be similar even

if the process is started from the last bin and filled in a decreasing order.

In the actual implementation, the above algorithm is slightly modified to en-

sure that the high probability regions are compensated before the low probability

tail. Instead of starting the compensation from the first index (i.e., the low-

est value), we separate the positive and negative sections of the histogram and

perform their restorations independently. For the positive part, the restoration is

done in an increasing order starting from the ‘zero’ bin. For the negative part, the

restoration is done in the descending order starting from the the next bin smaller

than zero. For the histograms centered around zero, which is the case for both

the practical scenarios considered in this chapter, this procedure compensates the

high probability regions first.

6.4 Achieving Zero K-L Divergence

In the previous sections, we observed that it is impossible to completely com-

pensate the low-probability region and match the cover density exactly. The

embedding rate λ has to be reduced by a huge factor, and hence, in the above
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section, we simply ignore certain low-probability region for compensation. We

now consider a scheme that can achieve perfect security by having zero K-L di-

vergence.

The idea for achieving zero K-L divergence is quite simple. As seen in the

previous section, since the low-probability region is hard to compensate, we just

avoid embedding in that region. This way, the low-probability region need not

be restored, and hence, we can potentially achieve zero K-L divergence at good

embedding rates. Note that by not hiding in low probability region, we do give

up some embedding rate, but we can potentially have larger PX [i]
PS [i]

over the region

in which we are embedding. There is a trade-off between increase in embedding

rate by having a larger PX [i]
PS [i]

, and decrease in rate by giving up the low probability

region for compensation.

6.4.1 Practical Considerations

Most distributions encountered in practice, such as Gaussian, or Laplacian

density functions, have low-probability tails, and it is possible to avoid embedding

in the low-probability region by using a threshold. That is, the encoder would

not embed in the host symbols with absolute values greater than a predetermined

threshold. The decoder shares this threshold value, which then uses the same

criteria to decide whether there was data hidden or not.

We choose the threshold by optimizing the rate-loss due to not embedding in

low-probability region of the host distribution, and the gain in rate by minimizing

PX [i]
PS [i]

over a smaller subset. However, the choice of threshold cannot be arbitrary,

since we must make sure that the embedded data is decodable at the receiver.
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In the presence of attacks, simply using a threshold to determine the hiding

locations may cause desynchronization problems at the decoder. Even if no at-

tacks are considered, the decoder might get confused if the embedding algorithm

hides in a host symbol that was below the threshold, but its value increases to a

value above the threshold after hiding.

For QIM embedding, we can get around this problem by choosing the threshold

to be an integer multiple of the quantization interval ∆. Then, data is embedded

in all the host symbols whose absolute values are smaller than ∆ (for two-sided

symmetric distributions, such as Gaussian). QIM embedding would not change

the coefficient beyond t∆, where t is the positive integer threshold. When dither-

ing is used, the quantizers are shifted by the dither sequence, but it is known

to the decoder as well. In the presence of attacks, some coefficients’ values may

increase to be above the threshold, leading to deletion of the symbol, and some

coefficients may decrease causing an insertion. This insertion-deletion problem is

similar to the one encountered in Chapter 3 (discussed in Section 3.4). We can

employ a coding framework similar to the one used in Section 3.4.

To demonstrate the practical applicability of the system, in Figure 6.6, we

present a zero-divergence compensation example for a Gaussian host. As it can

be seen, we can achieve exact final histogram, and hence, zero K-L divergence

practically as well, at high embedding rates. In this example, we can hide 33,242

bits in 100,000 host samples with perfect restoration.
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Figure 6.6: Zero K-L divergence compensation for a Gaussian cover: The
original, and final histograms, and their differences for embedding in Gaussian
cover signals. A threshold is used to avoid hiding in the low-probability region.
The σ/∆ = 2, number of samples are 100,000, the bin-width is 0.05, and the
λ is 0.45. Due to the threshold used, the actual embedding rate is 0.33.
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6.5 Variable Bin-Size

In the above framework, we have to set a fixed bin-size for the analysis of the

statistics when the involved distributions are continuous. Thus, it is natural to

ask what happens if the steganalyst analyzes the statistics with a finer bin size.

It seems obvious that he or she will be able to detect the stego images because

the observations made are finer. However, this statement is true only under the

assumption that the number of samples are infinite. When there are finite number

of samples, a finer bin-size does not guarantee a better observation, and hence, a

better detection performance.

For a moment, let us assume that both the hider and the steganalyst have in-

finite number of samples, so that an arbitrary degree of precision can be achieved

by choosing very small bin sizes. When the underlying cover distribution is known

to the hider and the steganalyst, the hider is at a disadvantage because no mat-

ter how small bin size he or she uses, the steganalyst can always use an even

smaller one, and potentially detect the presence of hidden data. However, since

the underlying distribution is known to the encoder too, he or she can move a

coefficient from one bin to another by assigning the new value simply by drawing

a new coefficient based on the underlying cover distribution within the bin. Thus,

the approach here is to use statistical restoration for a particular bin-size, and

then stochastic within the bin. This way, the steganalyst cannot detect the pres-

ence of embedded data, in spite of having potentially infinite number of samples

for analysis.

In reality, however, only a finite number of samples are available to the data
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hider as well as the steganalyst. Also, the underlying histogram is not generally

known (e.g., for images). In such case, it is not optimal to use as small bin size as

possible [97]. If the bin-size used is too small, then the obtained histogram is too

jagged, and for too large bin-size, we loose the resolution. In this case, the data

hider can use the optimum bin-size recommended in [97]. However, the optimum

bin-size must be determined based on the particular empirical distribution.

Another solution from the point of view of the data hider is that he or she can

employ a variable bin size in a way that there are a fixed predetermined number

of host symbols in every bin. This way, the bin width gets automatically adjusted

so that it is finer in the high probability regions, and wider in the low-probability

regions. The idea here is to match the original histogram more precisely in the

high probability regions compared to the low-probability parts. Thus, the stego

image will not get detected by the steganalyst even if he or she uses a very fine

bin-size for analysis.

In Figure 6.7, we present and example of compensation using a variable bin-

width for a Gaussian cover signal. All the bins have exactly 250 host symbols.

As expected, there is some difference between the original and final distributions.

However, now we need not worry about the exact bin-size used by the steganalyst

to analyze the histogram. In the presented example, even when a much smaller

bin-size of 0.01 is used by the steganalyst, the difference is quite small compared

to the total number of samples.
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Figure 6.7: Variable bin-size compensation for a Gaussian cover: The original,
and final histograms, and their differences for embedding in Gaussian cover
signals. The bin-size used is variable, such that all the bins have 250 host
symbols. A threshold is also used to avoid hiding in the low-probability region.
The σ/∆ = 2, number of samples are 100,000, the bin-width is 0.01 (five times
smaller than the examples of Figures 6.4 and 6.6.), and the λ is 0.45.
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6.6 Practical Schemes

In this section, we describe several practical schemes based on the idea of

statistical restoration.

6.6.1 Restoring Marginal Statistics

Several steganalysis approaches [90, 115] detect the JPEG steganography tech-

niques by hypothesis testing on the marginal distribution of the DCT coefficients.

We here propose a method that restores the histogram of the DCT coefficients so

as to evade this type of steganalysis.

The host image is divided into 8×8 non-overlapping blocks and its 2-d DCT

is taken. Those coefficients that lie in a low frequency band of 21 coefficients are

considered to be eligible for data embedding or compensation. Now, out of all

eligible coefficients, a fixed percentage (we use 25-40% in our experiments) are set

aside for hiding and the rest are used for compensation. Data is embedded into

the coefficients designated for hiding using dithered quantization. Finally, the

compensation coefficients are modified using the algorithm described in Section

6.3.3 so that the stego image histogram closely matches that of the original cover.

The use of dithering in our design makes it possible to match the unquantized

source histogram, so that even if the image is compressed or recompressed by the

data-hider or an adversary, we neither lose the embedded data nor compromise the

undetectability. The stego image can be advertised as any uncompressed format,

(e.g. TIFF, BMP, RAW) or subsequently compressed at any quality factor and

will continue to closely match the source.
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The tradeoff between rate and security (as discussed in Section 6.3.2) implies

that the source histogram cannot be matched exactly if we want to communicate

at a reasonable rate. Also, in practice, we must work with a limited number

of available compensation coefficients. Hence, depending on the chosen rate of

embedding, we cannot perfectly match a part of the source histogram towards

the low probability tail region. Therefore, we would expect a smart detector to

perform better than just a random guess, and this partly explains the better-

than-random performance of our supervised learning tests. Below we describe an

implementation for quantized DCT coefficients that achieve perfect security by

not embedding in low-probability regions.

6.6.2 JPEG Steganography

Here we describe an adaptation of our zero K-L divergence framework for a

JPEG steganography scheme. The goal here is to embed in a JPEG compressed

image at a particular quality factor, such that the stego image is also a JPEG

image at the same quality factor with exactly the same distribution of the DCT

coefficients. We employ the framework presented in Section 6.4, to achieve the

same stego histogram as original, for the JPEG quantized DCT coefficients.

In the actual implementation, we again go to the block-DCT transform domain

by dividing the image into 8×8 non-overlapping blocks, taking 2-d DCT, and

dividing by the JPEG quantization matrix. The coefficients are quantized since

the input image is assumed to be JPEG compressed. As before, those coefficients

that lie in a low frequency band of 21 coefficients are considered to be eligible

for data embedding or compensation. Again, out of all eligible coefficients, a
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fixed percentage (say, 40%) are set aside for hiding and the rest are used for

compensation. The hiding and compensation locations are pre-determined based

on a secret key shared between the encoder and the decoder. We then embed

data using ±k LSB steganography (with k = 1) into those coefficients that are

in the hiding stream. Note that QIM cannot be used because the coefficients

here are already quantized. Those coefficients whose magnitude is greater than

a positive integer threshold, and hence are in the low-probability region, are not

used for embedding information. The coefficients in the compensation stream are

modified as per the MMSE algorithm presented in Section 6.3.3.

6.6.3 Defeating Block-Based Steganalysis

We now turn our attention to steganalysis schemes that use the cover memory

to detect the hidden data. In particular, we focus on techniques that bank on

the increase in the blockiness due to block-DCT embedding [39, 128]. It can be

seen that these methods basically use a function or a subset of a two-dimensional

histogram. For example, Wang and Moulin [128] use one-dimensional histograms

of value differences of two populations: one within the blocks, and another along

the block boundaries. We note that the value difference histogram can be derived

by summing along the diagonals of the two-dimensional histogram. This way

the most relevant information is kept while reducing the complexity (of a two-

dimensional histogram). Here we propose a method that restores the pixel value

differences within the blocks as well as along the block boundaries, so as to survive

the steganalysis technique proposed in [128].

A subset of 8×8 blocks are used for data embedding and the rest are set
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aside for restoring the pixel difference histograms. In the blocks designated for

data embedding, data is hidden in a low frequency band comprised of 21 DCT

coefficients. Next, the pixel values of the compensation blocks are modified (with

MMSE criteria, as described in Section 6.3.3) so that the difference histograms

are very close to the original. Note that the two histograms (within the blocks

and along the block boundaries) are restored separately to match their respective

originals.

6.7 Results

We now describe the performance of the proposed methods in this section.

We use a supervised learning machine on a set of over 1000 natural images to

discriminate between the cover and the stego images (as in [115]). The machine

is trained on the statistics of hundreds of examples of distinct stego and cover

images, and is then tested on its ability to correctly classify a different, unknown

set of cover and stego images.

6.7.1 Continuous PDF Restoration Methods

As a first step in examining the efficacy of statistical restoration, we compare

the divergence between cover and stego for standard hiding and for hiding with

compensation at the same rate. Embedding at a rate of λ = 0.35 in a Gaussian

cover, the divergence for statistically restored dithered-QIM hiding is 1.3× 10−3,

roughly a five-fold improvement over the standard QIM which yields a divergence

of 5.9× 10−3. Similar improvement is also seen for a set of real image statistics,
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Figure 6.8: Set-up for steganalysis using supervised learning on natural images.

Table 6.1: Performance of uncompensated vs. compensated methods for over
1000 images in supervised learning tests. It is seen that restoration can severely
affect the steganalysis performance.

Dithered Adaptive Blockiness
QIM dithered QIM based scheme

Un- comp. Un- comp. Un- comp.
comp. comp. comp.

P(m) 0.075 0.525 0.701 0.796 0.043 0.259
P(fa) 0.177 0.000 0.000 0.074 0.000 0.007

P(m)+
P(fa) 0.252 0.525 0.701 0.870 0.043 0.266

wherein, the average divergence for standard hiding is 6.5× 10−3, which reduces

to 2.1 × 10−3 for compensated embedding. Although detection is still possible,

restoration greatly increases the error probabilities of an ideal detector. For ex-

ample, a steganalyst would require more than three times as many samples to

achieve the same detection rates with standard hiding in images as with hiding

with restoration.

Now we present the results for testing with supervised learning machine on a

set of 1000 natural images. Figure 6.8 shows the set-up for steganalysis system
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using supervised learning. Three embedding methods were tested: dithered QIM,

adaptive dithered QIM (of [109]), and blockiness based scheme (of Section 6.6.3).

For each of these schemes, we trained and tested two machines on the same sets

of images and at the same rate; one with compensation, one without. Table 6.1

lists the probability of false alarm, P(fa), and the probability of missed detection,

P(m), for each of these configurations. It can be seen that for the dithered QIM

hiding, the detector has twice the sum of errors while detecting restored hiding as

compared to standard hiding. Figure 6.9 plots the probability of missed verses the

false alarm for adaptive dithered QIM scheme. Remember that in this adaptive

embedding, data is not hidden into coefficients that do not get quantized to zero.

For the blockiness compensation scheme, the sum of errors is six times greater

for restored hiding than for standard hiding. Figure 6.10 shows the ROC curve

for the blockiness compensated hiding verses the non-restored hiding. Note that

a λ of 0.35 is used in all the cases, which translates to hiding roughly 30100 bits

in a 512×512 image.

6.7.2 JPEG Steganography with Perfect Restoration

We now present the results for our JPEG steganography technique presented

in Section 6.6.2. Again, we use supervised learning on 1000 natural images to

test the system. A support vector machine (SVM) classifier is trained and tested

on the first order statistics of the DCT coefficients. We here compare the perfect

restoration JPEG steganography with the standard QIM. We embed random bits

into images using both the techniques, and then train and test the SVM classifier

using the DCT histogram. Same rate and same images are used in both the cases.
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Figure 6.9: Detection of standard adaptive-QIM verses adaptive restored QIM:
As expected, the restored QIM can evade steganalysis better than the standard
adaptive-QIM.

Figure 6.11 plots the probability of missed detection verses probability of false

alarm for both the schemes. As expected, the detector performance is random for

the JPEG steganography scheme with perfect restoration.

6.8 Summary

We have demonstrated how statistical restoration can be employed for robust

and secure communication. Our experiments indicate that the detectability of

our statistically compensated QIM schemes is lower than the standard QIM. Our
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Figure 6.10: Detection using blockiness evaluation of non-restored embedding
verses blockiness-restoration hiding: blockiness-restored embedding can evade
steganalysis better than the non-restored hiding.

JPEG steganography scheme, which is based on the zero K-L divergence QIM

framework, achieves perfect security when the DCT histograms are considered

for steganalysis. This can potentially be detected by blockiness-based steganaly-

sis techniques. To counter this, we have implemented the statistical restoration

framework to restore the blockiness statistics as well. Using this scheme, we can

significantly lower the detection rates for block-based steganalysis as well. The

approach presented in this chapter allows design of schemes that can guarantee

secure transmission at sufficiently high embedding rates.
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Figure 6.11: Detection of JPEG steganography with standard QIM verses per-
fect restoration QIM. As expected, the detection for perfect-restoration JPEG
scheme is random. However, the standard QIM at same rate is detectable.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have addressed several aspects of the information em-

bedding problem. In the first approach, we consider embedding large volume of

information without incurring any perceptual distortion, and achieve robustness

against many distortion-constrained attacks (such as compression, and additive

noise). The embedding capacity we achieve is among the best reported in the

literature (see a recent tutorial by Moulin and Koetter [76]). We can hide data

of the order of several thousands of bits, in say 512×512 images, with robust-

ness against a number of operations. Such an ability can be leveraged in several

exciting applications, such as image annotation, seamless upgrade, error conceal-

ment, and broadcast monitoring. The flexibility provided by the employed coding

framework in choosing the embedding locations can allow, for example, embed-

ding data in regions of a medical image that are not sensitive for diagnosis. In

many such disciplines, the flexibility in choosing hiding locations can allow the

use of data hiding technology for annotation and tamper protection of the images
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pertaining to these disciplines.

The problem of joint source-channel coding for conventional communication

problem has attracted attention from the research community since a long time in

spite of the fact that separation theorems for several channels have been proved

(for asymptotically reducing probability of error with increasing codeword length).

The primary reason for the research drive towards joint source-channel coding

schemes is that it provides simplicity of encoding and decoding, and also al-

lows graceful improvement in received quality. This is especially important now

because time-varying channels have gained significance lately. With the demon-

stration, in this thesis, of a practical joint source-channel coding scheme for the

data hiding channel (i.e., communication channel with side information about

the channel state at the encoder), several new avenues for future research have

opened up in both the theoretical analysis and the design of more advanced prac-

tical schemes. Moreover, deploying this framework for practical applications such

as error concealment of images and video provide an interesting potential for

future work.

Design of robust techniques have received the most attention from the re-

searchers in multimedia data hiding. We present a powerful scheme in this thesis

that can resist several severe manipulations, such as printing followed by scanning,

random bending, heavy compression, rows and/or columns removal, Gaussian or

median filtering, and aspect ratio change. While there are schemes available in

the literature that can deal with these attacks individually, what we have demon-

strated here, is one scheme that can survive all these attacks. Two key factors

have contributed to the robustness of this scheme: first, a powerful coding frame-
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work that allows dynamic choice of hiding locations, and second, embedding in

robust features comprising of selected low-frequency coefficients. The success of

the schemes also highlights the usefulness of experimental approach in solving

complex problems (such as print-scan resilient hiding).

The problem of steganography, or secure communication is both interesting

and significant. We present a practical framework for achieving perfect security

by having zero K-L divergence between the original and cover distributions. Key

to our efforts is the fact that we do not attempt to model the statistics, but

rather match the empirical density of the cover signal. We provide a simple

and easy to implement framework that can be employed to construct schemes

that can match statistics of any order. Having demonstrated a practical method

to achieve zero K-L divergence, it would now be interesting to investigate the

capacity of general stegosystems, and see how close the proposed system is from

the theoretical capacity. We now present some of the future research directions

in more detail.

7.1 Future Work

In this section, we discuss several new avenues of future work, that can extend

and improve upon the techniques presented in this thesis. Specifically, we discuss

three areas here: (a) deeper investigation of joint source-channel coding strategies,

including identifying fundamental limits (Section 7.1.1); (b) further exploration of

the print-scan channel so as to increase the number of hidden bits (Section 7.1.2),

and extending the work for general digital to analog and back to digital trans-
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formations; (c) investigating the capacity of the steganographic systems (Section

7.1.3). Another future direction is to employ our robust data embedding methods

for various disciplines and applications, such as, using our methods for image and

video error concealment, embedding meta-data into bio-molecular images, and

document authentication using print-scan resilient hiding.

7.1.1 Further Study of Joint Source-Channel Hiding

The efficacy of the simple joint source-channel hiding scheme proposed in

Chapter 4 prompts us to ask more fundamental questions. What are the ulti-

mate performance limits? How far are we from this limit? What would be the

construction of involved embedding strategies that could perform better than the

currently used method, and possibly operate close to the theoretical capacity?

While a number of joint source-channel coding approaches have been studied for

the Gaussian channel, joint source-channel coding for data hiding has not been

studied prior to our own work, and there are a number of open issues that one

can investigate.

An interesting future research direction is to analyze and compare the analog

information hiding1 scheme presented in Chapter 4 with the theoretically achiev-

able limits. It should be noted that the theoretical limit expression derived in

Chapter 4, equation (4.3) is very general and can be termed the “vector” embed-

ding limit (termed thus because the optimal strategy involves vector quantization

of the host) for data hiding. Our analog information hiding scheme, however, em-

beds information on a per host-symbol basis. Such “scalar” hiding has the merit

1Note that by ‘analog information hiding’, we mean embedding continuous alphabet sources.
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of simplicity, and it would be interesting to investigate the fundamental perfor-

mance limits for analog scalar hiding. Thus we can compare the performance of

our current scheme with a “scalar capacity”. It should be noted that our work

on digital hiding in Chapter 3 shows that, for AWGN attacks, there is roughly

only a 2 dB penalty for scalar hiding. We would like to derive analogous results

for analog embedded data under AWGN attacks.

Determining the performance limits, and the ‘gap’ between those and our

current hiding scheme can allow further investigation on whether more complex

embedding methods can close the gap. For this, the vast literature in joint source-

channel coding for the Gaussian channel can be leveraged as appropriate.

7.1.2 Print-Scan Resilient Hiding with Higher Capacity

The print-scan resilient embedding schemes presented in Chapter 5 provide

improvement over prior published methods in terms of volume of embedding. The

approach used is to divide the print-scan process into simpler sub-processes, then

identify the bottlenecks, which are then studied in further detail. In Chapter 5,

we have identified three main components of the print-scan process, namely, geo-

metric distortions, non-linear transformations, and colored high-frequency noise.

In our study, we focus only on the geometric distortions. A detailed study of the

other two components, non-linear effects, and colored noise is an avenue of future

work.

In particular, one can focus on some specific printers and scanners, and ana-

lyze the non-linear transformations in more detail so as to design hiding schemes

with higher capacities. Note that the exact non-linear characteristics depend on
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the particular printers and scanners employed in the system. For security applica-

tions, such as authentication of documents such as passports and driving licences,

it is possible to have devices that are under control of the designer.

Another interesting avenue for future work is to leverage the inverse halftoning

literature for reducing the affect of colored noise. There are several effective

inverse halftoning methods available, which provide very good performance in

terms of the resultant image quality. As discussed in Chapter 5, the colored

noise introduced during the printing process leads to distortion in the mid and

high frequency coefficients. By using inverse halftoning methods, we can possibly

improve the embedding capacity by using the mid (or high) frequency coefficients

along with the low frequency ones for hiding. It should be noted that inverse

halftoning methods are known to introduce some blurring in the image, which

must be dealt with explicitly.

7.1.3 The Capacity of Steganographic Systems

In Chapter 6, we present techniques that can allow high capacity embedding

with either low or even zero divergence. A model for steganography is described

in Section 6.2, in which the problem of maximizing embedding capacity is set up.

Deriving the theoretical capacity of secure steganographic schemes is an avenue

of future work. As stated there, the problem of finding the theoretical embedding

limit for an i.i.d. cover signal reduces to maximizing the embedding rate with

following constraints.

(i) D(PX ||PS) = 0, i.e., the K-L divergence between the original and stego

signal distributions is zero.
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(ii) d(X,S) ≤ D1, i.e., the distortion incurred by the encoder is smaller than or

equal to D1.

(iii) d(S, Y ) ≤ D2, i.e., the stego signal must survive an attack distortion of at

most D2.

where, d(·, ·) is some measure for the perceptual distortion between two media

signals. For simplicity of analysis, we can start with the mean squared distortion.

For N -tuple X, and Y , the distortion can be written simply as,

d(XN , SN) =
1

N

N∑
i=1

(Xi − Si)
2.

Note that, due to the presence of attacks, the encoder must introduce certain

minimum distortion DE to the cover signal, in order to have sufficient distortion

to noise ratio (DNR, or DE

D2
). An analysis of this set-up would provide insights

into the steganography problem, and may lead to the development of schemes

with better capacities.

7.2 Summary

In this thesis, we have addressed several fundamental issues in multimedia data

hiding, added new requirements, and proposed several schemes and frameworks

that provide practical solutions to many challenging problems in this field. The

experiments and results presented in this thesis are for data-sets consisting of real

images, and hence, the proposed techniques can be readily deployed for practical

applications.
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An important fundamental contribution of this thesis is the novel use of turbo-

like erasure and error correcting codes allowing the encoder to choose embedding

locations dynamically. This framework was employed in Chapter 3 for schemes

that can embed high-volume data with robustness against a variety of attacks.

We also demonstrate a practical technique here which gets to within 2 dB from

the theoretical embedding capacity of the scalar QIM. The coding framework has

also been applied to techniques that are robust against several malicious attacks

including printing followed by scanning (Chapter 5). Focussing on hiding media

signature signals into media hosts, we propose a new embedding framework that

can provide graceful improvement in received signature signal fidelity (Chapter

4). This has been made possible by the use of a new hybrid digital-analog joint

source-channel coding scheme. To the best of our knowledge, such schemes had

not been studied prior to our work. Our work has opened up several new avenues

for future work including investigating the fundamental limits as well as devis-

ing new strategies for joint source-channel hiding. In the final part of the thesis

(Chapter 6), we propose steganographic techniques that can evade statistical ste-

ganalysis while hiding large number of bits. Now that we have a practical scheme,

it would be interesting to investigate the capacity of data hiding systems that can

evade detection.
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[40] J. Fridrich, M. Goljan, P. Lisoněk, and D. Soukal. Writing on wet pa-
per. In ACM workshop on Multimedia and Security, Magdeburg, Germany,
September 2004.
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